Show simple item record

Fitness effects of spontaneous mutations in a warming world

dc.contributor.authorDavenport, Elizabeth S.
dc.contributor.authorAgrelius, Trenton C.
dc.contributor.authorHarmon, Krista B.
dc.contributor.authorDudycha, Jeffry L.
dc.date.accessioned2021-07-01T20:09:55Z
dc.date.available2022-07-01 16:09:54en
dc.date.available2021-07-01T20:09:55Z
dc.date.issued2021-06
dc.identifier.citationDavenport, Elizabeth S.; Agrelius, Trenton C.; Harmon, Krista B.; Dudycha, Jeffry L. (2021). "Fitness effects of spontaneous mutations in a warming world." Evolution 75(6): 1513-1524.
dc.identifier.issn0014-3820
dc.identifier.issn1558-5646
dc.identifier.urihttps://hdl.handle.net/2027.42/168239
dc.description.abstractSpontaneous mutations fuel evolutionary processes and differ in consequence, but the consequences depend on the environment. Biophysical considerations of protein thermostability predict that warm temperatures may systematically increase the deleteriousness of mutation. We sought to test whether mutation reduced fitness more when measured in an environment that reflected climate change projections for temperature. We investigated the effects of spontaneous mutations on life history, size, and fitness in 21 mutation accumulation lines and 12 control lines of Daphnia pulex at standard and elevated (+4℃) temperatures. Warmer temperature accelerated life history and reduced body length and clutch sizes. Mutation led to reduced mean clutch sizes and fitness estimates at both temperatures. We found no evidence of a systematic temperature–mutation interaction on trait means, although some lines showed evidence of beneficial mutation at one temperature and deleterious mutation at the other. However, trait variances are also influenced by mutation, and we observed increased variances due to mutation for most traits. For variance of the intrinsic rate of increase and some reproductive traits, we found significant temperature–mutation interactions, with a larger increase due to mutation in the warmer environment. This suggests that selection on new mutations will be more efficient at elevated temperatures.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.otherDaphnia pulex
dc.subject.otherfitness
dc.subject.otherlife history
dc.subject.othermutation accumulation
dc.subject.othertemperature–size rule
dc.subject.otherbeneficial mutation
dc.titleFitness effects of spontaneous mutations in a warming world
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168239/1/evo14208-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168239/2/evo14208_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168239/3/evo14208.pdf
dc.identifier.doi10.1111/evo.14208
dc.identifier.sourceEvolution
dc.identifier.citedreferenceOssowski, S., K. Schneeberger, J. I. Lucas‐Lledo, N. Warthmann, R. M. Clark, R. G. Shaw, D. Weigel, and M. Lynch. 2010. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327: 92 – 94.
dc.identifier.citedreferenceBataillon, T. 2000. Estimation of spontaneous genome‐wide mutation rate parameters: whither beneficial mutations. Heredity 84: 497 – 501.
dc.identifier.citedreferenceBerger, D., J. Baur, and R. J. Walters. 2020. Elevated temperature increases genome‐wide selection on de novo mutations. bioRxiv https://doi.org/10.1101/268011.
dc.identifier.citedreferenceLovell, J. T., R. J. Williamson, S. I. Wright, J. K. Mckay, and T. F. Sharbel. 2017. Mutation accumulation in an asexual relative of Arabidopsis. PLOS Genet. 13: e10006550.
dc.identifier.citedreferenceLynch, M. 1985. Spontaneous mutations for life‐history characters in an obligate parthenogen. Evolution 39: 804 ‐ 818.
dc.identifier.citedreferenceLynch, M., L. Latta, J. Hicks, and M. Giorgianni. 1998. Mutation, selection, and the maintenance of life‐history variation in a natural population. Evolution 52: 727 – 733.
dc.identifier.citedreferenceLynch, M., J. Blanchard, D. Houle, T. Kibota, S. Schultz, L. Vassilieva, and J. Willis. 1999. Perspective: spontaneous deleterious mutation. Evolution 53: 645 – 663.
dc.identifier.citedreferenceMatsuba, C., D. G. Ostrow, M. P. Salomon, A. Tolani, and C. F. Baer. 2013. Temperature, stress and spontaneous mutation in Caenorhabditis briggsae and Caenorhabditis elegans. Biol. Lett. 9: 20120334.
dc.identifier.citedreferenceNess, R. W., A. D. Morgan, N. Colegrave, and P. D. Keightley. 2012. Estimate of the spontaneous mutation rate in Chlamydomonas reinhardtii. Genetics 192: 1447 – 1454.
dc.identifier.citedreferenceOmilian, A., M. E. A. Cristescu, J. L. Dudycha, and M. Lynch. 2006. Ameiotic recombination in asexual lineages of Daphnia. Proc. Natl. Acad. Sci. USA 103: 18638 – 18643.Erratum: PNAS 104: 2554.
dc.identifier.citedreferenceBaer, C. F., M. M. Miamoto, and D. R. Denver. 2007. Mutation rate variation in multicellular eukaryotes: causes and consequences. Nat. Rev. Genet. 8: 619 – 631.
dc.identifier.citedreferencePaland, S., J. Colbourne, and M. Lynch. 2005. Evolutionary history of contagious asexuality in Daphnia pulex. Evolution 59: 800 – 813.
dc.identifier.citedreferencePannebaker, B. A., D. L. Halligan, K. T. Reynolds, G. A. Ballantyne, D. M. Shuker, N. H. Barton, and S. A. West. 2008. Effects of spontaneous mutation accumulation on sex ratio traits in a parasitoid wasp. Evolution 62: 1921 – 1935.
dc.identifier.citedreferenceR Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r‐project.org
dc.identifier.citedreferenceRiessen, H. P. 2012. Costs of predator‐induced morphological defences in Daphnia. Freshwater Biol. 57: 1422 – 1433.
dc.identifier.citedreferenceRoles, A. J., and J. K. Conner. 2008. Fitness effects of mutation accumulation in a natural outbred population of wild radish ( Raphanus raphanistrum ): comparison of field and greenhouse environments. Evolution 62: 1066 – 1075.
dc.identifier.citedreferenceRoles, A. J., M. T. Rutter, I. Dworkin, C. B. Fenster, and J. K. Conner. 2016. Field measurements of genotype‐by‐environment interaction for fitness caused by spontaneous mutations in Arabidopsis thaliana. Evolution 70: 1039 – 1050.
dc.identifier.citedreferenceRutter, M. T., F. H. Shaw, and C. B. Fenster. 2010. Spontaneous mutation parameters for Arabidopsis thaliana measured in the wild. Evolution 64: 1825 – 1835.
dc.identifier.citedreferenceRutter, M. T., A. Roles, J. K. Conner, R. G. Shaw, F. H. Shaw, K. Schneeberger, S. Ossowski, D. Weigel, and C. B. Fenster. 2012. Fitness of Arabidopsis thaliana mutation accumulation lines whose spontaneous mutations are known. Evolution 66: 2335 – 2339.
dc.identifier.citedreferenceRutter, M. T., A. J. Roles, and C. B. Fenster. 2018. Quantifying natural seasonal variation in mutation parameters with mutation accumulation lines. Ecol. Evol. 8: 5575 – 5585.
dc.identifier.citedreferenceSchaack, S., D. E. Allen, L. C. Latta, K. K. Morgan, and M. Lynch. 2013. The effect of spontaneous mutations on competitive ability. J. Evol. Biol. 26: 451 – 456.
dc.identifier.citedreferenceScheiner, S. M., and D. Berrigan. 1998. The genetics of phenotypic plasticity. VIII. The cost of plasticity in Daphnia pulex. Evolution 52: 368 – 378.
dc.identifier.citedreferenceSchultz, S. T., and D. G. Scofield. 2009. Mutation accumulation in real branches: fitness assays for genomic deleterious mutation rate and effect in large‐statured plants. Am. Nat. 174: 163 – 175.
dc.identifier.citedreferenceShaw, F. H., C. J. Geyer, and R. G. Shaw. 2002. A comprehensive model of mutations affecting fitness and inferences for Arabidopsis thaliana. Evolution 56: 453 – 463.
dc.identifier.citedreferenceVaradarajan, R., H. A. Nagarajaram, and C. Ramakrishnan. 1996. A procedure for the prediction of temperature‐sensitive mutants of a globular protein based solely on the amino acid sequence. Proc. Natl. Acad. Sci. USA 93: 13908 – 13913.
dc.identifier.citedreferenceWeng, M. L., C. Becker, J. Hildebrandt, M. Neumann, M. T. Rutter, R. G. Shaw, D. Weigel, and C. B. Fenster. 2019. Fine‐grained analysis of spontaneous mutation spectrum and frequency in Arabidopsis thaliana. Genetics 211: 703 – 714.
dc.identifier.citedreferenceWickham, H. 2009. ggplot2: elegant graphics for data analysis. Springer, New York.
dc.identifier.citedreferenceZhu, Y. O., M. L. Siegal, D. W. Hall, and D. A. Petrov. 2014. Precise estimates of mutation rate and spectrum in yeast. Proc. Natl. Acad. Sci. USA 111: E2320 – E2318.
dc.identifier.citedreferenceAgozzino, L., and K. A. Dill. 2018. Protein evolution speed depends on its stability and abundance and on chaperone concentrations. Proc. Natl. Acad. Sci. USA 115: 9092 – 9097.
dc.identifier.citedreferenceBaer, C. F., F. Shaw, C. Steding, M. Baumgartner, A. Hawkins, A. Houppert, N. Mason, M. Reed, K. Simonelic, W. Woodard, et al. 2005. Comparative evolutionary genetics of spontaneous mutations affecting fitness in rhabditid nematodes. Proc. Natl. Acad. Sci. USA 102: 5785 – 5790.
dc.identifier.citedreferenceBaer, C. F., N. Phillips, D. Ostrow, A. Avalos, D. Blanton, A. Boggs, T. Keller, L. Levy, and E. Mezerhane. 2006. Cumulative effects of spontaneous mutations for fitness in Caenorhabditis: role of genotype, environment, and stress. Genetics 174: 1387 – 1395.
dc.identifier.citedreferenceBull, J. K., J. M. Flynn, F. J. J. Chain, and M. E. Cristescu. 2019. Fitness and genomic consequences of chronic exposure to low levels of copper and nickel in Daphnia pulex mutation accumulation lines. G3 9: 61 – 71.
dc.identifier.citedreferenceChang, S. M., and R. G. Shaw. 2003. The contribution of spontaneous mutation to variation in environmental response in Arabidopsis thaliana: responses to nutrients. Evolution 57: 984 – 994.
dc.identifier.citedreferenceDandage, R., R. Pandey, G. Jayaraj, M. Rai, D. Berger, and K. Chakraborty. 2018. Differential strengths of molecular determinants guide environment specific mutational fates. PLOS Genet. 14: e1007419.
dc.identifier.citedreferenceDavies, S. K., A. Leroi, A. Burt, J. G. Bundy, and C. F. Baer. 2016. The mutational structure of metabolism in Caenorhabditis elegans. Evolution 70: 2239 – 2246.
dc.identifier.citedreferenceDesmarais, K. 1997. Keeping Daphnia out of the surface film with cetyl alcohol. J. Plankton Res. 19: 149 – 154.
dc.identifier.citedreferenceDrake, J. W., B. Charlesworth, D. Charlesworth, and J. F. Crow. 1998. Rates of spontaneous mutation. Genetics 148: 1667 – 1686.
dc.identifier.citedreferenceDudycha, J. L., and Tessier, A. J. 1999. Natural genetic variation of life span, reproduction and juvenile growth in Daphnia. Evolution 53 1744 – 1756.
dc.identifier.citedreferenceDudycha, J. L. 2003. A multi‐environment comparison of senescence between sister species of Daphnia. Oecologia 135 555 – 563.
dc.identifier.citedreferenceDudycha, J. L., and C. Hassel. 2013. Aging in sexual and obligately asexual clones of Daphnia from temporary ponds. J. Plankton Res. 35: 253 – 259.
dc.identifier.citedreferenceEberle, S., D. Dezoumbe, R. McGregor, S. Kinzer, W. Raver, S. Schaack, and L. C. Latta. 2018. Hierarchical assessment of mutation properties in Daphnia magna. G3 8: 3481 – 3487.
dc.identifier.citedreferenceEyre‐Walker, A., and P. D. Keightley. 2007. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8: 610 – 618.
dc.identifier.citedreferenceFerrão‐Filho, A. S., S. M. F. O. Azevedo, and W. R. DeMott. 2000. Effects of toxic and non‐toxic cyanobacteria on the life history of tropical and temperate cladocerans. Freshwater Biol. 45: 1 – 19.
dc.identifier.citedreferenceFry, J. D. 2001. Rapid mutational declines of viability in Drosophila. Genet. Res. 77: 53 – 60.
dc.identifier.citedreferenceGoulden, C. E., and L. L. Hornig. 1980. Population oscillations and energy reserves in planktonic Cladocera and their consequences to competition. Proc. Natl. Acad. Sci. USA 77: 1716 – 1720.
dc.identifier.citedreferenceHall, D. W., and S. B. Joseph. 2010. A high frequency of beneficial mutations across multiple fitness components in Saccharomyces cerevisiae. Genetics 185: 1397 – 1409.
dc.identifier.citedreferenceHall, D. W., R. Mahmoudizad, A. W. Hurd, and S. B. Joseph. 2008. Spontaneous mutations in diploid Saccharomyes cerevisiae: another thousand cell generations. Genet. Res. 90: 229 – 241.
dc.identifier.citedreferenceHall, D. W., S. Fox, J. J. Kuzdzal‐Fick, J. E. Strassmann, and D. C. Quellar. 2013. The rate and effects of spontaneous mutation on fitness traits in the social amoeba, Dictyostelium discoideum. G3 3: 1115 – 1127.
dc.identifier.citedreferenceHalligan, D. L., and Keightley, P. D. 2009. Spontaneous mutation accumulation studies in evolutionary genetics. Annual Review of Ecology, Evolution, and Systematics 40 151 – 172.
dc.identifier.citedreferenceHebert, P. D. N. 1981. Obligate asexuality in Daphnia. Am. Nat. 117: 784 – 789.
dc.identifier.citedreferenceHeier, C. R., and J. L. Dudycha. 2009. Ecological speciation in cyclic parthenogens: sexual capability of experimental hybrids between Daphnia pulex and Daphnia pulicaria. Limnol. Oceanogr. 54: 492 – 502.
dc.identifier.citedreferenceHo, E. K. H., F. Macrae, L. C. Latta IV, P. McIlroy, D. Ebert, P. D. Fields, M. J. Brenner, and S. Schaack. 2020. High and highly variable spontaneous mutation rates in Daphnia. Mol. Biol. Evol. 37: 3258 – 3266.
dc.identifier.citedreferenceHoule, D., and J. Fierst. 2012. Properties of spontaneous mutational variance and covariance for wing size and shape in Drosophila melanogaster. Evolution 67: 1116 – 1130.
dc.identifier.citedreferenceHoule, D., D. K. Hoffmaster, S. Assimacopoulos, and B. Charlesworth. 1992. The genomic mutation rate for fitness in Drosophila. Nature 359: 58 – 60.
dc.identifier.citedreferenceKeith, N., A. E. Tucker, C. E. Jackson, W. Sung, J. I. Lucas Lledo, D. R. Schrider, S. Schaack, J. L. Dudycha, J. Shaw, and M. Lynch. 2016. High mutational rates of large‐scale duplication and deletion in Daphnia pulex. Genome Research 26: 60 – 69.
dc.identifier.citedreferenceKrasovec, M., Eyre‐Walker, A., Sanchez‐Fernandin, S., and Piganeau, G. 2017. Spontaneous mutation rate in the smallest photosynthetic eukaryotes. Molecular Biology and Evolution 34 1770 – 1779.
dc.identifier.citedreferenceLatimer, C. A. L., K. McGuigan, R. S. Wilson, M. W. Blows, and S. F. Chenowith. 2014. The contribution of spontaneous mutations to thermal sensitivity variation in Drosophila serrata. Evolution 68: 1824 – 1837.
dc.identifier.citedreferenceLatta, L. C., K. K. Morgan, C. S. Weaver, D. Allen, S. Schaack, and M. Lynch. 2013. Genomic background and generation time influence deleterious mutation rates in Daphnia. Genetics 193: 539 – 544.
dc.identifier.citedreferenceLatta, L. C., M. Peacock, D. J. Civitello, J. L. Dudycha, J. M. Meik, and S. Schaack. 2015. The phenotypic effects of spontaneous mutations in different environments. Am. Nat. 185: 243 – 252.
dc.identifier.citedreferenceLiu, X., and C. F. Steiner. 2017. Ecotoxicology of salinity tolerance in Daphnia pulex: interactive effects of clonal variation, salinity stress and predation. J. Plankton Res. 39: 687 – 697.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.