Show simple item record

Differential treatment outcomes in BRCA1/2‐, CDK12‐, and ATM‐mutated metastatic castration‐resistant prostate cancer

dc.contributor.authorKwon, Daniel H.
dc.contributor.authorChou, Jonathan
dc.contributor.authorYip, Steven M.
dc.contributor.authorReimers, Melissa A.
dc.contributor.authorZhang, Li
dc.contributor.authorWright, Francis
dc.contributor.authorDhawan, Mallika S.
dc.contributor.authorBorno, Hala T.
dc.contributor.authorDesai, Arpita
dc.contributor.authorAggarwal, Rahul R.
dc.contributor.authorWyatt, Alexander W.
dc.contributor.authorSmall, Eric J.
dc.contributor.authorAlva, Ajjai S.
dc.contributor.authorChi, Kim N.
dc.contributor.authorFeng, Felix Y.
dc.contributor.authorKoshkin, Vadim S.
dc.date.accessioned2021-06-02T21:09:40Z
dc.date.available2022-07-02 17:09:39en
dc.date.available2021-06-02T21:09:40Z
dc.date.issued2021-06-15
dc.identifier.citationKwon, Daniel H.; Chou, Jonathan; Yip, Steven M.; Reimers, Melissa A.; Zhang, Li; Wright, Francis; Dhawan, Mallika S.; Borno, Hala T.; Desai, Arpita; Aggarwal, Rahul R.; Wyatt, Alexander W.; Small, Eric J.; Alva, Ajjai S.; Chi, Kim N.; Feng, Felix Y.; Koshkin, Vadim S. (2021). "Differential treatment outcomes in BRCA1/2‐, CDK12‐, and ATM‐mutated metastatic castration‐resistant prostate cancer." Cancer (12): 1965-1973.
dc.identifier.issn0008-543X
dc.identifier.issn1097-0142
dc.identifier.urihttps://hdl.handle.net/2027.42/167839
dc.publisherWiley Periodicals, Inc.
dc.subject.otherprostate cancer
dc.subject.otherATM
dc.subject.otherbiomarkers
dc.subject.otherBRCA2
dc.subject.otherCDK12
dc.subject.otherDNA repair
dc.titleDifferential treatment outcomes in BRCA1/2‐, CDK12‐, and ATM‐mutated metastatic castration‐resistant prostate cancer
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelOncology and Hematology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167839/1/cncr33487_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167839/2/cncr33487.pdf
dc.identifier.doi10.1002/cncr.33487
dc.identifier.sourceCancer
dc.identifier.citedreferenceWu YM, Cieślik M, Lonigro RJ, et al. Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell. 2018; 173: 1770 ‐ 1782.e14. doi: 10.1016/j.cell.2018.04.034
dc.identifier.citedreferencePritchard CC, Mateo J, Walsh MF, et al. Inherited DNA‐repair gene mutations in men with metastatic prostate cancer. N Engl J Med. 2016; 375: 443 ‐ 453. doi: 10.1056/NEJMoa1603144
dc.identifier.citedreferenceRobinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015; 161: 1215 ‐ 1228. doi: 10.1016/j.cell.2015.05.001
dc.identifier.citedreferenceHussain M, Daignault‐Newton S, Twardowski PW, et al. Targeting androgen receptor and DNA repair in metastatic castration‐resistant prostate cancer: results from NCI 9012. J Clin Oncol. 2018; 36: 991 ‐ 999. doi: 10.1200/JCO.2017.75.7310
dc.identifier.citedreferenceCastro E, Romero‐Laorden N, Del Pozo A, et al. PROREPAIR‐B: a prospective cohort study of the impact of germline DNA repair mutations on the outcomes of patients with metastatic castration‐resistant prostate cancer. J Clin Oncol. 2019; 37: 490 ‐ 503. doi: 10.1200/JCO.18.00358
dc.identifier.citedreferenceAnnala M, Struss WJ, Warner EW, et al. Treatment outcomes and tumor loss of heterozygosity in germline DNA repair–deficient prostate cancer. Eur Urol. 2017; 72: 34 ‐ 42. doi: 10.1016/j.eururo.2017.02.023
dc.identifier.citedreferenceAnnala M, Vandekerkhove G, Khalaf D, et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. Cancer Discov. 2018; 8: 444 ‐ 457. doi: 10.1158/2159-8290.CD-17-0937
dc.identifier.citedreferenceMateo J, Cheng HH, Beltran H, et al. Clinical outcome of prostate cancer patients with germline DNA repair mutations: retrospective analysis from an international study. Eur Urol. 2018; 73: 687 ‐ 693. doi: 10.1016/j.eururo.2018.01.010
dc.identifier.citedreferenceAntonarakis ES, Lu C, Luber B, et al. Germline DNA‐repair gene mutations and outcomes in men with metastatic castration‐resistant prostate cancer receiving first‐line abiraterone and enzalutamide. Eur Urol. 2018; 74: 218 ‐ 225. doi: 10.1016/j.eururo.2018.01.035
dc.identifier.citedreferenceO’Connor MJ. Targeting the DNA damage response in cancer. Mol Cell. 2015; 60: 547 ‐ 560. doi: 10.1016/j.molcel.2015.10.040
dc.identifier.citedreferenceHussain M, Mateo J, Fizazi K, et al. PROfound: phase III study of olaparib versus enzalutamide or abiraterone for metastatic castration‐resistant prostate cancer (mCRPC) with homologous recombination repair (HRR) gene alterations [abstract LBA12]. Ann Oncol. 2019; 30: LBA12.
dc.identifier.citedreferenceSmith M, Sandhu S, Kelly W, et al. Phase II study of niraparib in patients with metastatic castration‐resistant prostate cancer (mCRPC) and biallelic DNA‐repair gene defects (DRD): preliminary results of GALAHAD [abstract 202]. J Clin Oncol. 2019; 37: 202.
dc.identifier.citedreferenceMateo J, Carreira S, Sandhu S, et al. DNA‐repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 2015; 373: 1697 ‐ 1708. doi: 10.1056/NEJMoa1506859
dc.identifier.citedreferenceAbida W, Campbell D, Patnaik A, et al. Preliminary results from the TRITON2 study of rucaparib in patients (pts) with DNA damage repair (DDR)–deficient metastatic castration‐resistant prostate cancer (mCRPC): updated analyses. Ann Oncol. 2019; 30 ( suppl 5 ): V327 ‐ V328. doi: 10.1093/annonc/mdz248.003
dc.identifier.citedreferenceMateo J, Porta N, Bianchini D, et al. Olaparib in patients with metastatic castration‐resistant prostate cancer with DNA repair gene aberrations (TOPARP‐B): a multicentre, open‐label, randomised, phase 2 trial. Lancet Oncol. 2020; 21: 162 ‐ 174. doi: 10.1016/S1470-2045(19)30684-9
dc.identifier.citedreferenceAbida W, Campbell D, Patnaik A, et al. Non‐BRCA DNA damage repair gene alterations and response to the PARP inhibitor rucaparib in metastatic castration‐resistant prostate cancer: analysis from the phase 2 TRITON2 study. Clin Cancer Res. 2020; 26: 2487 ‐ 2496. doi: 10.1158/1078-0432.CCR-20-0394
dc.identifier.citedreferenceNational Comprehensive Cancer Network. Prostate Cancer (Version 1.2020). Accessed March 24, 2020. https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf
dc.identifier.citedreferenceWei Y, Wu J, Gu W, et al. Prognostic value of germline DNA repair gene mutations in de novo metastatic and castration‐sensitive prostate cancer. Oncologist. 2020; 25: e1042 ‐ e1050. doi: 10.1634/theoncologist.2019-0495
dc.identifier.citedreferenceMota JM, Barnett E, Nauseef JT, et al. Platinum‐based chemotherapy in metastatic prostate cancer with DNA repair gene alterations. JCO Precis Oncol. 2020; 4: 355 ‐ 366.
dc.identifier.citedreferenceReimers MA, Yip SM, Zhang L, et al. Clinical outcomes in cyclin‐dependent kinase 12 mutant advanced prostate cancer. Eur Urol. 2020; 77: 333 ‐ 341. doi: 10.1016/j.eururo.2019.09.036
dc.identifier.citedreferenceCheng HH, Pritchard CC, Boyd T, Nelson PS, Montgomery B. Biallelic inactivation of BRCA2 in platinum‐sensitive metastatic castration‐resistant prostate cancer. Eur Urol. 2016; 69: 992 ‐ 995. doi: 10.1016/j.eururo.2015.11.022
dc.identifier.citedreferenceNguyen B, Mota JM, Nandakumar S, et al. Pan‐cancer analysis of CDK12 alterations identifies a subset of prostate cancers with distinct genomic and clinical characteristics. Eur Urol. 2020; 78: 671 ‐ 679. doi: 10.1016/j.eururo.2020.03.024
dc.identifier.citedreferenceAntonarakis ES, Velho PI, Fu W, et al. CDK12‐altered prostate cancer: clinical features and therapeutic outcomes to standard systemic therapies, poly (ADP‐ribose) polymerase inhibitors, and PD‐1 inhibitors. JCO Precis Oncol. 2020; 4: 370 ‐ 381.
dc.identifier.citedreferenceSchweizer MT, Ha G, Gulati R, et al. CDK12‐mutated prostate cancer: clinical outcomes with standard therapies and immune checkpoint blockade. JCO Precis Oncol. 2020; 4: 382 ‐ 392.
dc.identifier.citedreferencede Bono J, Mateo J, Fizazi K, et al. Olaparib for metastatic castration‐resistant prostate cancer. N Engl J Med. 2020; 382: 2091 ‐ 2102. doi: 10.1056/NEJMoa1911440
dc.identifier.citedreferenceMenghi F, Barthel FP, Yadav V, et al. The tandem duplicator phenotype is a prevalent genome‐wide cancer configuration driven by distinct gene mutations. Cancer Cell. 2018; 34: 197 ‐ 210.e5. doi: 10.1016/j.ccell.2018.06.008
dc.identifier.citedreferenceMenghi F, Inaki K, Woo X, et al. The tandem duplicator phenotype as a distinct genomic configuration in cancer. Proc Natl Acad Sci U S A. 2016; 113: E2373 ‐ E2382. doi: 10.1073/pnas.1520010113
dc.identifier.citedreferenceQuigley DA, Dang HX, Zhao SG, et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. 2018; 174: 758 ‐ 769.e9. doi: 10.1016/j.cell.2018.06.039
dc.identifier.citedreferencevan Dessel LF, van Riet J, Smits M, et al. The genomic landscape of metastatic castration‐resistant prostate cancers reveals multiple distinct genotypes with potential clinical impact. Nat Commun. 2019; 10: 5251.. doi: 10.1038/s41467-019-13084-7
dc.identifier.citedreferenceLiu H, Liu K, Dong Z. Targeting CDK12 for cancer therapy: function, mechanism, and drug discovery. Cancer Res. Published online September 21, 2020.. doi: 10.1158/0008-5472.CAN-20-2245
dc.identifier.citedreferenceAntonarakis ES. Current understanding of resistance to abiraterone and enzalutamide in advanced prostate cancer. Clin Adv Hematol Oncol. 2016; 14: 316 ‐ 319.
dc.identifier.citedreferenceMarshall CH, Sokolova AO, McNatty AL, et al. Differential response to olaparib treatment among men with metastatic castration‐resistant prostate cancer harboring BRCA1 or BRCA2 versus ATM mutations. Eur Urol. 2019; 76: 452 ‐ 458. doi: 10.1016/j.eururo.2019.02.002
dc.identifier.citedreferenceKhalaf DJ, Annala M, Taavitsainen S, et al. Optimal sequencing of enzalutamide and abiraterone acetate plus prednisone in metastatic castration‐resistant prostate cancer: a multicentre, randomised, open‐label, phase 2, crossover trial. Lancet Oncol. 2019; 20: 1730 ‐ 1739. doi: 10.1016/S1470-2045(19)30688-6
dc.identifier.citedreferenceSuzman DL, Luber B, Schweizer MT, Nadal R, Antonarakis ES. Clinical activity of enzalutamide versus docetaxel in men with castration‐resistant prostate cancer progressing after abiraterone. Prostate. 2014; 74: 1278 ‐ 1285. doi: 10.1002/pros.22844
dc.identifier.citedreferenceTannock IF, de Wit R, Berry WR, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004; 351: 1502 ‐ 1512. doi: 10.1056/NEJMoa040720
dc.identifier.citedreferenceAntonarakis ES, Piulats JM, Gross‐Goupil M, et al. Pembrolizumab for treatment‐refractory metastatic castration‐resistant prostate cancer: multicohort, open‐label phase II KEYNOTE‐199 study. J Clin Oncol. 2020; 38: 395 ‐ 405. doi: 10.1200/JCO.19.01638
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.