Show simple item record

The Effect of Clinically Controllable Factors on Neural Activation During Dorsal Root Ganglion Stimulation

dc.contributor.authorGraham, Robert D.
dc.contributor.authorBruns, Tim M.
dc.contributor.authorDuan, Bo
dc.contributor.authorLempka, Scott F.
dc.date.accessioned2021-07-01T20:08:48Z
dc.date.available2022-07-01 16:08:47en
dc.date.available2021-07-01T20:08:48Z
dc.date.issued2021-06
dc.identifier.citationGraham, Robert D.; Bruns, Tim M.; Duan, Bo; Lempka, Scott F. (2021). "The Effect of Clinically Controllable Factors on Neural Activation During Dorsal Root Ganglion Stimulation." Neuromodulation: Technology at the Neural Interface 24(4): 655-671.
dc.identifier.issn1094-7159
dc.identifier.issn1525-1403
dc.identifier.urihttps://hdl.handle.net/2027.42/168238
dc.description.abstractObjectiveDorsal root ganglion stimulation (DRGS) is an effective therapy for chronic pain, though its mechanisms of action are unknown. Currently, we do not understand how clinically controllable parameters (e.g., electrode position, stimulus pulse width) affect the direct neural response to DRGS. Therefore, the goal of this study was to utilize a computational modeling approach to characterize how varying clinically controllable parameters changed neural activation profiles during DRGS.Materials and MethodsWe coupled a finite element model of a human L5 DRG to multicompartment models of primary sensory neurons (i.e., Aα‐, Aβ‐, Aδ‐, and C‐neurons). We calculated the stimulation amplitudes necessary to elicit one or more action potentials in each neuron, and examined how neural activation profiles were affected by varying clinically controllable parameters.ResultsIn general, DRGS predominantly activated large myelinated Aα‐ and Aβ‐neurons. Shifting the electrode more than 2 mm away from the ganglion abolished most DRGS‐induced neural activation. Increasing the stimulus pulse width to 500 μs or greater increased the number of activated Aδ‐neurons, while shorter pulse widths typically only activated Aα‐ and Aβ‐neurons. Placing a cathode near a nerve root, or an anode near the ganglion body, maximized Aβ‐mechanoreceptor activation. Guarded active contact configurations did not activate more Aβ‐mechanoreceptors than conventional bipolar configurations.ConclusionsOur results suggest that DRGS applied with stimulation parameters within typical clinical ranges predominantly activates Aβ‐mechanoreceptors. In general, varying clinically controllable parameters affects the number of Aβ‐mechanoreceptors activated, although longer pulse widths can increase Aδ‐neuron activation. Our data support several Neuromodulation Appropriateness Consensus Committee guidelines on the clinical implementation of DRGS.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherChronic pain
dc.subject.otherspinal cord stimulation
dc.subject.othercomputer simulation
dc.subject.otherelectric stimulation
dc.subject.otherdorsal roots
dc.subject.otherdorsal root ganglion
dc.titleThe Effect of Clinically Controllable Factors on Neural Activation During Dorsal Root Ganglion Stimulation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurology and Neurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168238/1/ner13211_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168238/2/ner13211.pdf
dc.identifier.doi10.1111/ner.13211
dc.identifier.sourceNeuromodulation: Technology at the Neural Interface
dc.identifier.citedreferenceCui J‐G, O’Connor WT, Ungerstedt U, Linderoth B, Meyerson BA. Spinal cord stimulation attenuates dorsal horn release of excitatory amino acids in mononeuropathy via a GABAergic mechanism. Pain 1997; 73: 87 – 95.
dc.identifier.citedreferenceBoyle KA, Gradwell MA, Yasaka T et al. Defining a spinal microcircuit that gates myelinated afferent input: Implications for tactile allodynia. Cell Rep 2019; 28: 526 – 540.e6. https://doi.org/10.1016/j.celrep.2019.06.040.
dc.identifier.citedreferenceFoster E, Wildner H, Tudeau L et al. Targeted ablation, silencing, and activation establish glycinergic dorsal horn neurons as key components of a spinal gate for pain and itch. Neuron 2015; 85: 1289 – 1304. https://doi.org/10.1016/j.neuron.2015.02.028.
dc.identifier.citedreferenceCui L, Miao X, Liang L et al. Identification of early RET+ deep dorsal spinal cord interneurons in gating pain. Neuron 2016; 91: 1137 – 1153. https://doi.org/10.1016/j.neuron.2016.07.038.
dc.identifier.citedreferenceMiller JP, Eldabe S, Buchser E, Johanek LM, Guan Y, Linderoth B. Parameters of spinal cord stimulation and their role in electrical charge delivery: a review. Neuromodulation 2016; 19: 373 – 384. https://doi.org/10.1111/ner.12438.
dc.identifier.citedreferenceMoffitt MA, Lee DC, Bradley K. Spinal cord stimulation: engineering approaches to clinical and physiological challenges. Implantable neural prostheses 2009; 1: 155 – 194. https://doi.org/10.1007/978-0-387-77261-5.
dc.identifier.citedreferenceDatta A, Elwassif M, Battaglia F, Bikson M. Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis. J Neural Eng 2008; 5: 163 – 174. https://doi.org/10.1088/1741-2560/5/2/007.
dc.identifier.citedreferenceLempka SF, Zander HJ, Anaya CJ, Wyant A, Ozinga JG, Machado AG. Patient‐specific analysis of neural activation during spinal cord stimulation for pain. Neuromodulation 2019; e‐pub ahead of print. https://doi.org/10.1111/ner.13037.
dc.identifier.citedreferenceGiacobassi MJ, Leavitt LS, Raghuraman S et al. An integrative approach to the facile functional classification of dorsal root ganglion neuronal subclasses. Proc Natl Acad Sci 2020; 117: 1 – 8. https://doi.org/10.1073/pnas.1911382117.
dc.identifier.citedreferencePeck‐Dimit N, Sperry ZJ, Graham RD, Lempka SF, Bruns TM. Human DRG 3D cross section analysis. Open Sci Framework. 2019. https://doi.org/10.17605/OSF.IO/TQRFZ.
dc.identifier.citedreferenceHunt CC. Relation of function to diameter in afferent fibers of muscle nerves. J Gen Physiol 1954; 38: 117 – 131.
dc.identifier.citedreferenceBanks RW. An allometric analysis of the number of muscle spindles in mammalian skeletal muscles. J Anat 2006; 208: 753 – 768. https://doi.org/10.1111/j.1469-7580.2006.00558.x.
dc.identifier.citedreferenceJi RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain 2013; 154: S10 – S28. https://doi.org/10.1016/j.pain.2013.06.022.
dc.identifier.citedreferenceJi R‐R, Donnelly CR, Nedergaard M. Astrocytes in chronic pain and itch. Nat Rev Neurosci 2019; 20: 667 – 685. https://doi.org/10.1038/s41583-019-0218-1.
dc.identifier.citedreferenceHanani M. Role of satellite glial cells in gastrointestinal pain. Front Cell Neurosci 2015; 9: 1 – 10. https://doi.org/10.3389/fncel.2015.00412.
dc.identifier.citedreferenceVallejo R, Bradley K, Kapural L. Spinal cord stimulation in chronic pain. Spine 2017; 42: S53 – S60. https://doi.org/10.1097/BRS.0000000000002179.
dc.identifier.citedreferenceVallejo R, Gupta A, Kelley CA et al. Effects of phase polarity and charge balance spinal cord stimulation on behavior and gene expression in a rat model of neuropathic pain. Neuromodulation 2020; 23: 26 – 35. https://doi.org/10.1111/ner.12964.
dc.identifier.citedreferenceCaylor J, Reddy R, Yin S et al. Spinal cord stimulation in chronic pain: evidence and theory for mechanisms of action. Bioelectron Med 2019; 5: 1 – 41. https://doi.org/10.1186/s42234-019-0023-1.
dc.identifier.citedreferenceRattay F. The basic mechanism for the electrical stimulation of the nervous system. Neuroscience 1999; 89: 335 – 346. https://doi.org/10.1016/S0306-4522(98)00330-3.
dc.identifier.citedreferenceHuang L‐YM, Gu Y, Chen Y. Communication between neuronal somata and satellite glial cells in sensory ganglia. Glia 2013; 61: 1571 – 1581. https://doi.org/10.1002/glia.22541.
dc.identifier.citedreferenceAbdo H, Calvo‐Enrique L, Lopez JM et al. Specialized cutaneous Schwann cells initiate pain sensation. Science 2019; 365: 695 – 699. https://doi.org/10.1126/science.aax6452.
dc.identifier.citedreferenceCosta FAL, Neto FLM. Satellite glial cells in sensory ganglia: Its role in pain. Brazil J Anesthesiol 2015; 65: 73 – 81. https://doi.org/10.1016/j.bjane.2013.07.013.
dc.identifier.citedreferenceZhou LJ, Peng J, Xu Y‐N et al. Microglia are indispensable for synaptic plasticity in the spinal dorsal horn and chronic pain. Cell Rep 2019; 27: 3844 – 3859.e6. https://doi.org/10.1016/j.celrep.2019.05.087.
dc.identifier.citedreferenceBean BP. The action potential in mammalian central neurons. Nat Rev Neurosci 2007; 8: 451 – 465. https://doi.org/10.1038/nrn2148.
dc.identifier.citedreferenceNorth RY, Li Y, Ray P et al. Electrophysiological and transcriptomic correlates of neuropathic pain in human dorsal root ganglion neurons. Brain 2019; 142: 1 – 12. https://doi.org/10.1093/BRAIN/AWZ063.
dc.identifier.citedreferenceNahin RL. Estimates of pain prevalence and severity in adults: United States, 2012. J Pain 2015; 16: 769 – 780. https://doi.org/10.1016/j.jpain.2015.05.002.
dc.identifier.citedreferencePaulozzi LJ, Jones CM, Mack KA, Rudd RA. Vital signs: Overdoses of prescription opioid pain relievers—United States, 1999–2008. MMWR Morb Mortal Wkly Rep 2011; 60: 1487 – 1492.
dc.identifier.citedreferenceRudd RA, Aleshire N, Zibbell JE, Gladden RM. Increases in drug and opioid overdose deaths—United States, 2000–2014. MMWR Morb Mortal Wkly Rep 2016; 64: 1378 – 1382.
dc.identifier.citedreferenceScholl L, Seth P, Kariisa M, Wilson N, Baldwin G. Drug and opioid‐involved overdose deaths—United States, 2013–2017. MMWR Morb Mortal Wkly Rep 2019; 67: 1419 – 1427. https://doi.org/10.15585/mmwr.mm675152e1.
dc.identifier.citedreferenceKumar K, Taylor RS, Jacques L et al. The effects of spinal cord stimulation in neuropathic pain are sustained: a 24‐month follow‐up of the prospective randomized controlled multicenter trial of the effectiveness of spinal cord stimulation. Neurosurgery 2008; 63: 762 – 768. https://doi.org/10.1227/01.NEU.0000325731.46702.D9.
dc.identifier.citedreferenceLempka SF, Patil PG. Innovations in spinal cord stimulation for pain. Curr Opin Biomed Eng 2018; 8: 51 – 60. https://doi.org/10.1016/j.cobme.2018.10.005.
dc.identifier.citedreferenceKumar K, Rizvi S, Bnurs SB. Spinal cord stimulation is effective in management of complex regional pain syndrome I: fact or fiction. Neurosurgery 2011; 69: 566 – 578. https://doi.org/10.1227/NEU.0b013e3182181e60.
dc.identifier.citedreferenceDeer TR, Pope JE. Dorsal root ganglion stimulation approval by the Food and Drug Administration: advice on evolving the process. Expert Rev Neurother 2016; 16: 1123 – 1125. https://doi.org/10.1080/14737175.2016.1206817.
dc.identifier.citedreferenceDeer TR, Levy RM, Kramer J et al. Dorsal root ganglion stimulation yielded higher treatment success rate for CRPS and causalgia at 3 and 12 months. Pain 2017; 158: 669 – 681. https://doi.org/10.1097/j.pain.0000000000000814.
dc.identifier.citedreferenceEldabe S, Burger K, Moser H et al. Dorsal root ganglion (DRG) stimulation in the treatment of phantom limb pain (PLP). Neuromodulation 2015; 18: 610 – 617. https://doi.org/10.1111/ner.12338.
dc.identifier.citedreferenceEldabe S, Espinet A, Wahlstedt A et al. Retrospective case series on the treatment of painful diabetic peripheral neuropathy with dorsal root ganglion stimulation. Neuromodulation 2018; 21: 787 – 792. https://doi.org/10.1111/ner.12767.
dc.identifier.citedreferenceMorgalla MH, Bolat A, Fortunato M, Lepski G, Chander BS. Dorsal root ganglion stimulation used for the treatment of chronic neuropathic pain in the groin: a single‐center study with long‐term prospective results in 34 cases. Neuromodulation 2017; 20: 753 – 760. https://doi.org/10.1111/ner.12713.
dc.identifier.citedreferenceHaberberger RV, Barry C, Dominguez N, Matusica D. Human dorsal root ganglia. Front Cell Neurosci 2019; 13: 1 – 17. https://doi.org/10.3389/fncel.2019.00271.
dc.identifier.citedreferenceDevor M. Unexplained peculiarities of the dorsal root ganglion. Pain 1999; 82: S27 – S35.
dc.identifier.citedreferenceMorgalla MH, Fortunato M, Lepski G, Chander BS. Dorsal root ganglion stimulation (DRGS) for the treatment of chronic neuropathic pain: a single‐center study with long‐term prospective results in 62 cases. Pain Phys 2018; 21: E377 – E388.
dc.identifier.citedreferenceSears NC, Machado AG, Nagel SJ et al. Long‐term outcomes of spinal cord stimulation with paddle leads in the treatment of complex regional pain syndrome and failed back surgery syndrome. Neuromodulation 2011; 14: 312 – 318. https://doi.org/10.1111/j.1525-1403.2011.00372.x.
dc.identifier.citedreferenceNissen M, Ikäheimo T‐M, Huttunen J, Leinonen V, von und zu Fraunberg M. Long‐term outcome of spinal cord stimulation in failed back surgery syndrome: 20 years of experience with 224 consecutive patients. Neurosurgery 2019; 84: 1011 – 1018. https://doi.org/10.1093/neuros/nyy194.
dc.identifier.citedreferenceKent AR, Min X, Hogan QH, Kramer JM. Mechanisms of dorsal root ganglion stimulation in pain suppression: a computational modeling analysis. Neuromodulation 2018; 21: 234 – 246. https://doi.org/10.1111/ner.12754.
dc.identifier.citedreferenceGraham RD, Bruns TM, Duan B, Lempka SF. Dorsal root ganglion stimulation for chronic pain modulates Aβ‐fiber activity but not C‐fiber activity: a computational modeling study. Clin Neurophysiol 2019; 130: 941 – 951. https://doi.org/10.1016/j.clinph.2019.02.016.
dc.identifier.citedreferenceBoyd IA, Kalu KU. Scaling factor relating conduction velocity and diameter for myelinated afferent nerve fibres in the cat hind limb. J Physiol 1979; 289: 277 – 297.
dc.identifier.citedreferenceAbraira VE, Ginty DD. The sensory neurons of touch. Neuron 2013; 79: 618 – 639. https://doi.org/10.1016/j.neuron.2013.07.051.
dc.identifier.citedreferenceMcIntyre CC, Grill WM. Excitation of central nervous system neurons by nonuniform electric fields. Biophys J 1999; 76: 878 – 888. https://doi.org/10.1016/S0006-3495(99)77251-6.
dc.identifier.citedreferenceAnaya CJ, Zander HJ, Graham RD, Sankarasubramanian V, Lempka SF. Evoked potentials recorded from the spinal cord during neurostimulation for pain: a computational modeling study. Neuromodulation 2020; 23: 64 – 73. https://doi.org/10.1111/ner.12965.
dc.identifier.citedreferenceLee D, Hershey B, Bradley K, Yearwood T. Predicted effects of pulse width programming in spinal cord stimulation: a mathematical modeling study. Med Biol Eng Comput 2011; 49: 765 – 774. https://doi.org/10.1007/s11517-011-0780-9.
dc.identifier.citedreferenceLempka SF, McIntyre CC, Kilgore KL, Machado AG. Computational analysis of kilohertz frequency spinal cord stimulation for chronic pain management. Anesthesiology 2015; 122: 1362 – 1376. https://doi.org/10.1097/ALN.0000000000000649.
dc.identifier.citedreferenceDeer TR, Pope JE, Lamer TJ et al. The neuromodulation appropriateness consensus committee on best practices for dorsal root ganglion stimulation. Neuromodulation 2019; 22: 1 – 35. https://doi.org/10.1111/ner.12845.
dc.identifier.citedreferenceHasegawa T, Mikawa Y, Watanabe R, An HS. Morphometric analysis of the lumbrosacral nerve roots and dorsal root ganglia by magnetic resonance imaging. Spine 1996; 21: 1005 – 1009.
dc.identifier.citedreferenceHogan Q. Size of human lower thoracic and lumbosacral nerve roots. Anesthesiology 1996; 85: 37 – 42. https://doi.org/10.1167/8.5.1.
dc.identifier.citedreferenceReina MA, Villanueva MC, López A, De Andrés JA. Grasa dentro de los manguitos durales de las raices nerviosas de la columna lumbar humana. Rev Esp Anestesiol Reanim 2007; 54: 297 – 301.
dc.identifier.citedreferenceGrill WM, Mortimer JT. Electrical properties of implant encapsulation tissue. Ann Biomed Eng 1994; 22: 23 – 33. https://doi.org/10.1007/BF02368219.
dc.identifier.citedreferenceAmirdelfan K, Kramer J, Cusack WF, Burton AW. Advanced neuromodulation techniques: dorsal root ganglion stimulation. Advanced procedures for pain management: a step‐by‐step atlas. Cham: Springer International Publishing, 2018; p. 265 – 279.
dc.identifier.citedreferenceGeddes LA, Baker LE. The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist. Med Biol Eng 1967; 5: 271 – 293. https://doi.org/10.1007/BF02474537.
dc.identifier.citedreferenceGabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 1996; 41: 2271 – 2293. https://doi.org/10.1088/0031-9155/41/11/003.
dc.identifier.citedreferenceHolsheimer J, Wesselink WA. Optimum electrode geometry for spinal cord stimulation: the narrow bipole and tripole. Med Biol Eng Comput 1997; 35: 493 – 497. https://doi.org/10.1007/BF02525529.
dc.identifier.citedreferenceHolsheimer J, Wesselink WA. Effect of anode‐cathode configuration on paresthesia coverage in spinal cord stimulation. Neurosurgery 1997; 41: 654 – 660. https://doi.org/10.1097/00006123-199709000-00030.
dc.identifier.citedreferenceHolsheimer J, Buitenweg JR, Das J, De Sutter P, Manola L, Nuttin B. The effect of pulse width and contact configuration on paresthesia coverage in spinal cord stimulation. Neurosurgery 2011; 68: 1452 – 1461. https://doi.org/10.1227/NEU.0b013e31820b4f47.
dc.identifier.citedreferenceHines ML, Carnevale NT. The NEURON simulation environment. Neural Comput 1997; 9: 1179 – 1209. https://doi.org/10.1162/neco.1997.9.6.1179.
dc.identifier.citedreferenceDjouhri L, Bleazard L, Lawson SN. Association of somatic action potential shape with sensory receptive properties in guinea‐pig dorsal root ganglion neurones. J Physiol 1998; 513: 857 – 872. https://doi.org/10.1111/j.1469-7793.1998.857ba.x.
dc.identifier.citedreferenceHuxley AF, Stämpfli R. Direct determination of membrane resting potential and action potential in single myelinated nerve fibres. J Physiol 1951; 112: 476 – 495.
dc.identifier.citedreferenceHarper AA, Lawson SN. Electrical properties of rat dorsal root ganglion neurones with different peripheral nerve conduction velocities. J Physiol 1985; 359: 47 – 63. https://doi.org/10.1113/jphysiol.1985.sp015574.
dc.identifier.citedreferenceStebbing MJ, Eschenfelder S, Acosta MC et al. Changes in the action potential in sensory neurones after peripheral axotomy in vivo. Neuroreport 1999; 10: 201 – 206.
dc.identifier.citedreferenceVillière V, McLachlan EM. Electrophysiological properties of neurons in intact rat dorsal root ganglia classified by conduction velocity and action potential duration. J Neurophysiol 1996; 76: 1924 – 1941.
dc.identifier.citedreferenceHowells J, Trevillion L, Bostock H, Burke D. The voltage dependence of Ih in human myelinated axons. J Physiol 2012; 590: 1625 – 1640. https://doi.org/10.1113/jphysiol.2011.225573.
dc.identifier.citedreferenceBennett DL, Clark AJ, Huang J, Waxman SG, Dib‐Hajj SD. The role of voltage‐gated sodium channels in pain signaling. Physiol Rev 2019; 99: 1079 – 1151. https://doi.org/10.1152/physrev.00052.2017.
dc.identifier.citedreferenceBlack JA, Dib‐Hajj S, McNabola K et al. Spinal sensory neurons express multiple sodium channel α‐subunit mRNAs. Mol Brain Res 1996; 43: 117 – 131. https://doi.org/10.1016/S0169-328X(96)00163-5.
dc.identifier.citedreferenceDjouhri L, Newton R, Levinson SR, Berry CM, Carruthers B, Lawson SN. Sensory and electrophysiological properties of guinea‐pig sensory neurones expressing Nav 1.7 (PN1) Na+ channel α subunit protein. J Physiol 2003; 546: 565 – 576. https://doi.org/10.1113/jphysiol.2002.026559.
dc.identifier.citedreferenceDjouhri L, Fang X, Okuse K, Wood JN, Berry CM, Lawson SN. The TTX‐resistant sodium channel Nav1.8 (SNS/PN3): Expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J Physiol 2003; 550: 739 – 752. https://doi.org/10.1113/jphysiol.2003.042127.
dc.identifier.citedreferenceYoshida S, Matsuda Y. Studies on sensory neurons of the mouse with intracellular‐recording and horseradish peroxidase‐injection techniques. J Neurophysiol 1979; 42: 1134 – 1145. https://doi.org/10.1152/jn.1979.42.4.1134.
dc.identifier.citedreferenceSundt D, Gamper N, Jaffe DB. Spike propagation through the dorsal root ganglia in an unmyelinated sensory neuron: a modeling study. J Neurophysiol 2015; 114: 3140 – 3153. https://doi.org/10.1152/jn.00226.2015.
dc.identifier.citedreferenceAmir R, Devor M. Electrical excitability of the soma of sensory neurons is required for spike invasion of the soma, but not for through‐conduction. Biophys J 2003; 84: 2181 – 2191. https://doi.org/10.1016/S0006-3495(03)75024-3.
dc.identifier.citedreferenceIto M, Takahashi I. Impulse conduction through spinal ganglion. Electrical activity of single cells. Tokyo: Igaku‐Shoin; 1960; p. 159 – 179.
dc.identifier.citedreferenceMcIntyre CC, Richardson AG, Grill WM. Modeling the excitability of mammalian nerve fibers: Influence of afterpotentials on the recovery cycle. J Neurophysiol 2002; 87: 995 – 1006. https://doi.org/10.1152/jn.00353.2001.
dc.identifier.citedreferenceMcIntyre CC, Grill WM, Sherman DL, Thakor NV. Cellular effects of deep brain stimulation: model‐based analysis of activation and inhibition. J Neurophysiol 2004; 91: 1457 – 1469. https://doi.org/10.1152/jn.00989.2003.
dc.identifier.citedreferenceHa H. Axonal bifurcation in the dorsal root ganglion of the cat: a light and electron microscopic study. J Comp Neurol 1970; 140: 227 – 240. https://doi.org/10.1002/cne.901400206.
dc.identifier.citedreferenceCapogrosso M, Gandar J, Greiner N et al. Advantages of soft subdural implants for the delivery of electrochemical neuromodulation therapies to the spinal cord. J Neural Engl 2018; 15: 1 – 15. https://doi.org/10.1088/1741-2552/aaa87a.
dc.identifier.citedreferenceGaines JL, Finn KE, Slopsema JP, Heyboer LA, Polasek KH. A model of motor and sensory axon activation in the median nerve using surface electrical stimulation. J Comput Neurosci 2018; 45: 29 – 43. https://doi.org/10.1007/s10827-018-0689-5.
dc.identifier.citedreferenceSheets PL, Jackson JO, Waxman SG, Dib‐hajj SD, Cummins TR. A Nav 1.7 channel mutation associated with hereditary erythromelalgia contributes to neuronal hyperexcitability and displays reduced lidocaine sensitivity. J Physiol 2007; 581: 1019 – 1031. https://doi.org/10.1113/jphysiol.2006.127027.
dc.identifier.citedreferenceMainen ZF, Sejnowski TJ. Dendritic structure modulates firing pattern in model neocortical neurons. Nature 1996; 382: 363 – 366.
dc.identifier.citedreferenceWaddell PJ, Lawson SN. Electrophysiological properties of subpopulations of rat dorsal root ganglion neurons in vitro. Neuroscience 1990; 36: 811 – 822. https://doi.org/10.1016/0306-4522(90)90024-X.
dc.identifier.citedreferenceOstrowski AK, Sperry ZJ, Kulik G, Bruns TM. Quantitative models of feline lumbosacral dorsal root ganglia neuronal cell density. J Neurosci Methods 2017; 290: 116 – 124. https://doi.org/10.1016/j.jneumeth.2017.07.018.
dc.identifier.citedreferenceSperry ZJ, Graham RD, Peck‐Dimit N, Lempka SF, Bruns TM. Spatial models of cell distribution in human lumbar dorsal root ganglia. J Comp Neurol 2020; 528: 1 – 16. https://doi.org/10.1002/cne.24848.
dc.identifier.citedreferenceHines ML, Davison AP, Muller E. NEURON and Python. Front Neuroinform 2009; 3: 1 – 12. https://doi.org/10.3389/neuro.11.001.2009.
dc.identifier.citedreferenceMoffitt MA, McIntyre CC. Model‐based analysis of cortical recording with silicon microelectrodes. Clin Neurophysiol 2005; 116: 2240 – 2250. https://doi.org/10.1016/j.clinph.2005.05.018.
dc.identifier.citedreferenceLempka SF, Howell B, Gunalan K, Machado AG, McIntyre CC. Characterization of the stimulus waveforms generated by implantable pulse generators for deep brain stimulation. Clin Neurophysiol 2018; 129: 731 – 742. https://doi.org/10.1016/j.clinph.2018.01.015.
dc.identifier.citedreferenceMartin S, Hadjipavlou G, Garcia Ortega R et al. The importance of the location of dorsal root ganglion stimulator electrodes within the nerve root exit foramen. Neuromodulation 2020; 23: 245 – 251. https://doi.org/10.1111/ner.12959.
dc.identifier.citedreferenceFalowski SM, Conti KR, Mogilner AY. Analysis of S1 DRG programming to determine location of the DRG and ideal anatomic positioning of the electrode. Neuromodulation 2020; 23: 252 – 257. https://doi.org/10.1111/ner.13039.
dc.identifier.citedreferenceYearwood TL, Hershey B, Bradley K, Lee D. Pulse width programming in spinal cord stimulation: a clinical study. Pain Physician 2010; 13: 321 – 335.
dc.identifier.citedreferenceDuan B, Cheng L, Ma Q. Spinal circuits transmitting mechanical pain and itch. Neurosci Bull 2018; 34: 186 – 193. https://doi.org/10.1007/s12264-017-0136-z.
dc.identifier.citedreferenceSilverstein MP, Romrell LJ, Benzel EC, Thompson N, Griffith S, Lieberman IH. Lumbar dorsal root ganglia location: an anatomic and MRI assessment. Int J Spine Surg 2015; 9: 3. https://doi.org/10.14444/2003.
dc.identifier.citedreferenceNanivadekar A, Ayers CA, Gaunt RA, Weber D, Fisher LE. Selectivity of afferent microstimulation at the DRG using epineural and penetrating electrode arrays. J Neural Eng 2019; 17: 1 – 14. https://doi.org/10.1088/1741-2552/ab4a24.
dc.identifier.citedreferenceLinderoth B, Stiller C‐O, Gunasekera L, O’Connor WT, Ungerstedt U, Brodin E. Gamma‐aminobutyric acid is released in the dorsal horn by electrical spinal cord stimulation: an in vivo microdialysis study in the rat. Neurosurgery 1994; 34: 484 – 489. https://doi.org/10.1017/CBO9781107415324.004.
dc.identifier.citedreferenceJanssen SP, Gerard S, Raijmakers ME, Truin M, Van Kleef M, Joosten EA. Decreased intracellular GABA levels contribute to spinal cord stimulation‐induced analgesia in rats suffering from painful peripheral neuropathy: The role of KCC2 and GABAA receptor‐mediated inhibition. Neurochem Int 2012; 60: 21 – 30. https://doi.org/10.1016/j.neuint.2011.11.006.
dc.identifier.citedreferenceCui J‐G, Linderoth B, Meyerson BA. Effects of spinal cord stimulation on touch‐evoked allodynia involve GABAergic mechanisms. An experimental study in the mononeuropathic rat. Pain 1996; 66: 287 – 295. https://doi.org/10.1016/0304-3959(96)03069-2.
dc.identifier.citedreferenceKoetsier E, Franken G, Debets J et al. Mechanism of dorsal root ganglion stimulation for pain relief in painful diabetic polyneuropathy is not dependent on GABA release in the dorsal horn of the spinal cord. CNS Neurosci Ther 2019; 00: 1 – 8. https://doi.org/10.1111/cns.13192.
dc.identifier.citedreferenceDu X, Hao H, Yang Y et al. Local GABAergic signaling within sensory ganglia controls peripheral nociceptive transmission. J Clin Invest 2017; 127: 1741 – 1756. https://doi.org/10.1172/JCI86812.
dc.identifier.citedreferenceTodd AJ. Identifying functional populations among the interneurons in laminae I‐III of the spinal dorsal horn. Mol Pain 2017; 13: 1 – 19. https://doi.org/10.1177/1744806917693003.
dc.identifier.citedreferenceLu Y, Dong H, Gao Y et al. A feed‐forward spinal cord glycinergic neural circuit gates mechanical allodynia. J Clin Invest 2013; 123: 4050 – 4062.
dc.identifier.citedreferencePetitjean H, Pawlowski SA, Fraine SL et al. Dorsal horn parvalbumin neurons are gate‐keepers of touch‐evoked pain after nerve injury. Cell Rep 2015; 13: 1246 – 1257. https://doi.org/10.1016/j.celrep.2015.09.080.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.