Show simple item record

Individual Microcystis colonies harbour distinct bacterial communities that differ by Microcystis oligotype and with time

dc.contributor.authorSmith, Derek J.
dc.contributor.authorTan, James Y.
dc.contributor.authorPowers, McKenzie A.
dc.contributor.authorLin, Xiaoxia N.
dc.contributor.authorDavis, Timothy W.
dc.contributor.authorDick, Gregory J.
dc.date.accessioned2021-07-01T20:10:20Z
dc.date.available2022-07-01 16:10:19en
dc.date.available2021-07-01T20:10:20Z
dc.date.issued2021-06
dc.identifier.citationSmith, Derek J.; Tan, James Y.; Powers, McKenzie A.; Lin, Xiaoxia N.; Davis, Timothy W.; Dick, Gregory J. (2021). "Individual Microcystis colonies harbour distinct bacterial communities that differ by Microcystis oligotype and with time." Environmental Microbiology 23(6): 3020-3036.
dc.identifier.issn1462-2912
dc.identifier.issn1462-2920
dc.identifier.urihttps://hdl.handle.net/2027.42/168257
dc.publisherJohn Wiley & Sons, Inc.
dc.titleIndividual Microcystis colonies harbour distinct bacterial communities that differ by Microcystis oligotype and with time
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168257/1/emi15514_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168257/2/emi15514.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168257/3/emi15514-sup-0002-SupinfoS2.pdf
dc.identifier.doi10.1111/1462-2920.15514
dc.identifier.sourceEnvironmental Microbiology
dc.identifier.citedreferenceRibalet, F., Intertaglia, L., Lebaron, P., and Casotti, R. ( 2008 ) Differential effect of three polyunsaturated aldehydes on marine bacterial isolates. Aquat Toxicol 86: 249 – 255.
dc.identifier.citedreferenceSeyedsayamdost, M.R., Case, R.J., Kolter, R., and Clardy, J. ( 2011 ) The Jekyll‐and‐Hyde chemistry of Phaeobacter gallaeciensis. Nat Chem 3: 331 – 335. URL. https://www.nature.com/articles/nchem.1002.pdf.
dc.identifier.citedreferenceSeymour, J., Ahmed, T., Durham, W., and Stocker, R. ( 2010 ) Chemotactic response of marine bacteria to the extracellular products of Synechococcus and Prochlorococcus. Aquat Microb Ecol 59: 161 – 168.
dc.identifier.citedreferenceSeymour, J.R., Amin, S.A., Raina, J.‐B., and Stocker, R. ( 2017 ) Zooming in on the phycosphere: the ecological interface for phytoplankton‐bacteria interactions. Nat Microbiol 2: 1 – 12. https://doi.org/10.1038/nmicrobiol.2017.65.
dc.identifier.citedreferenceSheik, C.S., Reese, B.K., Twing, K.I., Sylvan, J.B., Grim, S.L., Schrenk, M.O., et al. ( 2018 ) Identification and removal of contaminant sequences from ribosomal gene databases: lessons from the census of deep life. Front Microbiol 9: 840.
dc.identifier.citedreferenceShi, L., Huang, Y., Zhang, M., Shi, X., Cai, Y., Gao, S., et al. ( 2018 ) Large buoyant particles dominated by cyanobacterial colonies harbor distinct bacterial communities from small suspended particles and free‐living bacteria in the water column. Microbiol Open 7: e00608.
dc.identifier.citedreferenceShia, L., Cai, Y., Wang, X., Li, P., Yu, Y., and Kong, F. ( 2010 ) Community structure of bacteria associated with Microcystis colonies from cyanobacterial blooms. J Freshwater Ecol 25: 193 – 203.
dc.identifier.citedreferenceSison‐Mangus, M.P., Jiang, S., Tran, K.N., and Kudela, R.M. ( 2014 ) Host‐specific adaptation governs the interaction of the marine diatom, Pseudo‐nitzschia and their microbiota. ISME J 8: 63 – 76.
dc.identifier.citedreferenceSmriga, S., Fernandez, V.I., Mitchell, J.G., and Stocker, R. ( 2016 ) Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc Natl Acad Sci 113: 1576 – 1581.
dc.identifier.citedreferenceSonnenschein, E.C., Syit, D.A., Grossart, H.‐P., and Ullrich, M.S. ( 2012 ) Chemotaxis of Marinobacter adhaerens and its impact on attachment to the diatom Thalassiosira weissflogii. Appl Environ Microbiol 78: 6900 – 6907.
dc.identifier.citedreferenceTu, J., Chen, L., Gao, S., Zhang, J., Bi, C., Tao, Y., et al. ( 2019 ) Obtaining genome sequences of mutualistic bacteria in single Microcystis colonies. Int J Mol Sci 20: 5047.
dc.identifier.citedreferenceVan Mooy, B.A., Hmelo, L.R., Sofen, L.E., Campagna, S.R., May, A.L., Dyhrman, S.T., et al. ( 2012 ) Quorum sensing control of phosphorus acquisition in Trichodesmium consortia. ISME J 6: 422 – 429.
dc.identifier.citedreferenceWang, Q., Garrity, G.M., Tiedje, J.M., and Cole, J.R. ( 2007 ) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261 – 5267.
dc.identifier.citedreferenceWestcott, S.L., and Schloss, P.D. ( 2017 ) OptiClust, an improved method for assigning amplicon‐based sequence data to operational taxonomic units. MSphere 2: e00073 – e00017.
dc.identifier.citedreferenceWorm, J., and Søndergaard, M. ( 1998 ) Dynamics of heterotrophic bacteria attached to Microcystis spp.(cyanobacteria). Aquat Microb Ecol 14: 19 – 28.
dc.identifier.citedreferenceWynne, T.T., Stumpf, R.P., Tomlinson, M.C., Fahnenstiel, G.L., Dyble, J., Schwab, D.J., and Joshi, S.J. ( 2013 ) Evolution of a cyanobacterial bloom forecast system in western Lake Erie: development and initial evaluation. J Great Lakes Res 39: 90 – 99.
dc.identifier.citedreferenceXu, H., Cai, H., Yu, G., and Jiang, H. ( 2013 ) Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis. Water Res 47: 2005 – 2014.
dc.identifier.citedreferenceZhang, K., Pan, R., Zhang, L., Zhang, T., and Fan, J. ( 2020 ) Interspecific competition between Microcystis aeruginosa and Pseudanabaena and their production of T&O compounds. Chemosphere 252: 126509.
dc.identifier.citedreferenceZhu, C.‐M., Zhang, J.‐Y., Guan, R., Hale, L., Chen, N., Li, M., et al. ( 2019 ) Alternate succession of aggregate‐forming cyanobacterial genera correlated with their attached bacteria by co‐pathways. Sci Total Environ 688: 867 – 879.
dc.identifier.citedreferenceZhu, W., Li, M., Luo, Y., Dai, X., Guo, L., Xiao, M., et al. ( 2014 ) Vertical distribution of Microcystis colony size in Lake Taihu: its role in algal blooms. J Great Lakes Res 40: 949 – 955.
dc.identifier.citedreferenceAdachi, M., Kanno, T., Okamoto, R., Itakura, S., Yamaguchi, M., and Nishijima, T. ( 2003 ) Population structure of Alexandrium (Dinophyceae) cyst formation‐promoting bacteria in Hiroshima Bay, Japan. Appl Environ Microbiol 69: 6560 – 6568.
dc.identifier.citedreferenceAgha, R., del Mar Labrador, M., de los Ríos, A., and Quesada, A. ( 2016 ) Selectivity and detrimental effects of epiphytic Pseudanabaena on Microcystis colonies. Hydrobiologia 777: 139 – 148. https://link.springer.com/article/10.1007/s10750-016-2773-z.
dc.identifier.citedreferenceAjani, P.A., Kahlke, T., Siboni, N., Carney, R., Murray, S.A., and Seymour, J.R. ( 2018 ) The microbiome of the cosmopolitan diatom Leptocylindrus reveals significant spatial and temporal variability. Front Microbiol 9: 2758.
dc.identifier.citedreferenceAmin, S.A., Green, D.H., Hart, M.C., Krüpper, F.C., Sunda, W.G., and Carrano, C.J. ( 2009 ) Photolysis of iron‐siderophore chelates promotes bacterial‐algal mutualism. Proc Natl Acad Sci 106: 17071 – 17076. https://doi.org/10.1073/pnas.0905512106.
dc.identifier.citedreferenceAmin, S.A., Hmelo, L.R., van Tol, H.M., Durham, B.P., Carlson, L.T., Heal, K.R., et al. ( 2015 ) Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522: 98 – 101. https://doi.org/10.1038/nature14488.
dc.identifier.citedreferenceArandia‐Gorostidi, N., Weber, P.K., Alonso‐Sáez, L., Morán, X.A.G., and Mayali, X. ( 2017 ) Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment. ISME J 11: 641 – 650.
dc.identifier.citedreferenceAzam, F., and Malfatti, F. ( 2007 ) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5: 782 – 791.
dc.identifier.citedreferenceBagatini, I.L., Eiler, A., Bertilsson, S., Klaveness, D., Tessarolli, L.P., and Vieira, A.A.H. ( 2014 ) Host‐specificity and dynamics in bacterial communities associated with bloom‐forming freshwater phytoplankton. PLoS One 9: e85950.
dc.identifier.citedreferenceBarbara, G.M., and Mitchell, J.G. ( 2003 ) Bacterial tracking of motile algae. FEMS Microbiol Ecol 44: 79 – 87.
dc.identifier.citedreferenceBassler, B.L., Gibbons, P., Yu, C., and Roseman, S. ( 1991 ) Chitin utilization by marine bacteria. Chemotaxis to chitin oligosaccharides by Vibrio furnissii. J Biol Chem 266: 24268 – 24275.
dc.identifier.citedreferenceBasu, S., Gledhill, M., de Beer, D., Matondkar, S.P., and Shaked, Y. ( 2019 ) Colonies of marine cyanobacteria Trichodesmium interact with associated bacteria to acquire iron from dust. Commun Biol 2: 1 – 8.
dc.identifier.citedreferenceBehringer, G., Ochsenkühn, M.A., Fei, C., Fanning, J., Koester, J.A., and Amin, S.A. ( 2018 ) Bacterial communities of diatoms display strong conservation across strains and time. Front Microbiol 9: 659.
dc.identifier.citedreferenceBell, W., and Mitchell, R. ( 1972 ) Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol Bull 143: 265 – 277.
dc.identifier.citedreferenceBerry, M.A., Davis, T.W., Cory, R.M., Duhaime, M.B., Johengen, T.H., Kling, G.W., et al. ( 2017a ) Cyanobacterial harmful algal blooms are a biological disturbance to Western Lake Erie bacterial communities. Environ Microbiol 19: 1149 – 1162.
dc.identifier.citedreferenceBerry, M.A., White, J.D., Davis, T.W., Jain, S., Johengen, T.H., Dick, G.J., et al. ( 2017b ) Are oligotypes meaningful ecological and phylogenetic units? A case study of Microcystis in freshwater lakes. Front Microbiol 8: 365.
dc.identifier.citedreferenceBurke, C., Steinberg, P., Rusch, D., Kjelleberg, S., and Thomas, T. ( 2011a ) Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci 108: 14288 – 14293.
dc.identifier.citedreferenceBurke, C., Thomas, T., Lewis, M., Steinberg, P., and Kjelleberg, S. ( 2011b ) Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME J 5: 590 – 600.
dc.identifier.citedreferenceBushnell, B. ( 2014 ). BBTools: A Suite of Fast, Multithreaded Bioinformatics Tools Designed for Analysis of DNA and RNA Sequence Data: Joint Genome Institute. https://jgi.doe.gov/data-and-tools/bbtools/
dc.identifier.citedreferenceCáceres, M.D., and Legendre, P. ( 2009 ) Associations between species and groups of sites: indices and statistical inference. Ecology 90: 3566 – 3574.
dc.identifier.citedreferenceCasamatta, D., and Wickstrom, C. ( 2000 ) Sensitivity of two disjunct bacterioplankton communities to exudates from the cyanobacterium Microcystis aeruginosa Kützing. Microb Ecol 40: 64 – 73.
dc.identifier.citedreferenceChaffin, J.D., Bridgeman, T.B., Heckathorn, S.A., and Mishra, S. ( 2011 ) Assessment of Microcystis growth rate potential and nutrient status across a trophic gradient in western Lake Erie. J Great Lakes Res 37: 92 – 100.
dc.identifier.citedreferenceChristie‐Oleza, J.A., Sousoni, D., Lloyd, M., Armengaud, J., and Scanlan, D.J. ( 2017 ) Nutrient recycling facilitates long‐term stability of marine microbial phototroph‐heterotroph interactions. Nat Microbiol 2: 1 – 10.
dc.identifier.citedreferenceChun, S.‐J., Cui, Y., Lee, C.S., Cho, A.R., Baek, K., Choi, A., et al. ( 2019 ) Characterization of distinct cyanoHABs‐related modules in microbial recurrent association network. Front Microbiol 10: 1637.
dc.identifier.citedreferenceChun, S.‐J., Cui, Y., Lee, J.J., Choi, I.‐C., Oh, H.‐M., and Ahn, C.‐Y. ( 2020 ) Network analysis reveals succession of Microcystis genotypes accompanying distinctive microbial modules with recurrent patterns. Water Res 170: 115326.
dc.identifier.citedreferenceCole, J.J. ( 1982 ) Interactions between bacteria and algae in aquatic ecosystems. Annu Rev Ecol Syst 13: 291 – 314.
dc.identifier.citedreferenceCook, K.V., Li, C., Cai, H., Krumholz, L.R., Hambright, K.D., Paerl, H.W., et al. ( 2020 ) The global Microcystis interactome. Limnol Oceanogr 65: S194 – S207. https://doi.org/10.1002/lno.11361.
dc.identifier.citedreferenceCroft, M.T., Lawrence, A.D., Raux‐Deery, E., Warren, M.J., and Smith, A.G. ( 2005 ) Algae acquire vitamin B 12 through a symbiotic relationship with bacteria. Nature 438: 90 – 93. https://doi.org/10.1038/nature04056.
dc.identifier.citedreferenceDavis, T.W., Berry, D.L., Boyer, G.L., and Gobler, C.J. ( 2009 ) The effects of temperature and nutrients on the growth and dynamics of toxic and non‐toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8: 715 – 725.
dc.identifier.citedreferenceDavis, T.W., Harke, M.J., Marcoval, M.A., Goleski, J., Orano‐Dawson, C., Berry, D.L., and Gobler, C.J. ( 2010 ) Effects of nitrogenous compounds and phosphorus on the growth of toxic and non‐toxic strains of Microcystis during cyanobacterial blooms. Aquat Microb Ecol 61: 149 – 162.
dc.identifier.citedreferenceDurham, B.P., Dearth, S.P., Sharma, S., Amin, S.A., Smith, C.B., Campagna, S.R., et al. ( 2017 ) Recognition cascade and metabolite transfer in a marine bacteria‐phytoplankton model system. Environ Microbiol 19: 3500 – 3513. https://doi.org/10.1111/1462-2920.13834.
dc.identifier.citedreferenceDurham, B.P., Sharma, S., Luo, H., Smith, C.B., Amin, S.A., Bender, S.J., et al. ( 2015 ) Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad Sci 112: 453 – 457.
dc.identifier.citedreferenceDziallas, C., and Grossart, H.‐P. ( 2011 ) Temperature and biotic factors influence bacterial communities associated with the cyanobacterium Microcystis sp. Environ Microbiol 13: 1632 – 1641.
dc.identifier.citedreferenceDziallas, C., and Grossart, H.‐P. ( 2012 ) Microbial interactions with the cyanobacterium Microcystis aeruginosa and their dependence on temperature. Mar Biol 159: 2389 – 2398.
dc.identifier.citedreferenceEren, A.M., Borisy, G.G., Huse, S.M., and Welch, J.L.M. ( 2014 ) Oligotyping analysis of the human oral microbiome. Proc Natl Acad Sci 111: E2875 – E2884.
dc.identifier.citedreferenceEren, A.M., Maignien, L., Sul, W.J., Murphy, L.G., Grim, S.L., Morrison, H.G., and Sogin, M.L. ( 2013 ) Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol 4: 1111 – 1119.
dc.identifier.citedreferenceEren, A.M., Morrison, H.G., Lescault, P.J., Reveillaud, J., Vineis, J.H., and Sogin, M.L. ( 2015 ) Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high‐throughput marker gene sequences. ISME J 9: 968 – 979.
dc.identifier.citedreferenceFerrier, M., Martin, J., and Rooney‐Varga, J. ( 2002 ) Stimulation of Alexandrium fundyense growth by bacterial assemblages from the bay of Fundy. J Appl Microbiol 92: 706 – 716.
dc.identifier.citedreferenceForni, C., Telo’, F.R., and Caiola, M.G. ( 1997 ) Comparative analysis of the polysaccharides produced by different species of Microcystis (Chroococcales, Cyanophyta). Phycologia 36: 181 – 185.
dc.identifier.citedreferenceFrischkorn, K.R., Rouco, M., Van Mooy, B.A., and Dyhrman, S.T. ( 2017 ) Epibionts dominate metabolic functional potential of Trichodesmium colonies from the oligotrophic ocean. ISME J 11: 2090 – 2101.
dc.identifier.citedreferenceGrossart, H.P., Levold, F., Allgaier, M., Simon, M., and Brinkhoff, T. ( 2005 ) Marine diatom species harbour distinct bacterial communities. Environ Microbiol 7: 860 – 873.
dc.identifier.citedreferenceHarke, M.J., Steffen, M.M., Gobler, C.J., Otten, T.G., Wilhelm, S.W., Wood, S.A., and Paerl, H.W. ( 2016 ) A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54: 4 – 20.
dc.identifier.citedreferenceHasegawa, Y., Martin, J.L., Giewat, M.W., and Rooney‐Varga, J.N. ( 2007 ) Microbial community diversity in the phycosphere of natural populations of the toxic alga, Alexandrium fundyense. Environ Microbiol 9: 3108 – 3121.
dc.identifier.citedreferenceHindák, F. ( 1996 ) Cyanophytes colonizing mucilage of chroococcal water blooms. Beih Nova Hedwigia 112: 69 – 82.
dc.identifier.citedreferenceHmelo, L., Van Mooy, B., and Mincer, T. ( 2012 ) Characterization of bacterial epibionts on the cyanobacterium Trichodesmium. Aquat Microb Ecol 67: 1 – 14.
dc.identifier.citedreferenceHuisman, J., Codd, G.A., Paerl, H.W., Ibelings, B.W., Verspagen, J.M., and Visser, P.M. ( 2018 ) Cyanobacterial blooms. Nat Rev Microbiol 16: 471 – 483.
dc.identifier.citedreferenceJackrel, S.L., White, J.D., Evans, J.T., Buffin, K., Hayden, K., Sarnelle, O., and Denef, V.J. ( 2019 ) Genome evolution and host microbiome shifts correspond with intraspecific niche divergence within harmful algal bloom‐forming Microcystis aeruginosa. Mol Ecol 28: 3994 – 4011.
dc.identifier.citedreferenceJankowiak, J.G., and Gobler, C.J. ( 2020 ) The composition and function of microbiomes within Microcystis colonies are significantly different than native bacterial assemblages in two north American lakes. Front Microbiol 11: 1016.
dc.identifier.citedreferenceJasti, S., Sieracki, M.E., Poulton, N.J., Giewat, M.W., and Rooney‐Varga, J.N. ( 2005 ) Phylogenetic diversity and specificity of bacteria closely associated with Alexandrium spp. and other phytoplankton. Appl Environ Microbiol 71: 3483 – 3494. URL. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1169014/pdf/2054-04.pdf.
dc.identifier.citedreferenceJezberová, J., and Komárková, J. ( 2007 ) Morphological transformation in a freshwater Cyanobium sp. induced by grazers. Environ Microbiol 9: 1858 – 1862.
dc.identifier.citedreferenceKardinaal, W.E.A., Janse, I., Kamst‐van Agterveld, M., Meima, M., Snoek, J., Mur, L.R., et al. ( 2007 ) Microcystis genotype succession in relation to microcystin concentrations in freshwater lakes. Aquat Microb Ecol 48: 1 – 12.
dc.identifier.citedreferenceKim, M., Shin, B., Lee, J., Park, H.Y., and Park, W. ( 2019 ) Culture‐independent and culture‐dependent analyses of the bacterial community in the phycosphere of cyanobloom‐forming Microcystis aeruginosa. Sci Rep 9: 1 – 13.
dc.identifier.citedreferenceKozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K., and Schloss, P.D. ( 2013 ) Development of a dual‐index sequencing Startegy and Curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79: 5112 – 5120.
dc.identifier.citedreferenceLanda, M., Burns, A.S., Roth, S.J., and Moran, M.A. ( 2017 ) Bacterial transcriptome remodeling during sequential co‐culture with a marine dinoflagellate and diatom. ISME J 11: 2677 – 2690.
dc.identifier.citedreferenceLe Manach, S., Duval, C., Marie, A., Djediat, C., Catherine, A., Edery, M., et al. ( 2019 ) Global metabolomic characterizations of Microcystis spp. highlights clonal diversity in natural bloom‐forming populations and expands metabolite structural diversity. Front Microbiol 10: 791.
dc.identifier.citedreferenceLee, M.D., Walworth, N.G., McParland, E.L., Fu, F.‐X., Mincer, T.J., Levine, N.M., et al. ( 2017 ) The Trichodesmium consortium: conserved heterotrophic co‐occurrence and genomic signatures of potential interactions. ISME J 11: 1813 – 1824. https://doi.org/10.1038/ismej.2017.49.
dc.identifier.citedreferenceLi, M., Zhu, W., Gao, L., and Lu, L. ( 2013 ) Changes in extracellular polysaccharide content and morphology of Microcystis aeruginosa at different specific growth rates. J Appl Phycol 25: 1023 – 1030.
dc.identifier.citedreferenceLin, Y., Gifford, S., Ducklow, H., Schofield, O., and Cassar, N. ( 2019 ) Towards quantitative microbiome community profiling using internal standards. Appl Environ Microbiol 85: e02634 – e02618.
dc.identifier.citedreferenceLouati, I., Pascault, N., Debroas, D., Bernard, C., Humbert, J.‐F., and Leloup, J. ( 2015 ) Structural diversity of bacterial communities associated with bloom‐forming freshwater cyanobacteria differs according to the cyanobacterial genus. PloS One 10: e0140614.
dc.identifier.citedreferenceMa, L., Calfee, B.C., Morris, J.J., Johnson, Z.I., and Zinser, E.R. ( 2018 ) Degradation of hydrogen peroxide at the ocean’s surface: the influence of the microbial community on the realized thermal niche of Prochlorococcus. ISME J 12: 473 – 484.
dc.identifier.citedreferenceMiller, T.R., Hnilicka, K., Dziedzic, A., Desplats, P., and Belas, R. ( 2004 ) Chemotaxis of Silicibacter sp. strain TM1040 toward dinoflagellate products. Appl Environ Microbiol 70: 4692 – 4701.
dc.identifier.citedreferenceMönnich, J., Tebben, J., Bergemann, J., Case, R., Wohlrab, S., and Harder, T. ( 2020 ) Niche‐based assembly of bacterial consortia on the diatom Thalassiosira rotula is stable and reproducible. ISME J: 14, 1614 – 1625. https://doi.org/10.1038/s41396-020-0631-5.
dc.identifier.citedreferenceMorris, J.J., Johnson, Z.I., Szul, M.J., Keller, M., and Zinser, E.R. ( 2011 ) Dependence of the cyanobacterium Prochlorococcus on hydrogen peroxide scavenging microbes for growth at the ocean’s surface. PloS One 6: e16805.
dc.identifier.citedreferenceOksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R. et al. ( 2013 ). Package ‘vegan’. https://cran.ism.ac.jp/web/packages/vegan/vegan.pdf.
dc.identifier.citedreferenceOtsuka, S., Suda, S., Li, R., Matsumoto, S., and Watanabe, M.M. ( 2000 ) Morphological variability of colonies of Microcystis morphospecies in culture. J Gen Appl Microbiol 46: 39 – 50.
dc.identifier.citedreferenceOtten, T., Xu, H., Qin, B., Zhu, G., and Paerl, H. ( 2012 ) Spatiotemporal patterns and ecophysiology of toxigenic Microcystis blooms in Lake Taihu, China: implications for water quality management. Environ Sci Technol 46: 3480 – 3488.
dc.identifier.citedreferenceOtten, T.G., Paerl, H.W., Dreher, T.W., Kimmerer, W.J., and Parker, A.E. ( 2017 ) The molecular ecology of Microcystis sp. blooms in the San Francisco estuary. Environ Microbiol 19: 3619 – 3637.
dc.identifier.citedreferenceOuellette, A.J., Handy, S.M., and Wilhelm, S.W. ( 2006 ) Toxic Microcystis is widespread in Lake Erie: PCR detection of toxin genes and molecular characterization of associated cyanobacterial communities. Microb Ecol 51: 154 – 165.
dc.identifier.citedreferencePaerl, H.W., and Gallucci, K.K. ( 1985 ) Role of chemotaxis in establishing a specific nitrogen‐fixing cyanobacterial‐bacterial association. Science 227: 647 – 649.
dc.identifier.citedreferenceParveen, B., Ravet, V., Djediat, C., Mary, I., Quiblier, C., Debroas, D., and Humbert, J.F. ( 2013 ) Bacterial communities associated with Microcystis colonies differ from free‐living communities living in the same ecosystem. Environ Microbiol Rep 5: 716 – 724.
dc.identifier.citedreferencePérez‐Carrascal, O.M., Terrat, Y., Giani, A., Fortin, N., Greer, C.W., Tromas, N., and Shapiro, B.J. ( 2019 ) Coherence of Microcystis species revealed through population genomics. ISME J 13: 2887 – 2900.
dc.identifier.citedreferencePruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., and Glöckner, F.O. ( 2007 ) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35: 7188 – 7196.
dc.identifier.citedreferenceRaina, J.‐B., Fernandez, V., Lambert, B., Stocker, R., and Seymour, J.R. ( 2019 ) The role of microbial motility and chemotaxis in symbiosis. Nat Rev Microbiol 17: 284 – 294.
dc.identifier.citedreferenceRouco, M., Haley, S.T., and Dyhrman, S.T. ( 2016 ) Microbial diversity within the Trichodesmium holobiont. Environ Microbiol 18: 5151 – 5160.
dc.identifier.citedreferenceSalter, S.J., Cox, M.J., Turek, E.M., Calus, S.T., Cookson, W.O., Moffatt, M.F., et al. ( 2014 ) Reagent and laboratory contamination can critically impact sequence‐based microbiome analyses. BMC Biol 12: 1 – 12.
dc.identifier.citedreferenceSapp, M., Schwaderer, A.S., Wiltshire, K.H., Hoppe, H.‐G., Gerdts, G., and Wichels, A. ( 2007 ) Species‐specific bacterial communities in the phycosphere of microalgae? Microb Ecol 53: 683 – 699.
dc.identifier.citedreferenceSchloss, P. D., & Bishop, L. ( 2019 ). MiSeq Wet Lab SOP. URL https://github.com/SchlossLab/MiSeq_WetLab_SOP/blob/master/MiSeq_WetLab_SOP.md
dc.identifier.citedreferenceSchmidt, K.C., Jackrel, S.L., Smith, D.J., Dick, G.J., and Denef, V.J. ( 2020 ) Genotype and host microbiome alter competitive interactions between Microcystis aeruginosa and Chlorella sorokiniana. Harmful Algae 99, Article 101939. https://doi.org/10.1016/j.hal.2020.101939.
dc.identifier.citedreferenceSegev, E., Wyche, T.P., Kim, K.H., Petersen, J., Ellebrandt, C., Vlamakis, H., et al. ( 2016 ) Dynamic metabolic exchange governs a marine algal‐bacterial interaction. Elife 5: e17473.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.