Show simple item record

The Changing Face of Winter: Lessons and Questions From the Laurentian Great Lakes

dc.contributor.authorOzersky, Ted
dc.contributor.authorBramburger, Andrew J.
dc.contributor.authorElgin, Ashley K.
dc.contributor.authorVanderploeg, Henry A.
dc.contributor.authorWang, Jia
dc.contributor.authorAustin, Jay A.
dc.contributor.authorCarrick, Hunter J.
dc.contributor.authorChavarie, Louise
dc.contributor.authorDepew, David C.
dc.contributor.authorFisk, Aaron T.
dc.contributor.authorHampton, Stephanie E.
dc.contributor.authorHinchey, Elizabeth K.
dc.contributor.authorNorth, Rebecca L.
dc.contributor.authorWells, Mathew G.
dc.contributor.authorXenopoulos, Marguerite A.
dc.contributor.authorColeman, Maureen L.
dc.contributor.authorDuhaime, Melissa B.
dc.contributor.authorFujisaki‐manome, Ayumi
dc.contributor.authorMcKay, R. Michael
dc.contributor.authorMeadows, Guy A.
dc.contributor.authorRowe, Mark D.
dc.contributor.authorSharma, Sapna
dc.contributor.authorTwiss, Michael R.
dc.contributor.authorZastepa, Arthur
dc.date.accessioned2021-07-01T20:10:10Z
dc.date.available2022-07-01 16:10:09en
dc.date.available2021-07-01T20:10:10Z
dc.date.issued2021-06
dc.identifier.citationOzersky, Ted; Bramburger, Andrew J.; Elgin, Ashley K.; Vanderploeg, Henry A.; Wang, Jia; Austin, Jay A.; Carrick, Hunter J.; Chavarie, Louise; Depew, David C.; Fisk, Aaron T.; Hampton, Stephanie E.; Hinchey, Elizabeth K.; North, Rebecca L.; Wells, Mathew G.; Xenopoulos, Marguerite A.; Coleman, Maureen L.; Duhaime, Melissa B.; Fujisaki‐manome, Ayumi ; McKay, R. Michael; Meadows, Guy A.; Rowe, Mark D.; Sharma, Sapna; Twiss, Michael R.; Zastepa, Arthur (2021). "The Changing Face of Winter: Lessons and Questions From the Laurentian Great Lakes." Journal of Geophysical Research: Biogeosciences 126(6): n/a-n/a.
dc.identifier.issn2169-8953
dc.identifier.issn2169-8961
dc.identifier.urihttps://hdl.handle.net/2027.42/168250
dc.description.abstractAmong its many impacts, climate warming is leading to increasing winter air temperatures, decreasing ice cover extent, and changing winter precipitation patterns over the Laurentian Great Lakes and their watershed. Understanding and predicting the consequences of these changes is impeded by a shortage of winter- period studies on most aspects of Great Lake limnology. In this review, we summarize what is known about the Great Lakes during their 3- 6 months of winter and identify key open questions about the physics, chemistry, and biology of the Laurentian Great Lakes and other large, seasonally frozen lakes. Existing studies show that winter conditions have important effects on physical, biogeochemical, and biological processes, not only during winter but in subsequent seasons as well. Ice cover, the extent of which fluctuates dramatically among years and the five lakes, emerges as a key variable that controls many aspects of the functioning of the Great Lakes ecosystem. Studies on the properties and formation of Great Lakes ice, its effect on vertical and horizontal mixing, light conditions, and biota, along with winter measurements of fundamental state and rate parameters in the lakes and their watersheds are needed to close the winter knowledge gap. Overcoming the formidable logistical challenges of winter research on these large and dynamic ecosystems may require investment in new, specialized research infrastructure. Perhaps more importantly, it will demand broader recognition of the value of such work and collaboration between physicists, geochemists, and biologists working on the world’s seasonally freezing lakes and seas.Plain Language SummaryThe Laurentian Great Lakes are the world’s largest freshwater ecosystem and provide diverse ecosystem services to millions of people. Affected by multiple interacting stressors, this system is the target of extensive restoration and management efforts that demand robust scientific knowledge. Winter limnology represents a key knowledge gap that limits understanding and prediction of the function of the Great Lakes and other large temperate lakes. Here, we summarize what is known about the Great Lakes during their 3- 6 months of winter, identify key questions that must be addressed to improve understanding of the physical, chemical, and biological functioning of large lakes in winter, and suggest ways to address these questions. We show that ice cover is a - master variable- that controls numerous aspects of large temperate lake ecology and that the effects of the ongoing reduction in ice cover extent and duration cannot be predicted without improved knowledge of winter limnology.Key PointsWinter limnology is a key knowledge gap that limits understanding and management of the Great Lakes and other large, seasonally frozen lakesWe review the winter physics, chemistry, and biology of the Great Lakes and identify priority questions for winter research on large lakesIce cover is a - master variable- for many large lake limnological processes, making a better understanding of its role a research priority
dc.publisherNOAA Technical Memorandum GLERL- 127
dc.publisherWiley Periodicals, Inc.
dc.subject.otherclimate change
dc.subject.otherLaurentian Great Lakes
dc.subject.otherseasonality
dc.subject.otherwinter limnology
dc.titleThe Changing Face of Winter: Lessons and Questions From the Laurentian Great Lakes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168250/1/jgrg21922_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168250/2/jgrg21922.pdf
dc.identifier.doi10.1029/2021JG006247
dc.identifier.sourceJournal of Geophysical Research: Biogeosciences
dc.identifier.citedreferencePothoven, S. A., & Vanderploeg, H. A. ( 2017 ). Changes in Mysis diluviana abundance and life history patterns following a shift toward oligotrophy in Lake Michigan. Fundamental and Applied Limnology/Archiv für Hydrobiologie, 190, 199 - 212.
dc.identifier.citedreferenceSaylor, J. H., & Miller, G. S. ( 1983 ). Investigation of the currents and density structure of lake Erie. NOAA/Great lakes environmental research Laboratory. NOAA Technical Memorandum ERL GLERL- 49.
dc.identifier.citedreferenceScavia, D., Bocaniov, S. A., Dagnew, A., Long, C., & Wang, Y.- C. ( 2019 ). St. Clair- Detroit River system: Phosphorus mass balance and implications for Lake Erie load reduction, monitoring, and climate change. Journal of Great Lakes Research, 45, 40 - 49. https://doi.org/10.1016/j.jglr.2018.11.008
dc.identifier.citedreferenceSelgeby, J. H. ( 1975 ). Life histories and abundance of crustacean zooplankton in the outlet of Lake Superior, 1971- 72. Journal of Fisheries Research Board of Canada, 32, 461 - 470. https://doi.org/10.1139/f75-056
dc.identifier.citedreferenceShanley, J. B., Kendall, C., Smith, T. E., Wolock, D. M., & McDonnell, J. J. ( 2002 ). Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA. Hydrological Processes, 16, 589 - 609. https://doi.org/10.1002/hyp.312
dc.identifier.citedreferenceSharma, S., Blagrave, K., Magnuson, J. J., O’Reilly, C. M., Oliver, S., Batt, R. D., et al. ( 2019 ). Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nature Climate Change, 9, 227 - 231. https://doi.org/10.1038/s41558-018-0393-5
dc.identifier.citedreferenceShuter, B. J., Finstad, A. G., Helland, I. P., Zweimüller, I., & Hölker, F. ( 2012 ). The role of winter phenology in shaping the ecology of freshwater fish and their sensitivities to climate change. Aquatic Sciences, 74, 637 - 657. https://doi.org/10.1007/s00027-012-0274-3
dc.identifier.citedreferenceSleator, F. E. ( 1995 ). GLERL great lakes ice thickness data base, 1966- 1979. National snow and ice data center. Retrieved from https://catalog.data.gov/dataset/glerl-great-lakes-ice-thickness-data-base-1966-1979
dc.identifier.citedreferenceSmall, G. E., Cotner, J. B., Finlay, J. C., Stark, R. A., & Sterner, R. W. ( 2014 ). Nitrogen transformations at the sediment- water interface across redox gradients in the Laurentian Great Lakes. Hydrobiologia, 731, 95 - 108. https://doi.org/10.1007/s10750-013-1569-7
dc.identifier.citedreferenceSommer, U., Adrian, R., De Senerpont Domis, L., Elser, J. J., Gaedke, U., Ibelings, B., et al. ( 2012 ). Beyond the plankton ecology group (PEG) model: Mechanisms driving plankton succession. Annual Review of Ecology, Evolution and Systematics, 43, 429 - 448. https://doi.org/10.1146/annurev-ecolsys-110411-160251
dc.identifier.citedreferenceSommer, U., Gliwicz, Z. M., Lampert, W., & Duncan, A. ( 1986 ). The PEG- model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie, 106, 433 - 471.
dc.identifier.citedreferenceStoermer, E. F., Bowman, M. M., Kingston, J. C., & Schaedel, A. L. ( 1975 ). Phytoplankton composition and abundance In lake Ontario during IFYGL. US Environmental Protection Agency.
dc.identifier.citedreferenceStow, C. A., Cha, Y., Johnson, L. T., Confesor, R., & Richards, R. P. ( 2015 ). Long- term and seasonal trend decomposition of Maumee River nutrient inputs to western Lake Erie. Environmental Science and Technology, 49, 3392 - 3400. https://doi.org/10.1021/es5062648
dc.identifier.citedreferenceStraÅ¡krábová, V., Izmest’yeva, L. R., Maksimova, E. A., Fietz, S., Nedoma, J., Borovec, J., et al. ( 2005 ). Primary production and microbial activity in the euphotic zone of Lake Baikal (Southern Basin) during late winter. Global and Planetary Change, 46, 57 - 73.
dc.identifier.citedreferenceStudd, E. K., Bates, A. E., Bramburger, A. J., Fernandes, T., Hayden, B., Henry, H. A., et al. ( 2021 ). Nine maxims for the ecology of cold- climate winters. BioScience. https://doi.org/10.1093/biosci/biab032
dc.identifier.citedreferenceSze, P., & Stewart, K. M. ( 1974 ). Phytoplankton succession under the ice in Lake Erie. Phycologia, 13, 265 - 266. https://doi.org/10.2216/i0031-8884-13-3-265.1
dc.identifier.citedreferenceTierney, G. L., Fahey, T. J., Groffman, P. M., Hardy, J. P., Fitzhugh, R. D., & Driscoll, C. T. ( 2001 ). Soil freezing alters fine root dynamics in a northern hardwood forest. Biogeochemistry, 56, 175 - 190. https://doi.org/10.1023/a:1013072519889
dc.identifier.citedreferenceTilzer, M. M. ( 1990 ). Specific properties of large lakes. In M. M. Tilzer, & C. Serruya, (Eds.), Large lakes (pp. 39 - 43 ). Springer. https://doi.org/10.1007/978-3-642-84077-7_2
dc.identifier.citedreferenceTimoshkin, O. A. ( 2001 ). Lake Baikal: Diversity of fauna, problems of its immiscibility and origin, ecology and - exotic- communities. In O. A. Timoshkin, (Ed.), Index of animal species inhabiting Lake Baikal and its catchment area (pp. 74 - 113 ). Nauka Publisher.
dc.identifier.citedreferenceTitze, D. J., & Austin, J. A. ( 2014 ). Winter thermal structure of Lake Superior. Limnology & Oceanography, 59, 1336 - 1348. https://doi.org/10.4319/lo.2014.59.4.1336
dc.identifier.citedreferenceTitze, D. J., & Austin, J. A. ( 2016 ). Novel, direct observations of ice on Lake Superior during the high ice coverage of winter 2013- 2014. Journal of Great Lakes Research, 42, 997 - 1006. https://doi.org/10.1016/j.jglr.2016.07.026
dc.identifier.citedreferenceTownsend- Small, A., Disbennett, D., Fernandez, J. M., Ransohoff, R. W., Mackay, R., & Bourbonniere, R. A. ( 2016 ). Quantifying emissions of methane derived from anaerobic organic matter respiration and natural gas extraction in Lake Erie. Limnology & Oceanography, 61 ( S1 ), 356 - 366
dc.identifier.citedreferenceTwiss, M. R., & Campbell, P. G. C. ( 1998 ). Scavenging of 137Cs, 109Cd, 65Zn, and 153Gd by plankton of the microbial food web in pelagic Lake Erie Surface Waters. Journal of Great Lakes Research, 24, 776 - 790. https://doi.org/10.1016/s0380-1330(98)70861-5
dc.identifier.citedreferenceTwiss, M. R., McKay, R. M. L., Bourbonniere, R. A., Bullerjahn, G. S., Carrick, H. J., Smith, R. E. H., et al. ( 2012 ). Diatoms abound in ice- covered Lake Erie: An investigation of offshore winter limnology in Lake Erie over the period 2007 to 2010. Journal of Great Lakes Research, 38, 18 - 30. https://doi.org/10.1016/j.jglr.2011.12.008
dc.identifier.citedreferenceTwiss, M. R., Smith, D. E., Cafferty, E. M., & Carrick, H. J. ( 2014 ). Phytoplankton growth dynamics in offshore Lake Erie during mid- winter. Journal of Great Lakes Research, 40, 449 - 454. https://doi.org/10.1016/j.jglr.2014.03.010
dc.identifier.citedreferenceUrban, N. R., Auer, M. T., Green, S. A., Lu, X., Apul, D. S., Powell, K. D., & Bub, L. ( 2005 ). Carbon cycling in Lake Superior. Journal of Geophysical Research, 110, C06S90. https://doi.org/10.1029/2003jc002230
dc.identifier.citedreferenceValipour, R., Boegman, L., Bouffard, D., & Rao, Y. R. ( 2017 ). Sediment resuspension mechanisms and their contributions to high- turbidity events in a large lake. Limnology & Oceanography, 62, 1045 - 1065. https://doi.org/10.1002/lno.10485
dc.identifier.citedreferenceVan Cleave, K., Lenters, J. D., Wang, J., & Verhamme, E. M. ( 2014 ). A regime shift in Lake Superior ice cover, evaporation, and water temperature following the warm El Niñ winter of 1997- 1998. Limnology & Oceanography, 59, 1889 - 1898. https://doi.org/10.4319/lo.2014.59.6.1889
dc.identifier.citedreferenceVanderploeg, H. A., Bolsenga, S. J., Fahnenstiel, G. L., Liebig, J. R., & Gardner, W. S. ( 1992 ). Plankton ecology in an ice- covered bay of Lake Michigan: Utilization of a winter phytoplankton bloom by reproducing copepods. Hydrobiologia, 243- 244, 175 - 183. https://doi.org/10.1007/bf00007033
dc.identifier.citedreferenceVanderploeg, H. A., Cavaletto, J. F., Liebig, J. R., & Gardner, W. S. ( 1998 ). Limnocalanus macrurus (Copepoda: Calanoida) retains a marine arctic lipid and life cycle strategy in Lake Michigan. Journal of Plankton Research, 20, 1581 - 1597. https://doi.org/10.1093/plankt/20.8.1581
dc.identifier.citedreferenceVanderploeg, H. A., Gardner, W. S., Parrish, C. C., Liebig, J. R., & Cavaletto, J. F. ( 1992 ). Lipids and life- cycle strategy of a hypolimnetic copepod in Lake Michigan. Limnology & Oceanography, 37, 413 - 424. https://doi.org/10.4319/lo.1992.37.2.0413
dc.identifier.citedreferenceVanderploeg, H. A., Johengen, T. H., Lavrentyev, P. J., Chen, C., Lang, G. A., Agy, M. A., & Miller, G. S. ( 2007 ). Anatomy of the recurrent coastal sediment plume in Lake Michigan and its impacts on light climate, nutrients, and plankton. Journal of Geophysical Research, 112, C03S90. https://doi.org/10.1029/2004jc002379
dc.identifier.citedreferenceVanderploeg, H. A., Johengen, T. H., & Liebig, J. R. ( 2009 ). Feedback between zebra mussel selective feeding and algal composition affects mussel condition: Did the regime changer pay a price for its success? Freshwater Biology, 54, 47 - 63. https://doi.org/10.1111/j.1365-2427.2008.02091.x
dc.identifier.citedreferenceVanderploeg, H. A., Liebig, J. R., Nalepa, T. F., Fahnenstiel, G. L., & Pothoven, S. A. ( 2010 ). Dreissena and the disappearance of the spring phytoplankton bloom in Lake Michigan. Journal of Great Lakes Research, 36, 50 - 59. https://doi.org/10.1016/j.jglr.2010.04.005
dc.identifier.citedreferenceVanderploeg, H. A., Pothoven, S. A., Fahnenstiel, G. L., Cavaletto, J. F., Liebig, J. R., Stow, C. A., et al. ( 2012 ). Seasonal zooplankton dynamics in Lake Michigan: Disentangling impacts of resource limitation, ecosystem engineering, and predation during a critical ecosystem transition. Journal of Great Lakes Research, 38, 336 - 352. https://doi.org/10.1016/j.jglr.2012.02.005
dc.identifier.citedreferenceWang, J., Bai, X., Hu, H., Clites, A., Colton, M., & Lofgren, B. ( 2012 ). Temporal and spatial variability of Great Lakes Ice Cover, 1973- 2010. Journal of Climate, 25, 1318 - 1329. https://doi.org/10.1175/2011jcli4066.1
dc.identifier.citedreferenceWang, J., Kessler, J., Bai, X., Clites, A., Lofgren, B., Assuncao, A., et al. ( 2018 ). Decadal Variability of Great Lakes Ice Cover in Response to AMO and PDO, 1963- 2017. Journal of Climate, 31, 7249 - 7268. https://doi.org/10.1175/jcli-d-17-0283.1
dc.identifier.citedreferenceWarren, G. J. ( 1983 ). Predation by Limnocalanus as a potentially major source of winter naupliar mortality in Lake Michigan. Journal of Great Lakes Research, 9, 389 - 395. https://doi.org/10.1016/s0380-1330(83)71910-6
dc.identifier.citedreferenceWilhelm, S. W., LeCleir, G. R., Bullerjahn, G. S., McKay, R. M., Saxton, M. A., Twiss, M. R., & Bourbonniere, R. A. ( 2014 ). Seasonal changes in microbial community structure and activity imply winter production is linked to summer hypoxia in a large lake. FEMS Microbiology Ecology, 87, 475 - 485. https://doi.org/10.1111/1574-6941.12238
dc.identifier.citedreferenceWilliams, C. J., Frost, P. C., Morales- Williams, A. M., Larson, J. H., Richardson, W. B., Chiandet, A. S., & Xenopoulos, M. A. ( 2016 ). Human activities cause distinct dissolved organic matter composition across freshwater ecosystems. Global Change Biology, 22, 613 - 626. https://doi.org/10.1111/gcb.13094
dc.identifier.citedreferenceWinter, J. G., Palmer, M. E., Howell, E. T., & Young, J. D. ( 2015 ). Long term changes in nutrients, chloride, and phytoplankton density in the nearshore waters of Lake Erie. Journal of Great Lakes Research, 41, 145 - 155. https://doi.org/10.1016/j.jglr.2014.11.028
dc.identifier.citedreferenceWright, D. M., Posselt, D. J., & Steiner, A. L. ( 2013 ). Sensitivity of lake- effect snowfall to lake ice cover and temperature in the Great Lakes region. Monthly Weather Review, 141, 670 - 689. https://doi.org/10.1175/mwr-d-12-00038.1
dc.identifier.citedreferenceYang, B., Wells, M. G., Li, J., & Young, J. ( 2020 ). Mixing, stratification, and plankton under lake- ice during winter in a large lake: Implications for spring dissolved oxygen levels. Limnology & Oceanography, 65, 2713 - 2729. https://doi.org/10.1002/lno.11543
dc.identifier.citedreferenceZhao, Y., Jones, M. L., Shuter, B. J., & Roseman, E. F. ( 2009 ). A biophysical model of Lake Erie walleye ( Sander vitreus ) explains interannual variations in recruitment. Canadian Journal of Fisheries and Aquatic Sciences, 66, 114 - 125. https://doi.org/10.1139/f08-188
dc.identifier.citedreferenceBaijnath- Rodino, J. A., Duguay, C. R., & LeDrew, E. ( 2018 ). Climatological trends of snowfall over the Laurentian Great Lakes Basin. International Journal of Climatology, 38, 3942 - 3962.
dc.identifier.citedreferenceBailey, M. M. ( 1972 ). Age, growth, reproduction, and food of the burbot, Lota lota (Linnaeus), in southwestern Lake Superior. Transactions of the American Fisheries Society, 101, 667 - 674. https://doi.org/10.1577/1548-8659(1972)101<667:agrafo>2.0.co;2
dc.identifier.citedreferenceBai, P., Wang, J., Chu, P., Hawley, N., Fujisaki- Manome, A., Kessler, J., et al. ( 2020 ). Modeling the ice- attenuated waves in the Great Lakes. Ocean Dynamics, 70, 991 - 1003. https://doi.org/10.1007/s10236-020-01379-z
dc.identifier.citedreferenceBai, X., Wang, J., Sellinger, C., Clites, A., & Assel, R. ( 2012 ). Interannual variability of Great Lakes ice cover and its relationship to NAO and ENSO. Journal of Geophysical Research, 117, C03002. https://doi.org/10.1029/2010jc006932
dc.identifier.citedreferenceAnderson, E., Fujisaki- Manome, A., Kessler, J., Lang, G., Chu, P., Kelley, J., et al. ( 2018 ). Ice forecasting in the next- generation great lakes operational forecast system (GLOFS). Journal of Marine Science and Engineering, 6, 123. https://doi.org/10.3390/jmse6040123
dc.identifier.citedreferenceAnderson, E. J., Stow, C. A., Gronewold, A. D., Mason, L. A., McCormick, M. J., Qian, S. S., et al. ( 2021 ). Seasonal overturn and stratification changes drive deep- water warming in one of Earth’s largest lakes. Nature Communications, 12, 1688. https://doi.org/10.1038/s41467-021-21971-1
dc.identifier.citedreferenceArrigo, K. R., van Dijken, G., & Pabi, S. ( 2008 ). Impact of a shrinking Arctic ice cover on marine primary production. Geophysical Research Letters, 35, L19603. https://doi.org/10.1029/2008gl035028
dc.identifier.citedreferenceAssel, R. A. ( 1976 ). Great Lakes ice thickness prediction. Journal of Great Lakes Research, 2, 248 - 255. https://doi.org/10.1016/s0380-1330(76)72289-5
dc.identifier.citedreferenceAssel, R. A. ( 2003 ). Great lakes monthly and seasonal accumulations of freezing Degree- days - - winters 1898- 2002. NOAA/Great lakes environmental research Laboratory. NOAA Technical Memorandum GLERL- 127.
dc.identifier.citedreferenceAssel, R. A. ( 2005 ). Great lakes ice cover climatology update: Winters 2003, 2004, and 2005. NOAA/Great lakes environmental research Laboratory. NOAA Technical Memorandum GLERL- 135.
dc.identifier.citedreferenceAustin, J. A. ( 2013 ). Observations of near- inertial energy in lake Superior. Limnology & Oceanography, 58, 715 - 728. https://doi.org/10.4319/lo.2013.58.2.0715
dc.identifier.citedreferenceAustin, J. A., & Colman, S. M. ( 2007 ). Lake Superior summer water temperatures are increasing more rapidly than regional temperatures: A positive ice- albedo feedback. Geophysical Research Letters, 34, 1 - 5. https://doi.org/10.1029/2006gl029021
dc.identifier.citedreferenceBasu, N. B., Destouni, G., Jawitz, J. W., Thompson, S. E., Loukinova, N. V., Darracq, A., et al. ( 2010 ). Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity. Geophysical Research Letters, 37, L23404. https://doi.org/10.1029/2010gl045168
dc.identifier.citedreferenceBeall, B. F. N., Twiss, M. R., Smith, D. E., Oyserman, B. O., Rozmarynowycz, M. J., Binding, C. E., et al. ( 2016 ). Ice cover extent drives phytoplankton and bacterial community structure in a large north- temperate lake: Implications for a warming climate. Environmental Microbiology, 18, 1704 - 1719. https://doi.org/10.1111/1462-2920.12819
dc.identifier.citedreferenceBeletsky, D., Hawley, N., Rao, Y. R., Vanderploeg, H. A., Beletsky, R., Schwab, D. J., & Ruberg, S. A. ( 2012 ). Summer thermal structure and anticyclonic circulation of Lake Erie. Geophysical Research Letters, 39, 6 - 11. https://doi.org/10.1029/2012gl051002
dc.identifier.citedreferenceBeletsky, D., Saylor, J. H., & Schwab, D. J. ( 1999 ). Mean circulation in the Great Lakes. Journal of Great Lakes Research, 25, 78 - 93. https://doi.org/10.1016/s0380-1330(99)70718-5
dc.identifier.citedreferenceBeletsky, D., & Schwab, D. J. ( 2001 ). Modeling circulation and thermal structure in Lake Michigan: Annual cycle and interannual variability. Journal of Geophysical Research, 106, 19745 - 19771. https://doi.org/10.1029/2000jc000691
dc.identifier.citedreferenceBengtsson, L. ( 2011 ). Ice- covered lakes: Environment and climate- required research. Hydrological Processes, 25, 2767 - 2769. https://doi.org/10.1002/hyp.8098
dc.identifier.citedreferenceBennington, V., McKinley, G. A., Kimura, N., & Wu, C. H. ( 2010 ). General circulation of Lake Superior: Mean, variability, and trends from 1979 to 2006. Journal of Geophysical Research, 115, C12015. https://doi.org/10.1029/2010jc006261
dc.identifier.citedreferenceBiddanda, B. A., & Cotner, J. B. ( 2002 ). Love handles in aquatic ecosystems: The role of dissolved organic carbon drawdown, resuspended sediments, and terrigenous inputs in the carbon balance of Lake Michigan. Ecosystems, 5, 431 - 445. https://doi.org/10.1007/s10021-002-0163-z
dc.identifier.citedreferenceBlock, B. D., Denfeld, B. A., Stockwell, J. D., Flaim, G., Grossart, H. P. F., Knoll, L. B., et al. ( 2019 ). The unique methodological challenges of winter limnology. Limnology and Oceanography: Methods, 17, 42 - 57.
dc.identifier.citedreferenceBolsenga, S. J. ( 1992 ). A review of Great Lakes ice research. Journal of Great Lakes Research, 18, 169 - 189. https://doi.org/10.1016/s0380-1330(92)71283-0
dc.identifier.citedreferenceBolsenga, S. J., & Vanderploeg, H. A. ( 1992 ). Estimating photosynthetically available radiation into open and ice- covered freshwater lakes from surface characteristics: A high transmittance case study. Hydrobiologia, 243- 244, 95 - 104. https://doi.org/10.1007/bf00007024
dc.identifier.citedreferenceBolsenga, S. J., Vanderploeg, H. A., Quigley, M. A., & Fahnenstiel, G. L. ( 1988 ). Operations for an under- ice ecology program. Journal of Great Lakes Research, 14, 372 - 376. https://doi.org/10.1016/s0380-1330(88)71567-1
dc.identifier.citedreferenceBondarenko, N. A., Timoshkin, O. A., Röpstorf, P., & Melnik, N. G. ( 2006 ). The under- ice and bottom periods in the life cycle of Aulacoseira baicalensis (K. Meyer) Simonsen, a principal Lake Baikal alga. Hydrobiologia, 568, 107 - 109. https://doi.org/10.1007/s10750-006-0325-7
dc.identifier.citedreferenceBootsma, H. A. ( 2018 ). Oceans, lakes, and inland seas: A virtual issue on the large lakes of the world. Limnology and Oceanography Bulletin, 27, 87 - 88. https://doi.org/10.1002/lob.10230
dc.identifier.citedreferenceBouffard, D., & Wüest, A. ( 2019 ). Convection in Lakes. Annual Review of Fluid Mechanics, 51, 189 - 215. https://doi.org/10.1146/annurev-fluid-010518-040506
dc.identifier.citedreferenceBramburger, A. J., & Reavie, E. D. ( 2016 ). A comparison of phytoplankton communities of the deep chlorophyll layers and epilimnia of the Laurentian Great Lakes. Journal of Great Lakes Research, 42, 1016 - 1025. https://doi.org/10.1016/j.jglr.2016.07.004
dc.identifier.citedreferenceBratt, A. R., Finlay, J. C., Hobbie, S. E., Janke, B. D., Worm, A. C., & Kemmitt, K. L. ( 2017 ). Contribution of leaf litter to nutrient export during winter months in an urban residential watershed. Environmental Science and Technology, 51, 3138 - 3147. https://doi.org/10.1021/acs.est.6b06299
dc.identifier.citedreferenceBrown, R. W., Taylor, W. W., & Assel, R. A. ( 1993 ). Factors affecting the recruitment of lake whitefish in two areas of northern Lake Michigan. Journal of Great Lakes Research, 19, 418 - 428. https://doi.org/10.1016/s0380-1330(93)71229-0
dc.identifier.citedreferenceBullerjahn, G. S., McKay, R. M. L., Bernát, G., Prášil, O., Vörös, L., Pálffy, K., et al. ( 2020 ). Community dynamics and function of algae and bacteria during winter in central European great lakes. Journal of Great Lakes Research, 46, 732 - 740. https://doi.org/10.1016/j.jglr.2019.07.002
dc.identifier.citedreferenceBundy, M. H., Vanderploeg, H. A., Lavrentyev, P. J., & Kovalcik, P. A. ( 2005 ). The importance of microzooplankton versus phytoplankton to copepod populations during late winter and early spring in Lake Michigan. Canadian Journal of Fisheries and Aquatic Sciences, 62, 2371 - 2385. https://doi.org/10.1139/f05-111
dc.identifier.citedreferenceBunnell, D. B., Barbiero, R. P., Ludsin, S. A., Madenjian, C. P., Warren, G. J., Dolan, D. M., et al. ( 2014 ). Changing ecosystem dynamics in the Laurentian Great Lakes: Bottom- up and top- down regulation. BioScience, 64, 26 - 39. https://doi.org/10.1093/biosci/bit001
dc.identifier.citedreferenceBurns, N. M., Rosa, F., & Gedeon, A. ( 1978 ). Lake Erie in mid- winter. Journal of Great Lakes Research, 4, 134 - 141. https://doi.org/10.1016/s0380-1330(78)72178-7
dc.identifier.citedreferenceButts, E., & Carrick, H. J. ( 2017 ). Phytoplankton seasonality along a trophic gradient of temperate lakes: Convergence in taxonomic composition during winter ice- cover. Northeastern Naturalist, 24, 167 - 187. https://doi.org/10.1656/045.024.s719
dc.identifier.citedreferenceByun, K., & Hamlet, A. F. ( 2018 ). Projected changes in future climate over the Midwest and Great Lakes region using downscaled CMIP5 ensembles. International Journal of Climatology, 38, e531 - e553. https://doi.org/10.1002/joc.5388
dc.identifier.citedreferenceCaldwell, T. J., Chandra, S., Feher, K., Simmons, J. B., & Hogan, Z. ( 2020 ). Ecosystem response to earlier ice break- up date: Climate- driven changes to water temperature, lake- habitat- specific production, and trout habitat and resource use. Global Change Biology, 26, 5475 - 5491. https://doi.org/10.1111/gcb.15258
dc.identifier.citedreferenceCampbell, J. E., Clites, A. H., & Greene, G. M. ( 1987 ). Measurements of ice motion in Lake Erie using satellite- tracked drifter buoys. NOAA Technical Memorandum ERL GLERL- 30.
dc.identifier.citedreferenceCarrick, H. J. ( 2005 ). An under- appreciated component of biodiversity in plankton communities: The role of protozoa in Lake Michigan (a case study). Hydrobiologia, 551, 17 - 32. https://doi.org/10.1007/s10750-005-4447-0
dc.identifier.citedreferenceCavaliere, E., & Baulch, H. M. ( 2018 ). Denitrification under lake ice. Biogeochemistry, 137, 285 - 295. https://doi.org/10.1007/s10533-018-0419-0
dc.identifier.citedreferenceChandler, D. C. ( 1940 ). Limnological studies of Western Lake Erie. 1, Plankton and certain physical- chemical data of the Bass Islands Region, from September, 1938, to November, 1939. Ohio Journal of Science, 40, 291 - 336.
dc.identifier.citedreferenceChandler, D. C. ( 1942 ). Limnological Studies of Western Lake Erie. III, Phytoplankton and Physical- Chemical Data from November, 1939, to November 1940. Ohio Journal of Science, 42, 24 - 44.
dc.identifier.citedreferenceChandler, D. C. ( 1944 ). Limnological studies of western Lake Erie IV. Relation of limnological and climatic factors to the phytoplankton of 1941. Transactions of the American Microscopical Society, 63, 203 - 236. https://doi.org/10.2307/3223145
dc.identifier.citedreferenceChandler, D. C., & Weeks, O. B. ( 1945 ). Limnological studies of western Lake Erie: V. Relation of limnological and meteorological conditions to the production of phytoplankton in 1942. Ecological Monographs, 15, 435 - 457. https://doi.org/10.2307/1948429
dc.identifier.citedreferenceChapra, S. C., & Dolan, D. M. ( 2012 ). Great Lakes total phosphorus revisited: 2. Mass balance modeling. Journal of Great Lakes Research, 38, 741 - 754. https://doi.org/10.1016/j.jglr.2012.10.002
dc.identifier.citedreferenceChoi, J., Troy, C. D., Hsieh, T.- C., Hawley, N., & McCormick, M. J. ( 2012 ). A year of internal Poincaré waves in southern Lake Michigan. Journal of Geophysical Research, 117. https://doi.org/10.1029/2012jc007984
dc.identifier.citedreferenceCole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., et al. ( 2007 ). Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems, 10, 172 - 185. https://doi.org/10.1007/s10021-006-9013-8
dc.identifier.citedreferenceCollier, K. M. ( 2016 ). Partitioning of phytoplankton and bacteria between water and ice during winter in north temperate lakes. (MS thesis). Bowling Green State University. https://doi.org/10.1002/9781118414965
dc.identifier.citedreferenceContosta, A. R., Casson, N. J., Garlick, S., Nelson, S. J., Ayres, M. P., Burakowski, E. A., et al. ( 2019 ). Northern forest winters have lost cold, snowy conditions that are important for ecosystems and human communities. Ecological Applications, 29, e01974. https://doi.org/10.1002/eap.1974
dc.identifier.citedreferenceCotner, J. B., Johengen, T. H., & Biddanda, B. A. ( 2000 ). Intense winter heterotrophic production stimulated by benthic resuspension. Limnology & Oceanography, 45, 1672 - 1676. https://doi.org/10.4319/lo.2000.45.7.1672
dc.identifier.citedreferenceCroley, T. E., II ( 1989 ). Verifiable evaporation modeling on the Laurentian Great Lakes. Water Resources Research, 25, 781 - 792. https://doi.org/10.1029/wr025i005p00781
dc.identifier.citedreferenceCroley, T. E., II, & Assel, R. A. ( 1994 ). A one- dimensional ice thermodynamics model for the Laurentian Great Lakes. Water Resources Research, 30, 625 - 639. https://doi.org/10.1029/93wr03415
dc.identifier.citedreferenceCrossman, J., Catherine Eimers, M., Casson, N. J., Burns, D. A., Campbell, J. L., Likens, G. E., et al. ( 2016 ). Regional meteorological drivers and long term trends of winter- spring nitrate dynamics across watersheds in northeastern North America. Biogeochemistry, 130, 247 - 265. https://doi.org/10.1007/s10533-016-0255-z
dc.identifier.citedreferenceDepew, D. C., Guildford, S. J., & Smith, R. E. H. ( 2006 ). Nearshore- offshore comparison of chlorophyll a and phytoplankton production in the dreissenid- colonized eastern basin of Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences, 63, 1115 - 1129. https://doi.org/10.1139/f06-016
dc.identifier.citedreferenceDoan, P. T. K., Watson, S. B., Markovic, S., Liang, A., Guo, J., Mugalingam, S., et al. ( 2018 ). Phosphorus retention and internal loading in the Bay of Quinte, Lake Ontario, using diagenetic modeling. The Science of the Total Environment, 636, 39 - 51. https://doi.org/10.1016/j.scitotenv.2018.04.252
dc.identifier.citedreferenceD’souza, N. A. ( 2012 ). Psychrophilic diatoms in ice- covered Lake Erie (PhD thesis). Bowling Green State University.
dc.identifier.citedreferenceD’souza, N. A., Kawarasaki, Y., Gantz, J. D., Lee, R. E., Beall, B. F. N., Shtarkman, Y. M., et al. ( 2013 ). Diatom assemblages promote ice formation in large lakes. The ISME Journal, 7, 1632 - 1640. https://doi.org/10.1038/ismej.2013.49
dc.identifier.citedreferenceDuval, T. P. ( 2018 ). Effect of residential development on stream phosphorus dynamics in headwater suburbanizing watersheds of southern Ontario, Canada. The Science of the Total Environment, 637- 638, 1241 - 1251. https://doi.org/10.1016/j.scitotenv.2018.04.437
dc.identifier.citedreferenceEadie, B. J., Robbins, J., Klump, J. V., Schwab, D., & Edgington, D. ( 2008 ). Winter- spring storms and their influence on sediment resuspension, transport, and accumulation patterns in southern Lake Michigan. Oceanography, 21, 118 - 135. https://doi.org/10.5670/oceanog.2008.09
dc.identifier.citedreferenceEadie, B. J., & Robertson, A. ( 1976 ). An IFYGL carbon budget for Lake Ontario. Journal of Great Lakes Research, 2, 307 - 323. https://doi.org/10.1016/s0380-1330(76)72295-0
dc.identifier.citedreferenceEadie, B. J., Schwab, D. J., Assel, R. A., Hawley, N., Lansing, M. B., Miller, G. S., et al. ( 1996 ). Development of recurrent coastal plume in Lake Michigan observed for first time. Eos Transactions AGU, 77, 337 - 338. https://doi.org/10.1029/96eo00234
dc.identifier.citedreferenceEadie, B. J., Vanderploeg, H. A., Robbins, J. A., & Bell, G. L. ( 1990 ). Significance of sediment resuspension and particle settling. In M. M. Tilzer, & C. Serruya, (Eds.), Large lakes. (pp. 196- 209). Springer.
dc.identifier.citedreferenceEdgar, R. E., Morris, P. F., Rozmarynowycz, M. J., D’souza, N. A., Moniruzzaman, M., Bourbonniere, R. A., et al. ( 2016 ). Adaptations to photoautotrophy associated with seasonal ice cover in a large lake revealed by metatranscriptome analysis of a winter diatom bloom. Journal of Great Lakes Research, 42, 1007 - 1015. https://doi.org/10.1016/j.jglr.2016.07.025
dc.identifier.citedreferenceElliott, J. M., & Elliott, J. A. ( 2010 ). Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: Predicting the effects of climate change. Journal of Fish Biology, 77, 1793 - 1817. https://doi.org/10.1111/j.1095-8649.2010.02762.x
dc.identifier.citedreferenceFahnenstiel, G. L., & Carrick, H. J. ( 1992 ). Phototrophic picoplankton in Lakes Huron and Michigan: Abundance, distribution, composition, and contribution to biomass and production. Canadian Journal of Fisheries and Aquatic Sciences, 49, 379 - 388. https://doi.org/10.1139/f92-043
dc.identifier.citedreferenceFarmer, T. M., Marschall, E. A., Dabrowski, K., & Ludsin, S. A. ( 2015 ). Short winters threaten temperate fish populations. Nature Communications, 6, 1 - 10. https://doi.org/10.1038/ncomms8724
dc.identifier.citedreferenceFernandez, J. M., Townsend- Small, A., Zastepa, A., Watson, S. B., & Brandes, J. A. ( 2020 ). Methane and nitrous oxide measured throughout Lake Erie over all seasons indicate highest emissions from the eutrophic Western Basin. Journal of Great Lakes Research, 46, 1604 - 1614. https://doi.org/10.1016/j.jglr.2020.09.011
dc.identifier.citedreferenceFilazzola, A., Blagrave, K., Imrit, M. A., & Sharma, S. ( 2020 ). Climate change drives increases in extreme events for lake ice in the Northern Hemisphere. Geophysical Research Letters, 47, e2020GL089608. https://doi.org/10.1029/2020gl089608
dc.identifier.citedreferenceFitzhugh, R. D., Driscoll, C. T., Groffman, P. M., Tierney, G. L., Fahey, T. J., & Hardy, J. P. ( 2001 ). Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem. Biogeochemistry, 56, 215 - 238. https://doi.org/10.1023/a:1013076609950
dc.identifier.citedreferenceFork, M. L., Blaszczak, J. R., Delesantro, J. M., & Heffernan, J. B. ( 2018 ). Engineered headwaters can act as sources of dissolved organic matter and nitrogen to urban stream networks. Limnology & Oceanography, 3, 215 - 224. https://doi.org/10.1002/lol2.10066
dc.identifier.citedreferenceFreeberg, M. H., Taylor, W. W., & Brown, R. W. ( 1990 ). Effect of egg and larval survival on year- class strength of Lake Whitefish in Grand Traverse Bay, Lake Michigan. Transactions of the American Fisheries Society, 119, 92 - 100. https://doi.org/10.1577/1548-8659(1990)119<0092:eoeals>2.3.co;2
dc.identifier.citedreferenceFrenette, J.- J., Thibeault, P., Lapierre, J.- F., & Hamilton, P. B. ( 2008 ). Presence of algae in freshwater ice cover of fluvial lac Saint- pierre (St. Lawrence River, Canada). Journal of Phycology, 44, 284 - 291. https://doi.org/10.1111/j.1529-8817.2008.00481.x
dc.identifier.citedreferenceFry, F. E. J. ( 1971 ). The effect of environmental factors on the physiology of fish. In W. S. Hoar, & D. J. Randall, (Eds.), Fish physiology, environmental relations and behavior. (Vol. 6, pp., 1- 9). Academic Press.
dc.identifier.citedreferenceFujisaki, A., Wang, J., Bai, X., Leshkevich, G., & Lofgren, B. ( 2013 ). Model- simulated interannual variability of Lake Erie ice cover, circulation, and thermal structure in response to atmospheric forcing, 2003- 2012. Journal of Geophysical Research: Oceans, 118, 4286 - 4304. https://doi.org/10.1002/jgrc.20312
dc.identifier.citedreferenceFujisaki, A., Wang, J., Hu, H., Schwab, D. J., Hawley, N., & Rao, Y. R. ( 2012 ). A modeling study of ice- water processes for Lake Erie applying coupled ice- circulation models. Journal of Great Lakes Research, 38, 585 - 599. https://doi.org/10.1016/j.jglr.2012.09.021
dc.identifier.citedreferenceFujisaki- Manome, A., Anderson, E. J., Kessler, J. A., Chu, P. Y., Wang, J., & Gronewold, A. D. ( 2020 ). Simulating impacts of precipitation on ice cover and surface water temperature across large lakes. Journal of Geophysical Research: Oceans, 125, 1 - 18. https://doi.org/10.1029/2019jc015950
dc.identifier.citedreferenceGarrison, D. L., Ackley, S. F., & Buck, K. R. ( 1983 ). A physical mechanism for establishing algal populations in frazil ice. Nature, 306, 363 - 365. https://doi.org/10.1038/306363a0
dc.identifier.citedreferenceGarvey, J. E., Ostrand, K. G., & Wahl, D. H. ( 2004 ). Energetics, predation, and ration affect size- dependent growth and mortality of fish during winter. Ecology, 85, 2860 - 2871. https://doi.org/10.1890/03-0329
dc.identifier.citedreferenceGlooschenko, W. A., Moore, J. E., Munawar, M., & Vollenweider, R. A. ( 1974 ). Primary production in Lakes Ontario and Erie: A comparative study. Journal of Fisheries Research Board of Canada, 31, 253 - 263. https://doi.org/10.1139/f74-045
dc.identifier.citedreferenceGlooschenko, W. A., Moore, J. E., & Vollenweider, R. A. ( 1972 ). The seasonal cycle of pheo- pigments in Lake Ontario with particular emphasis on the role of zooplankton grazing. Limnology & Oceanography, 17, 597 - 605. https://doi.org/10.4319/lo.1972.17.4.0597
dc.identifier.citedreferenceGood, L. W., Carvin, R., Lamba, J., & Fitzpatrick, F. A. ( 2019 ). Seasonal variation in sediment and phosphorus yields in four Wisconsin agricultural watersheds. Journal of Environmental Quality, 48, 950 - 958. https://doi.org/10.2134/jeq2019.03.0134
dc.identifier.citedreferenceGreat Lakes Environmental Research Laboratory (GLERL). ( 2019 ). Long- term vertical water temperature observations in the deepest area of Lake Michigan’s southern basin. NOAA National Centers for Environmental Information. Dataset. https://accession.nodc.noaa.gov/GLERL-LakeMI-DeepSouthernBasinWaterTemp
dc.identifier.citedreferenceGrebmeier, J. M. ( 2012 ). Shifting patterns of life in the Pacific Arctic and sub- Arctic seas. Annual Review of Marine Sciences, 4, 63 - 78. https://doi.org/10.1146/annurev-marine-120710-100926
dc.identifier.citedreferenceGreen, S., & Eadie, B. J. ( 2004 ). Introduction to special section: Transport and transformation of biogeochemically important materials in coastal waters. Journal of Geophysical Research, 109, C10S01. https://doi.org/10.1029/2004jc002697
dc.identifier.citedreferenceGreenbank, J. ( 1945 ). Limnological conditions in ice- covered lakes, especially as related to winter- kill of fish. Ecological Monographs, 15, 343 - 392. https://doi.org/10.2307/1948427
dc.identifier.citedreferenceGronewold, A. D., Fortin, V., Lofgren, B., Clites, A., Stow, C. A., & Quinn, F. ( 2013 ). Coasts, water levels, and climate change: A Great Lakes perspective. Climatic Change, 120, 697 - 711. https://doi.org/10.1007/s10584-013-0840-2
dc.identifier.citedreferenceGrosbois, G., Del Giorgio, P. A., & Rautio, M. ( 2017 ). Zooplankton allochthony is spatially heterogeneous in a boreal lake. Freshwater Biology, 62, 474 - 490. https://doi.org/10.1111/fwb.12879
dc.identifier.citedreferenceHampton, S. E., Galloway, A. W., Powers, S. M., Ozersky, T., Woo, K. H., Batt, R. D., et al. ( 2017 ). Ecology under lake ice. Ecology Letters, 20, 98 - 111.
dc.identifier.citedreferenceHampton, S. E., Moore, M. V., Ozersky, T., Stanley, E. H., Polashenski, C. M., & Galloway, A. W. E. ( 2015 ). Heating up a cold subject: Prospects for under- ice plankton research in lakes. Journal of Plankton Research, 37, 277 - 284. https://doi.org/10.1093/plankt/fbv002
dc.identifier.citedreferenceHartig, J. H., & Wallen, D. G. ( 1984 ). Seasonal variation of nutrient limitation in western Lake Erie. Journal of Great Lakes Research, 10, 449 - 460. https://doi.org/10.1016/s0380-1330(84)71862-4
dc.identifier.citedreferenceHawley, N., Beletsky, D., & Wang, J. ( 2018 ). Ice thickness measurements in Lake Erie during the winter of 2010- 2011. Journal of Great Lakes Research, 44, 388 - 397. https://doi.org/10.1016/j.jglr.2018.04.004
dc.identifier.citedreferenceHessen, D. O., Andersen, T., Larsen, S., Skjelkvåle, B. L., & de Wit, H. A. ( 2009 ). Nitrogen deposition, catchment productivity, and climate as determinants of lake stoichiometry. Limnology & Oceanography, 54, 2520 - 2528. https://doi.org/10.4319/lo.2009.54.6_part_2.2520
dc.identifier.citedreferenceHorner, R., Ackley, S. F., Dieckmann, G. S., Gulliksen, B., Hoshiai, T., Legendre, L., et al. ( 1992 ). Ecology of sea ice biota. Polar Biology, 12, 417 - 427. https://doi.org/10.1007/bf00243113
dc.identifier.citedreferenceKaartokallio, H. ( 2004 ). Food web components, and physical and chemical properties of Baltic Sea ice. Marine Ecology Progress Series, 273, 49 - 63. https://doi.org/10.3354/meps273049
dc.identifier.citedreferenceKatsev, S. ( 2017 ). When large lakes respond fast: A parsimonious model for phosphorus dynamics. Journal of Great Lakes Research, 43, 199 - 204. https://doi.org/10.1016/j.jglr.2016.10.012
dc.identifier.citedreferenceKatsev, S., & Crowe, S. A. ( 2015 ). Organic carbon burial efficiencies in sediments: The power law of mineralization revisited. Geology, 43, 607 - 610. https://doi.org/10.1130/g36626.1
dc.identifier.citedreferenceKatz, S. L., Izmest’eva, L. R., Hampton, S. E., Ozersky, T., Shchapov, K., Moore, M. V., et al. ( 2015 ). The " M elosira years" of Lake B aikal: Winter environmental conditions at ice onset predict under- ice algal blooms in spring. Limnology & Oceanography, 60, 1950 - 1964. https://doi.org/10.1002/lno.10143
dc.identifier.citedreferenceKelley, D. E. ( 1997 ). Convection in ice- covered lakes: Effects on algal suspension. Journal of Plankton Research, 19, 1859 - 1880. https://doi.org/10.1093/plankt/19.12.1859
dc.identifier.citedreferenceKerfoot, W. C., Budd, J. W., Green, S. A., Cotner, J. B., Biddanda, B. A., Schwab, D. J., & Vanderploeg, H. A. ( 2008 ). Donut in the desert: Late- winter production pulse in southern Lake Michigan. Limnology & Oceanography, 53, 589 - 604. https://doi.org/10.4319/lo.2008.53.2.0589
dc.identifier.citedreferenceKirillin, G., Leppäranta, M., Terzhevik, A., Granin, N., Bernhardt, J., Engelhardt, C., et al. ( 2012 ). Physics of seasonally ice- covered lakes: A review. Aquatic Sciences, 74, 659 - 682. https://doi.org/10.1007/s00027-012-0279-y
dc.identifier.citedreferenceKouraev, A. V., Zakharova, E. A., Rémy, F., Kostianoy, A. G., Shimaraev, M. N., Hall, N. M. J., & Ya Suknev, A. ( 2016 ). Giant ice rings on lakes B aikal and H ovsgol: Inventory, associated water structure and potential formation mechanism. Limnology & Oceanography, 61, 1001 - 1014. https://doi.org/10.1002/lno.10268
dc.identifier.citedreferenceLarson, J. H., Frost, P. C., Xenopoulos, M. A., Williams, C. J., Morales- Williams, A. M., Vallazza, J. M., et al. ( 2014 ). Relationships between land cover and dissolved organic matter change along the river to lake transition. Ecosystems, 17, 1413 - 1425. https://doi.org/10.1007/s10021-014-9804-2
dc.identifier.citedreferenceLeppäranta, M. ( 2015 ). Freezing of lakes and the evolution of their ice cover. Springer. https://doi.org/10.1007/978-3-642-29081-7
dc.identifier.citedreferenceLi, J., Crowe, S. A., Miklesh, D., Kistner, M., Canfield, D. E., & Katsev, S. ( 2012 ). Carbon mineralization and oxygen dynamics in sediments with deep oxygen penetration, Lake Superior. Limnology & Oceanography, 57, 1634 - 1650. https://doi.org/10.4319/lo.2012.57.6.1634
dc.identifier.citedreferenceLi, J., & Katsev, S. ( 2014 ). Nitrogen cycling in deeply oxygenated sediments: Results in Lake Superior and implications for marine sediments. Limnology & Oceanography, 59, 465 - 481. https://doi.org/10.4319/lo.2014.59.2.0465
dc.identifier.citedreferenceLi, J., Zhang, Y., & Katsev, S. ( 2018 ). Phosphorus recycling in deeply oxygenated sediments in Lake Superior controlled by organic matter mineralization. Limnology & Oceanography, 63, 1372 - 1385. https://doi.org/10.1002/lno.10778
dc.identifier.citedreferenceLink, J., Selgeby, J. H., Hoff, M. H., & Haskell, C. ( 1995 ). Winter diet of lake herring ( Coregonus artedi ) in western Lake Superior. Journal of Great Lakes Research, 21, 395 - 399. https://doi.org/10.1016/s0380-1330(95)71050-4
dc.identifier.citedreferenceLiu, K., Elliott, J. A., Lobb, D. A., Flaten, D. N., & Yarotski, J. ( 2013 ). Critical factors affecting field- scale losses of nitrogen and phosphorus in spring snowmelt runoff in the Canadian Prairies. Journal of Environmental Quality, 42, 484 - 496. https://doi.org/10.2134/jeq2012.0385
dc.identifier.citedreferenceLohrenz, S., Fahnenstiel, G., Schofield, O., & Millie, D. ( 2008 ). Coastal sediment dynamics and river discharge as key factors influencing coastal ecosystem productivity in Southeastern Lake Michigan. Oceanography, 21, 60 - 69. https://doi.org/10.5670/oceanog.2008.05
dc.identifier.citedreferenceLong, T., Wellen, C., Arhonditsis, G., & Boyd, D. ( 2014 ). Evaluation of stormwater and snowmelt inputs, land use and seasonality on nutrient dynamics in the watersheds of Hamilton Harbor, Ontario, Canada. Journal of Great Lakes Research, 40, 964 - 979. https://doi.org/10.1016/j.jglr.2014.09.017
dc.identifier.citedreferenceMacIntyre, S., Cortés, A., & Sadro, S. ( 2018 ). Sediment respiration drives circulation and production of CO 2 in ice- covered Alaskan arctic lakes. Limnology & Oceanography, 3, 302 - 310. https://doi.org/10.1002/lol2.10083
dc.identifier.citedreferenceMacrae, M. L., English, M. C., Schiff, S. L., & Stone, M. ( 2007 ). Capturing temporal variability for estimates of annual hydrochemical export from a first- order agricultural catchment in southern Ontario, Canada. Hydrological Processes, 21, 1651 - 1663. https://doi.org/10.1002/hyp.6361
dc.identifier.citedreferenceMarsden, J. E., Blanchfield, P. J., Brooks, J. L., Fernandes, T., Fisk, A. T., Futia, M. H., et al. ( 2021 ). Using untapped telemetry data to explore the winter biology of freshwater fish. Reviews in Fish Biology and Fisheries, 31, 115 - 134. https://doi.org/10.1007/s11160-021-09634-2
dc.identifier.citedreferenceMatisoff, G., Kaltenberg, E. M., Steely, R. L., Hummel, S. K., Seo, J., Gibbons, K. J., et al. ( 2016 ). Internal loading of phosphorus in western Lake Erie. Journal of Great Lakes Research, 42, 775 - 788. https://doi.org/10.1016/j.jglr.2016.04.004
dc.identifier.citedreferenceMcCaughey, J. H., Pejam, M. R., Arain, M. A., & Cameron, D. A. ( 2006 ). Carbon dioxide and energy fluxes from a boreal mixedwood forest ecosystem in Ontario, Canada. Agricultural and Forest Meteorology, 140, 79 - 96. https://doi.org/10.1016/j.agrformet.2006.08.010
dc.identifier.citedreferenceMcKay, R. M. L., Beall, B. F. N., Bullerjahn, G. S., & Woityra, L. W. C. ( 2011 ). Winter limnology on the Great Lakes: The role of the U.S. Coast Guard. Journal of Great Lakes Research, 37, 207 - 210. https://doi.org/10.1016/j.jglr.2010.11.006
dc.identifier.citedreferenceMcKay, R. M. L., Prášil, O., Pechar, L., Lawrenz, E., Rozmarynowycz, M. J., & Bullerjahn, G. S. ( 2015 ). Freshwater ice as habitat: Partitioning of phytoplankton and bacteria between ice and water in central European reservoirs. Environmental Microbiology Reports, 7, 887 - 898. https://doi.org/10.1111/1758-2229.12322
dc.identifier.citedreferenceMeier, W. N., Hovelsrud, G. K., Van Oort, B. E. H., Key, J. R., Kovacs, K. M., Michel, C., et al. ( 2014 ). Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Reviews of Geophysics, 52, 185 - 217. https://doi.org/10.1002/2013rg000431
dc.identifier.citedreferenceMelnik, N. G., Lazarev, M. I., Pomazkova, G. I., Bondarenko, N. A., Obolkina, L. A., Penzina, M. M., & Timoshkin, O. A. ( 2008 ). The cryophilic habitat of micrometazoans under the lake- ice in Lake Baikal. Fundamental and Applied Limnology, 170, 315 - 323. https://doi.org/10.1127/1863-9135/2008/0170-0315
dc.identifier.citedreferenceMiles, J., Eimers, M. C., North, R. L., & Dillon, P. J. ( 2013 ). Spatial distribution and temporal variability in the forms of phosphorus in the Beaver River subwatershed of Lake Simcoe, Ontario, Canada. Inland Waters, 3, 179 - 186. https://doi.org/10.5268/iw-3.2.531
dc.identifier.citedreferenceMillerd, F. ( 2011 ). The potential impact of climate change on Great Lakes international shipping. Climatic Change, 104, 629 - 652. https://doi.org/10.1007/s10584-010-9872-z
dc.identifier.citedreferenceMiller, T. R., Beversdorf, L. J., Weirich, C. A., & Bartlett, S. L. ( 2017 ). Cyanobacterial toxins of the Laurentian Great Lakes, their toxicological effects, and numerical limits in drinking water. Marine Drugs, 15, 160.
dc.identifier.citedreferenceMillie, D. F., Fahnenstiel, G. L., Carrick, H. J., Lohrenz, S. E., & Schofield, O. M. E. ( 2002 ). Phytoplankton pigments in coastal Lake Michigan: Distributions during the spring isothermal period and relation with episodic sediment resuspension. Journal of Phycology, 38, 639 - 648. https://doi.org/10.1046/j.1529-8817.2002.01218.x
dc.identifier.citedreferenceMillie, D. F., Fahnenstiel, G. L., Lohrenz, S. E., Carrick, H. J., Johengen, T. H., & Schofield, O. M. E. ( 2003 ). Physical- biological coupling in southern Lake Michigan: Influence of episodic sediment resuspension on phytoplankton. Aquatic Ecology, 37, 393 - 408. https://doi.org/10.1023/b:aeco.0000007046.48955.70
dc.identifier.citedreferenceMitchell, M. J., Driscoll, C. T., Kahl, J. S., Murdoch, P. S., Pardo, L. H., & Pardo, L. H. ( 1996 ). Climatic control of nitrate loss from forested watersheds in the northeast United States. Environmental Science and Technology, 30, 2609 - 2612. https://doi.org/10.1021/es9600237
dc.identifier.citedreferenceMunawar, M., & Munawar, I. F. ( 1982 ). Phycological studies in Lakes Ontario, Erie, Huron, and Superior. Canadian Journal of Botany, 60, 1837 - 1858. https://doi.org/10.1139/b82-231
dc.identifier.citedreferenceNicholls, K. H. ( 1998 ). El Niño, ice cover, and Great Lakes phosphorus: Implications for climate warming. Limnology & Oceanography, 43, 715 - 719. https://doi.org/10.4319/lo.1998.43.4.0715
dc.identifier.citedreferenceNorton, P. A., Driscoll, D. G., & Carter, J. M. ( 2019 ). Climate, streamflow, and Lake level trends in the great Lakes basin of the United States and CanadaWater Years 1960 - 2015. USGS Scientific Investigations Report.
dc.identifier.citedreferenceO’Gorman, R., Lantry, B. F., & Schneider, C. P. ( 2004 ). Effect of stock size, climate, predation, and trophic status on recruitment of Alewives in Lake Ontario, 1978- 2000. Transactions of the American Fisheries Society, 133, 855 - 867. https://doi.org/10.1577/t03-016.1
dc.identifier.citedreferenceOntario Open Data Team. ( 2020 ). Lake water quality at drinking water intakes Dataset. Ontario data catalog. https://data.ontario.ca/dataset/lake-water-quality-at-drinking-water-intakes
dc.identifier.citedreferenceOrihel, D. M., Baulch, H. M., Casson, N. J., North, R. L., Parsons, C. T., Seckar, D. C. M., & Venkiteswaran, J. J. ( 2017 ). Internal phosphorus loading in Canadian fresh waters: A critical review and data analysis. Canadian Journal of Fisheries and Aquatic Sciences, 74, 2005 - 2029. https://doi.org/10.1139/cjfas-2016-0500
dc.identifier.citedreferenceOyserman, B. O., Woityra, W. C., Bullerjahn, G. S., Beall, B. F. N., & McKay, R. M. L. ( 2012 ). Collecting winter data on U.S. Coast Guard icebreakers. Eos Transactions AGU, 93, 105 - 106. https://doi.org/10.1029/2012eo100002
dc.identifier.citedreferencePaver, S. F., Newton, R. J., & Coleman, M. L. ( 2020 ). Microbial communities of the Laurentian Great Lakes reflect connectivity and local biogeochemistry. Environmental Microbiology, 22, 433 - 446. https://doi.org/10.1111/1462-2920.14862
dc.identifier.citedreferencePerga, M. E., Syarki, M., Kalinkina, N., & Bouffard, D. ( 2020 ). A rotiferan version of the punishment of Sisyphus? Ecology, 101, e02934. https://doi.org/10.1002/ecy.2934
dc.identifier.citedreferencePernica, P., North, R. L., & Baulch, H. M. ( 2017 ). In the cold light of day: The potential importance of under- ice convective mixed layers to primary producers. Inland Waters, 7, 138 - 150. https://doi.org/10.1080/20442041.2017.1296627
dc.identifier.citedreferencePickett, R. L. ( 1980 ). Observed and predicted Great Lakes winter circulations. Journal of Physical Oceanography, 10, 1140 - 1145. https://doi.org/10.1175/1520-0485(1980)010<1140:oapglw>2.0.co;2
dc.identifier.citedreferencePost, E., Bhatt, U. S., Bitz, C. M., Brodie, J. F., Fulton, T. L., Hebblewhite, M., et al. ( 2013 ). Ecological consequences of sea- ice decline. Science, 341, 519 - 524. https://doi.org/10.1126/science.1235225
dc.identifier.citedreferenceGilbert, R. ( 1991 ). Ice pile- up on shores in northwestern Lake Ontario during winter 1990. Géographie Physique et Quaternaire, 45, 241 - 244
dc.identifier.citedreferencePothoven, S. A., & Vanderploeg, H. A. ( 2020 ). Seasonal patterns for Secchi depth, chlorophyll a, total phosphorus, and nutrient limitation differ between nearshore and offshore in Lake Michigan. Journal of Great Lakes Research, 46, 519 - 527. https://doi.org/10.1016/j.jglr.2020.03.013
dc.identifier.citedreferencePowers, S. M., Baulch, H. M., Hampton, S. E., Labou, S. G., Lottig, N. R., & Stanley, E. H. ( 2017 ). Nitrification contributes to winter oxygen depletion in seasonally frozen forested lakes. Biogeochemistry, 136, 119 - 129. https://doi.org/10.1007/s10533-017-0382-1
dc.identifier.citedreferencePowers, S. M., & Hampton, S. E. ( 2016 ). Winter limnology as a new Frontier. Limnology and Oceanography Bulletin, 25, 103 - 108. https://doi.org/10.1002/lob.10152
dc.identifier.citedreferencePrater, C., Frost, P. C., Howell, E. T., Watson, S. B., Zastepa, A., King, S. S., et al. ( 2017 ). Variation in particulate C: N: P stoichiometry across the Lake Erie watershed from tributaries to its outflow. Limnology & Oceanography, 62 ( S1 ), 194 - 206. https://doi.org/10.1002/lno.10628
dc.identifier.citedreferenceRao, Y. R., & Schwab, D. J. ( 2007 ). Transport and mixing between the coastal and offshore waters in the Great Lakes: A review. Journal of Great Lakes Research, 33, 202 - 218. https://doi.org/10.3394/0380-1330(2007)33[202:tambtc]2.0.co;2
dc.identifier.citedreferenceReavie, E. D., Barbiero, R. P., Allinger, L. E., & Warren, G. J. ( 2014 ). Phytoplankton trends in the Great Lakes, 2001- 2011. Journal of Great Lakes Research, 40, 618 - 639. https://doi.org/10.1016/j.jglr.2014.04.013
dc.identifier.citedreferenceReavie, E. D., Cai, M., Twiss, M. R., Carrick, H. J., Davis, T. W., Johengen, T. H., et al. ( 2016 ). Winter- spring diatom production in Lake Erie is an important driver of summer hypoxia. Journal of Great Lakes Research, 42, 608 - 618. https://doi.org/10.1016/j.jglr.2016.02.013
dc.identifier.citedreferenceRisk, N., Snider, D., & Wagner- Riddle, C. ( 2013 ). Mechanisms leading to enhanced soil nitrous oxide fluxes induced by freeze- thaw cycles. Canadian Journal of Soil Science, 93, 401 - 414. https://doi.org/10.4141/cjss2012-071
dc.identifier.citedreferenceRowe, M. D., Anderson, E. J., Vanderploeg, H. A., Pothoven, S. A., Elgin, A. K., Wang, J., & Yousef, F. ( 2017 ). Influence of invasive quagga mussels, phosphorus loads, and climate on spatial and temporal patterns of productivity in Lake Michigan: A biophysical modeling study. Limnology & Oceanography, 62, 2629 - 2649. https://doi.org/10.1002/lno.10595
dc.identifier.citedreferenceRowe, M. D., Obenour, D. R., Nalepa, T. F., Vanderploeg, H. A., Yousef, F., & Kerfoot, W. C. ( 2015 ). Mapping the spatial distribution of the biomass and filter- feeding effect of invasive dreissenid mussels on the winter- spring phytoplankton bloom in Lake Michigan. Freshwater Biology, 60, 2270 - 2285. https://doi.org/10.1111/fwb.12653
dc.identifier.citedreferenceRuark, M. D., Brouder, S. M., & Turco, R. F. ( 2009 ). Dissolved organic carbon losses from tile drained agroecosystems. Journal of Environmental Quality, 38, 1205 - 1215. https://doi.org/10.2134/jeq2008.0121
dc.identifier.citedreferenceRuest, B., Neumeier, U., Dumont, D., Bismuth, E., Senneville, S., & Caveen, J. ( 2016 ). Recent wave climate and expected future changes in the seasonally ice- infested waters of the Gulf of St. Lawrence, Canada. Climate Dynamics, 46, 449 - 466. https://doi.org/10.1007/s00382-015-2592-3
dc.identifier.citedreferenceSalonen, K., Leppäranta, M., Viljanen, M., & Gulati, R. D. ( 2009 ). Perspectives in winter limnology: Closing the annual cycle of freezing lakes. Aquatic Ecology, 43, 609 - 616. https://doi.org/10.1007/s10452-009-9278-z
dc.identifier.citedreferenceSaxton, M. A., D’souza, N. A., Bourbonniere, R. A., McKay, R. M. L., & Wilhelm, S. W. ( 2012 ). Seasonal Si:C ratios in Lake Erie diatoms - Evidence of an active winter diatom community. Journal of Great Lakes Research, 38, 206 - 211. https://doi.org/10.1016/j.jglr.2012.02.009
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.