Show simple item record

Cap‐independent translation: A shared mechanism for lifespan extension by rapamycin, acarbose, and 17α‐estradiol

dc.contributor.authorShen, Ziqian
dc.contributor.authorHinson, Abby
dc.contributor.authorMiller, Richard A.
dc.contributor.authorGarcia, Gonzalo G.
dc.date.accessioned2021-06-02T21:10:29Z
dc.date.available2022-06-02 17:10:27en
dc.date.available2021-06-02T21:10:29Z
dc.date.issued2021-05
dc.identifier.citationShen, Ziqian; Hinson, Abby; Miller, Richard A.; Garcia, Gonzalo G. (2021). "Cap‐independent translation: A shared mechanism for lifespan extension by rapamycin, acarbose, and 17α‐estradiol." Aging Cell (5): n/a-n/a.
dc.identifier.issn1474-9718
dc.identifier.issn1474-9726
dc.identifier.urihttps://hdl.handle.net/2027.42/167855
dc.description.abstractWe hypothesized that rapamycin (Rapa), acarbose (ACA), which both increase mouse lifespan, and 17α‐estradiol, which increases lifespan in males (17aE2) all share common intracellular signaling pathways with long‐lived Snell dwarf, PAPPA‐KO, and Ghr−/− mice. The long‐lived mutant mice exhibit reduction in mTORC1 activity, declines in cap‐dependent mRNA translation, and increases in cap‐independent translation (CIT). Here, we report that Rapa and ACA prevent age‐related declines in CIT target proteins in both sexes, while 17aE2 has the same effect only in males, suggesting increases in CIT. mTORC1 activity showed the reciprocal pattern, with age‐related increases blocked by Rapa, ACA, and 17aE2 (in males only). METTL3, required for addition of 6‐methyl‐adenosine to mRNA and thus a trigger for CIT, also showed an age‐dependent increase blunted by Rapa, ACA, and 17aE2 (in males). Diminution of mTORC1 activity and increases in CIT‐dependent proteins may represent a shared pathway for both long‐lived‐mutant mice and drug‐induced lifespan extension in mice.ACA, Rapamycin and 17alfa Estradiol downregulate mTORC1 activity and upregulation of the Cap‐Independent Translation leading to increases in the levels of cap‐Independent associated proteins (involved in mitochondrial function and stress resistance), suggesting a possible mechanism for lifespan extension.
dc.publisherWiley Periodicals, Inc.
dc.subject.otheraging
dc.subject.otherprotein translation
dc.subject.otherrapamycin
dc.subject.othersignal transduction
dc.subject.otheracarbose
dc.subject.other17α‐estradiol
dc.titleCap‐independent translation: A shared mechanism for lifespan extension by rapamycin, acarbose, and 17α‐estradiol
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167855/1/acel13345_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167855/2/acel13345.pdf
dc.identifier.doi10.1111/acel.13345
dc.identifier.sourceAging Cell
dc.identifier.citedreferenceRoux, P. P., & Topisirovic, I. ( 2018 ). Signaling pathways involved in the regulation of mRNA translation. Molecular and Cellular Biology, 38 ( 12 ), e00070‐18.
dc.identifier.citedreferenceLin, S., Choe, J., Du, P., Triboulet, R., & Gregory, R. I. ( 2016 ). The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Molecular Cell, 62 ( 3 ), 335 – 345.
dc.identifier.citedreferenceLin, Y., Wei, X., Jian, Z., & Zhang, X. ( 2020 ). METTL3 expression is associated with glycolysis metabolism and sensitivity to glycolytic stress in hepatocellular carcinoma. Cancer Medicine, 9, 2859 – 2867.
dc.identifier.citedreferenceMadar, Z., & Hazan, A. ( 1993 ). Effect of miglitol and acarbose on starch digestion, daily plasma glucose profiles and cataract formation. Journal of Basic and Clinical Physiology and Pharmacology, 4 ( 1–2 ), 69 – 81.
dc.identifier.citedreferenceMadar, Z., Hazan, A., & Pollack, A. ( 1994 ). Beneficial effects of acarbose on daily plasma glucose profile and cataract development in sand rats. Eye (Lond), 8 ( Pt 3 ), 353 – 356.
dc.identifier.citedreferenceMadar, Z., Melamed, E. C., & Zimlichman, R. ( 1997 ). Acarbose reduces blood pressure in sucrose‐induced hypertension in rats. Israel Journal of Medical Sciences, 33 ( 3 ), 153 – 159.
dc.identifier.citedreferenceMau, T., O’Brien, M., Ghosh, A. K., Miller, R. A., & Yung, R. ( 2020 ). Life‐span extension drug interventions affect adipose tissue inflammation in aging. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 75 ( 1 ), 89 – 98.
dc.identifier.citedreferenceMiller, R. A., Harrison, D. E., Astle, C. M., Baur, J. A., Boyd, A. R., de Cabo, R., Fernandez, E., Flurkey, K., Javors, M. A., Nelson, J. F., Orihuela, C. J., Pletcher, S., Sharp, Z. D., Sinclair, D., Starnes, J. W., Wilkinson, J. E., Nadon, N. L., & Strong, R. ( 2011 ). Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 66 ( 2 ), 191 – 201.
dc.identifier.citedreferenceMiller, R. A., Harrison, D. E., Astle, C. M., Fernandez, E., Flurkey, K., Han, M., Javors, M. A., Li, X., Nadon, N. L., Nelson, J. F., Pletcher, S., Salmon, A. B., Sharp, Z. D., Van Roekel, S., Winkleman, L., & Strong, R. ( 2014 ). Rapamycin‐mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell, 13 ( 3 ), 468 – 477.
dc.identifier.citedreferenceNiu, Y., Zhao, X., Wu, Y. S., Li, M. M., Wang, X. J., & Yang, Y. G. ( 2013 ). N6‐methyl‐adenosine (m6A) in RNA: An old modification with a novel epigenetic function. Genomics Proteomics Bioinformatics, 11 ( 1 ), 8 – 17.
dc.identifier.citedreferenceOzkurede, U., Kala, R., Johnson, C., Shen, Z., Miller, R. A., & Garcia, G. G. ( 2019 ). Cap‐independent mRNA translation is upregulated in long‐lived endocrine mutant mice. Journal of Molecular Endocrinology, 63 ( 2 ), 123 – 138.
dc.identifier.citedreferencePerez, C., Fernandez‐Agullo, T., De Solis, A. J., Ros, M., Andres, A., & Carrascosa, J. M. ( 2008 ). Effects of chronic acarbose treatment on adipocyte insulin responsiveness, serum levels of leptin and adiponectin and hypothalamic NPY expression in obese diabetic Wistar rats. Clinical and Experimental Pharmacology and Physiology, 35 ( 3 ), 256 – 261.
dc.identifier.citedreferenceRudovich, N. N., Weickert, M. O., Pivovarova, O., Bernigau, W., & Pfeiffer, A. F. ( 2011 ). Effects of acarbose treatment on markers of insulin sensitivity and systemic inflammation. Diabetes Technology & Therapeutics, 13 ( 6 ), 615 – 623.
dc.identifier.citedreferenceSadagurski, M., Cady, G., & Miller, R. A. ( 2017 ). Anti‐aging drugs reduce hypothalamic inflammation in a sex‐specific manner. Aging Cell, 16 ( 4 ), 652 – 660.
dc.identifier.citedreferenceStrong, R., Miller, R. A., Antebi, A., Astle, C. M., Bogue, M., Denzel, M. S., Fernandez, E., Flurkey, K., Hamilton, K. L., & Lamming, D. W. ( 2016 ). Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an alpha‐glucosidase inhibitor or a Nrf2‐inducer. Aging Cell, 15 ( 5 ), 872 – 884.
dc.identifier.citedreferenceSun, J., Conn, C. S., Han, Y., Yeung, V., & Qian, S. B. ( 2011 ). PI3K‐mTORC1 attenuates stress response by inhibiting cap‐independent Hsp70 translation. Journal of Biological Chemistry, 286 ( 8 ), 6791 – 6800.
dc.identifier.citedreferenceThoreen, C. C., Chantranupong, L., Keys, H. R., Wang, T., Gray, N. S., & Sabatini, D. M. ( 2012 ). A unifying model for mTORC1‐mediated regulation of mRNA translation. Nature, 485 ( 7396 ), 109 – 113.
dc.identifier.citedreferenceTsai, S., Sitzmann, J. M., Dastidar, S. G., Rodriguez, A. A., Vu, S. L., McDonald, C. E., Academia, E. C., O’Leary, M. N., Ashe, T. D., La Spada, A. R., & Kennedy, B. K. ( 2015 ). Muscle‐specific 4E‐BP1 signaling activation improves metabolic parameters during aging and obesity. J Clin Invest, 125 ( 8 ), 2952 – 2964.
dc.identifier.citedreferenceTyshkovskiy, A., Bozaykut, P., Borodinova, A. A., Gerashchenko, M. V., Ables, G. P., Garratt, M., Khaitovich, P., Clish, C. B., Miller, R. A., & Gladyshev, V. N. ( 2019 ). Identification and application of gene expression signatures associated with lifespan extension. Cell Metabolism, 30 ( 3 ), 573 – 593e578.
dc.identifier.citedreferenceWang, J., Ishfaq, M., Xu, L., Xia, C., Chen, C., & Li, J. ( 2019 ). METTL3/m(6)A/miRNA‐873‐5p attenuated oxidative stress and apoptosis in colistin‐induced kidney injury by modulating Keap1/Nrf2 pathway. Frontiers in Pharmacology, 10, 517.
dc.identifier.citedreferenceWu, R., Jiang, D., Wang, Y., & Wang, X. ( 2016 ). N (6)‐Methyladenosine (m(6)A) methylation in mRNA with a dynamic and reversible epigenetic modification. Molecular Biotechnology, 58 ( 7 ), 450 – 459.
dc.identifier.citedreferenceZeitz, M. J., Calhoun, P. J., James, C. C., Taetzsch, T., George, K. K., Robel, S., Valdez, G., & Smyth, J. W. ( 2019 ). Dynamic UTR usage regulates alternative translation to modulate gap junction formation during stress and aging. Cell Reports, 27 ( 9 ), 2737 – 2747e2735.
dc.identifier.citedreferenceZhang, Y., Bokov, A., Gelfond, J., Soto, V., Ikeno, Y., Hubbard, G., Diaz, V., Sloane, L., Maslin, K., Treaster, S., Réndon, S., van Remmen, H., Ward, W., Javors, M., Richardson, A., Austad, S. N., & Fischer, K. ( 2014 ). Rapamycin extends life and health in C57BL/6 mice. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 69 ( 2 ), 119 – 130.
dc.identifier.citedreferenceZhou, J., Wan, J., Gao, X., Zhang, X., Jaffrey, S. R., & Qian, S. B. ( 2015 ). Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature, 526 ( 7574 ), 591 – 594.
dc.identifier.citedreferenceZid, B. M., Rogers, A. N., Katewa, S. D., Vargas, M. A., Kolipinski, M. C., Lu, T. A., Benzer, S., & Kapahi, P. ( 2009 ). 4E‐BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell, 139 ( 1 ), 149 – 160.
dc.identifier.citedreferenceLi, S., Sonenberg, N., Gingras, A. C., Peterson, M., Avdulov, S., Polunovsky, V. A., & Bitterman, P. B. ( 2002 ). Translational control of cell fate: Availability of phosphorylation sites on translational repressor 4E‐BP1 governs its proapoptotic potency. Molecular and Cellular Biology, 22 ( 8 ), 2853 – 2861.
dc.identifier.citedreferenceBaar, E. L., Carbajal, K. A., Ong, I. M., & Lamming, D. W. ( 2016 ). Sex‐ and tissue‐specific changes in mTOR signaling with age in C57BL/6J mice. Aging Cell, 15 ( 1 ), 155 – 166.
dc.identifier.citedreferenceBeretta, L., Gingras, A. C., Svitkin, Y. V., Hall, M. N., & Sonenberg, N. ( 1996 ). Rapamycin blocks the phosphorylation of 4E‐BP1 and inhibits cap‐dependent initiation of translation. EMBO Journal, 15 ( 3 ), 658 – 664.
dc.identifier.citedreferenceChoe, J., Lin, S., Zhang, W., Liu, Q. I., Wang, L., Ramirez‐Moya, J., Du, P., Kim, W., Tang, S., Sliz, P., Santisteban, P., George, R. E., Richards, W. G., Wong, K.‐K., Locker, N., Slack, F. J., & Gregory, R. I. ( 2018 ). mRNA circularization by METTL3‐eIF3h enhances translation and promotes oncogenesis. Nature, 561 ( 7724 ), 556 – 560.
dc.identifier.citedreferenceDennis, M. D., Shenberger, J. S., Stanley, B. A., Kimball, S. R., & Jefferson, L. S. ( 2013 ). Hyperglycemia mediates a shift from cap‐dependent to cap‐independent translation via a 4E‐BP1‐dependent mechanism. Diabetes, 62 ( 7 ), 2204 – 2214.
dc.identifier.citedreferenceDominick, G., Berryman, D. E., List, E. O., Kopchick, J. J., Li, X., Miller, R. A., & Garcia, G. G. ( 2015 ). Regulation of mTOR activity in Snell dwarf and GH receptor gene‐disrupted mice. Endocrinology, 156 ( 2 ), 565 – 575.
dc.identifier.citedreferenceDominick, G., Bowman, J., Li, X., Miller, R. A., & Garcia, G. G. ( 2017 ). mTOR regulates the expression of DNA damage response enzymes in long‐lived Snell dwarf, GHRKO, and PAPPA‐KO mice. Aging Cell, 16 ( 1 ), 52 – 60.
dc.identifier.citedreferenceGarratt, M., Bower, B., Garcia, G. G., & Miller, R. A. ( 2017 ). Sex differences in lifespan extension with acarbose and 17‐alpha estradiol: Gonadal hormones underlie male‐specific improvements in glucose tolerance and mTORC2 signaling. Aging Cell, 16 ( 6 ), 1256 – 1266.
dc.identifier.citedreferenceGarratt, M., Nakagawa, S., & Simons, M. J. ( 2016 ). Comparative idiosyncrasies in life extension by reduced mTOR signalling and its distinctiveness from dietary restriction. Aging Cell, 15 ( 4 ), 737 – 743.
dc.identifier.citedreferenceHarrison, D. E., Strong, R., Alavez, S., Astle, C. M., DiGiovanni, J., Fernandez, E., Flurkey, K., Garratt, M., Gelfond, J. A. L., Javors, M. A., Levi, M., Lithgow, G. J., Macchiarini, F., Nelson, J. F., Sukoff Rizzo, S. J., Slaga, T. J., Stearns, T., Wilkinson, J. E., & Miller, R. A. ( 2019 ). Acarbose improves health and lifespan in aging HET3 mice. Aging Cell, 18 ( 2 ), e12898.
dc.identifier.citedreferenceHarrison, D. E., Strong, R., Allison, D. B., Ames, B. N., Astle, C. M., Atamna, H., Fernandez, E., Flurkey, K., Javors, M. A., & Nadon, N. L. ( 2014 ). Acarbose, 17‐alpha‐estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell, 13 ( 2 ), 273 – 282.
dc.identifier.citedreferenceHarrison, D. E., Strong, R., Sharp, Z. D., Nelson, J. F., Astle, C. M., Flurkey, K., Nadon, N. L., Wilkinson, J. E., Frenkel, K., Carter, C. S., Pahor, M., Javors, M. A., Fernandez, E., & Miller, R. A. ( 2009 ). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 460 ( 7253 ), 392 – 395.
dc.identifier.citedreferenceHoutkooper, R. H., Argmann, C., Houten, S. M., Canto, C., Jeninga, E. H., Andreux, P. A., Thomas, C., Doenlen, R., Schoonjans, K., & Auwerx, J. ( 2011 ). The metabolic footprint of aging in mice. Scientific Reports, 1, 134.
dc.identifier.citedreferenceKim, J., & Guan, K. L. ( 2019 ). mTOR as a central hub of nutrient signalling and cell growth. Nature Cell Biology, 21 ( 1 ), 63 – 71.
dc.identifier.citedreferenceLacerda, R., Menezes, J., & Romao, L. ( 2017 ). More than just scanning: the importance of cap‐independent mRNA translation initiation for cellular stress response and cancer. Cellular and Molecular Life Sciences, 74 ( 9 ), 1659 – 1680.
dc.identifier.citedreferenceLence, T., Soller, M., & Roignant, J. Y. ( 2017 ). A fly view on the roles and mechanisms of the m6A mRNA modification and its players. RNA Bioogyl, 14, 1232 – 1240.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.