Show simple item record

Intercellular Interactions of an Adipogenic CXCL12‐Expressing Stromal Cell Subset in Murine Bone Marrow

dc.contributor.authorMatsushita, Yuki
dc.contributor.authorChu, Angel Ka Yan
dc.contributor.authorOno, Wanida
dc.contributor.authorWelch, Joshua D
dc.contributor.authorOno, Noriaki
dc.date.accessioned2021-07-01T20:10:34Z
dc.date.available2022-07-01 16:10:32en
dc.date.available2021-07-01T20:10:34Z
dc.date.issued2021-06
dc.identifier.citationMatsushita, Yuki; Chu, Angel Ka Yan; Ono, Wanida; Welch, Joshua D; Ono, Noriaki (2021). "Intercellular Interactions of an Adipogenic CXCL12‐Expressing Stromal Cell Subset in Murine Bone Marrow." Journal of Bone and Mineral Research 36(6): 1145-1158.
dc.identifier.issn0884-0431
dc.identifier.issn1523-4681
dc.identifier.urihttps://hdl.handle.net/2027.42/168264
dc.description.abstractBone marrow houses a multifunctional stromal cell population expressing C‐X‐C motif chemokine ligand 12 (CXCL12), termed CXCL12‐abundant reticular (CAR) cells, that regulates osteogenesis and adipogenesis. The quiescent pre‐adipocyte‐like subset of CXCL12+ stromal cells (“Adipo‐CAR” cells) is localized to sinusoidal surfaces and particularly enriched for hematopoiesis‐supporting cytokines. However, detailed characteristics of these CXCL12+ pre‐adipocyte‐like stromal cells and how they contribute to marrow adipogenesis remain largely unknown. Here we highlight CXCL12‐dependent physical coupling with hematopoietic cells as a potential mechanism regulating the adipogenic potential of CXCL12+ stromal cells. Single‐cell computational analyses of RNA velocity and cell signaling reveal that Adipo‐CAR cells exuberantly communicate with hematopoietic cells through CXCL12‐CXCR4 ligand‐receptor interactions but do not interconvert with Osteo‐CAR cells. Consistent with this computational prediction, a substantial fraction of Cxcl12‐creER+ pre‐adipocyte‐like cells intertwines with hematopoietic cells in vivo and in single‐cell preparation in a protease‐sensitive manner. Deletion of CXCL12 in these cells using Col2a1‐cre leads to a reduction of stromal‐hematopoietic coupling and extensive marrow adipogenesis in adult bone marrow, which appears to involve direct conversion of CXCL12+ cells to lipid‐laden marrow adipocytes without altering mesenchymal progenitor cell fates. Therefore, these findings suggest that CXCL12+ pre‐adipocyte‐like marrow stromal cells prevent their premature differentiation by maintaining physical coupling with hematopoietic cells in a CXCL12‐dependent manner, highlighting a possible cell‐non‐autonomous mechanism that regulates marrow adipogenesis. © 2021 American Society for Bone and Mineral Research (ASBMR).
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherPRECLINICAL STUDIES
dc.subject.otherSTROMAL/STEM CELLS
dc.subject.otherBONE–FAT INTERACTIONS
dc.subject.otherGENETIC ANIMAL MODELS
dc.titleIntercellular Interactions of an Adipogenic CXCL12‐Expressing Stromal Cell Subset in Murine Bone Marrow
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialities
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168264/1/jbmr4282.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168264/2/jbmr4282_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168264/3/jbmr4282-sup-0001-Supinfo.pdf
dc.identifier.doi10.1002/jbmr.4282
dc.identifier.sourceJournal of Bone and Mineral Research
dc.identifier.citedreferenceRobles H, Park S, Joens MS, Fitzpatrick JAJ, Craft CS, Scheller EL. Characterization of the bone marrow adipocyte niche with three‐dimensional electron microscopy. Bone. 2019; 118: 89 ‐ 98.
dc.identifier.citedreferenceZhong L, Yao L, Tower RJ, et al. Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. Elife. 2020; 9: e54695.
dc.identifier.citedreferenceZhou BO, Yu H, Yue R, et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol. 2017; 19 ( 8 ): 891 ‐ 903.
dc.identifier.citedreferenceFazeli PK, Horowitz MC, MacDougald OA, et al. Marrow fat and bone—new perspectives. J Clin Endocrinol Metab. 2013; 98 ( 3 ): 935 ‐ 945.
dc.identifier.citedreferenceTzeng YS, Chung NC, Chen YR, Huang HY, Chuang WP, Lai DM. Imbalanced osteogenesis and adipogenesis in mice deficient in the chemokine Cxcl12/Sdf1 in the bone mesenchymal stem/progenitor cells. J Bone Miner Res. 2018; 33 ( 4 ): 679 ‐ 690.
dc.identifier.citedreferenceWelch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, Macosko EZ. Single‐cell multi‐omic integration compares and contrasts features of brain cell identity. Cell. 2019; 177 ( 7 ): 1873 ‐ 87.e17.
dc.identifier.citedreferenceLa Manno G, Soldatov R, Zeisel A, et al. RNA velocity of single cells. Nature. 2018; 560: 494 ‐ 498.
dc.identifier.citedreferenceBergen V, Lange M, Peidli S, Wolf FA, Theis FJ. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol. 2020; 38: 1408 ‐ 1414.
dc.identifier.citedreferenceEfremova M, Vento‐Tormo M, Teichmann SA, Vento‐Tormo R. CellPhoneDB: inferring cell‐cell communication from combined expression of multi‐subunit ligand‐receptor complexes. Nat Protoc. 2020; 15 ( 4 ): 1484 ‐ 1506.
dc.identifier.citedreferenceDing L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012; 481 ( 7382 ): 457 ‐ 462.
dc.identifier.citedreferenceShiozawa Y, Pedersen EA, Patel LR, et al. GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia. 2010; 12 ( 2 ): 116 ‐ 127.
dc.identifier.citedreferenceIshino R, Minami K, Tanaka S, et al. FGF7 supports hematopoietic stem and progenitor cells and niche‐dependent myeloblastoma cells via autocrine action on bone marrow stromal cells in vitro. Biochem Biophys Res Commun. 2013; 440 ( 1 ): 125 ‐ 131.
dc.identifier.citedreferenceCordeiro Gomes A, Hara T, Lim VY, et al. Hematopoietic stem cell niches produce lineage‐instructive signals to control multipotent progenitor differentiation. Immunity. 2016; 45 ( 6 ): 1219 ‐ 1231.
dc.identifier.citedreferenceWolock SL, Krishnan I, Tenen DE, et al. Mapping distinct bone marrow niche populations and their differentiation paths. Cell Rep. 2019; 28 ( 2 ): 302 ‐ 11.e5.
dc.identifier.citedreferenceOvchinnikov DA, Deng JM, Ogunrinu G, Behringer RR. Col2a1‐directed expression of Cre recombinase in differentiating chondrocytes in transgenic mice. Genesis. 2000; 26 ( 2 ): 145 ‐ 146.
dc.identifier.citedreferenceOno N, Ono W, Nagasawa T, Kronenberg HM. A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nat Cell Biol. 2014; 16 ( 12 ): 1157 ‐ 1167.
dc.identifier.citedreferenceMizuhashi K, Ono W, Matsushita Y, et al. Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature. 2018; 563 ( 7730 ): 254 ‐ 258.
dc.identifier.citedreferenceSong L, Liu M, Ono N, Bringhurst FR, Kronenberg HM, Guo J. Loss of wnt/β‐catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. J Bone Miner Res. 2012; 27 ( 11 ): 2344 ‐ 2358.
dc.identifier.citedreferenceLiu Y, Berendsen AD, Jia S, et al. Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. J Clin Invest. 2012; 122 ( 9 ): 3101 ‐ 3113.
dc.identifier.citedreferenceFan Y, Hanai JI, Le PT, et al. Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab. 2017; 25 ( 3 ): 661 ‐ 672.
dc.identifier.citedreferenceSinha P, Aarnisalo P, Chubb R, et al. Loss of Gsα early in the osteoblast lineage favors adipogenic differentiation of mesenchymal progenitors and committed osteoblast precursors. J Bone Miner Res. 2014; 29 ( 11 ): 2414 ‐ 2426.
dc.identifier.citedreferenceNaveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. Bone‐marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 2009; 460 ( 7252 ): 259 ‐ 263.
dc.identifier.citedreferenceZhao M, Tao F, Venkatraman A, et al. N‐cadherin‐expressing bone and marrow stromal progenitor cells maintain reserve hematopoietic stem cells. Cell Rep. 2019; 26 ( 3 ): 652 ‐ 69.e6.
dc.identifier.citedreferenceCalvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003; 425 ( 6960 ): 841 ‐ 846.
dc.identifier.citedreferenceChristodoulou C, Spencer JA, Yeh SA, et al. Live‐animal imaging of native haematopoietic stem and progenitor cells. Nature. 2020; 578 ( 7794 ): 278 ‐ 283.
dc.identifier.citedreferenceMéndez‐Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010; 466 ( 7308 ): 829 ‐ 834.
dc.identifier.citedreferenceSadie‐Van Gijsen H, Crowther NJ, Hough FS, Ferris WF. The interrelationship between bone and fat: from cellular see‐saw to endocrine reciprocity. Cell Mol Life Sci. 2013; 70 ( 13 ): 2331 ‐ 2349.
dc.identifier.citedreferenceCrane GM, Jeffery E, Morrison SJ. Adult haematopoietic stem cell niches. Nat Rev Immunol. 2017; 17 ( 9 ): 573 ‐ 590.
dc.identifier.citedreferenceMorrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014; 505 ( 7483 ): 327 ‐ 334.
dc.identifier.citedreferencePinho S, Frenette PS. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol. 2019; 20 ( 5 ): 303 ‐ 320.
dc.identifier.citedreferenceWei Q, Frenette PS. Niches for hematopoietic stem cells and their progeny. Immunity. 2018; 48 ( 4 ): 632 ‐ 648.
dc.identifier.citedreferenceAra T, Tokoyoda K, Sugiyama T, Egawa T, Kawabata K, Nagasawa T. Long‐term hematopoietic stem cells require stromal cell‐derived factor‐1 for colonizing bone marrow during ontogeny. Immunity. 2003; 19 ( 2 ): 257 ‐ 267.
dc.identifier.citedreferenceOmatsu Y, Sugiyama T, Kohara H, et al. The essential functions of adipo‐osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010; 33 ( 3 ): 387 ‐ 399.
dc.identifier.citedreferenceZhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ. Leptin‐receptor‐expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 2014; 15 ( 2 ): 154 ‐ 168.
dc.identifier.citedreferenceSeike M, Omatsu Y, Watanabe H, Kondoh G, Nagasawa T. Stem cell niche‐specific Ebf3 maintains the bone marrow cavity. Genes Dev. 2018; 32 ( 5–6 ): 359 ‐ 372.
dc.identifier.citedreferenceGreenbaum A, Hsu YM, Day RB, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem‐cell maintenance. Nature. 2013; 495 ( 7440 ): 227 ‐ 230.
dc.identifier.citedreferenceDing L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013; 495 ( 7440 ): 231 ‐ 235.
dc.identifier.citedreferenceBaccin C, Al‐Sabah J, Velten L, et al. Combined single‐cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat Cell Biol. 2020; 22 ( 1 ): 38 ‐ 48.
dc.identifier.citedreferenceBaryawno N, Przybylski D, Kowalczyk MS, et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell. 2019; 177 ( 7 ): 1915 ‐ 32.e16.
dc.identifier.citedreferenceTikhonova AN, Dolgalev I, Hu H, et al. The bone marrow microenvironment at single‐cell resolution. Nature. 2019; 569 ( 7755 ): 222 ‐ 228.
dc.identifier.citedreferenceMatsushita Y, Nagata M, Kozloff KM, et al. A Wnt‐mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nat Commun. 2020; 11 ( 1 ): 332.
dc.identifier.citedreferenceTzeng YS, Li H, Kang YL, Chen WC, Cheng WC, Lai DM. Loss of Cxcl12/Sdf‐1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood. 2011; 117 ( 2 ): 429 ‐ 439.
dc.identifier.citedreferenceAsada N, Kunisaki Y, Pierce H, et al. Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat Cell Biol. 2017; 19 ( 3 ): 214 ‐ 223.
dc.identifier.citedreferenceSugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12‐CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006; 25 ( 6 ): 977 ‐ 988.
dc.identifier.citedreferenceTokoyoda K, Egawa T, Sugiyama T, Choi BI, Nagasawa T. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity. 2004; 20 ( 6 ): 707 ‐ 718.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.