Show simple item record

Theoretical Investigation of Hydrogen‐Bond‐Assisted Tetradentate N4 Copper(I) Chloride and trans‐1,2‐Peroxodicopper Complexes

dc.contributor.authorZhang, Min
dc.contributor.authorLiang, Guangchao
dc.contributor.authorXing, Mengjiang
dc.date.accessioned2021-07-01T20:10:36Z
dc.date.available2022-07-01 16:10:35en
dc.date.available2021-07-01T20:10:36Z
dc.date.issued2021-06-21
dc.identifier.citationZhang, Min; Liang, Guangchao; Xing, Mengjiang (2021). "Theoretical Investigation of Hydrogen‐Bond‐Assisted Tetradentate N4 Copper(I) Chloride and trans‐1,2‐Peroxodicopper Complexes." European Journal of Inorganic Chemistry 2021(23): 2194-2200.
dc.identifier.issn1434-1948
dc.identifier.issn1099-0682
dc.identifier.urihttps://hdl.handle.net/2027.42/168265
dc.description.abstractBiological oxygenation catalyzed by copper‐containing enzymes involves a dicopper O2 adduct as the key intermediate. Significant insights were offered by the trans‐1,2‐peroxodicopper intermediates. To understand the activity of the trans‐1,2‐peroxodicopper intermediate in the oxygenation, a series of hydrogen‐bond‐assisted CuI(L)−Cl and trans‐1,2‐peroxodicopper complexes [Cu2−O2]2+ were investigated by DFT computations. A reasonable two‐parameter structure‐activity model (R2=0.8611) and a three‐parameter structure‐activity model (R2=0.8773) for chloride dissociation (ΔG1RXN) were established. The critical intramolecular out‐sphere hydrogen bonds assist the formation of stable trans‐1,2‐peroxodicopper complexes, which overcome the steric hindrances and electrostatic repulsion. An acceptable two‐parameter structure‐activity model (R2=0.7051) for O2 binding (ΔG2RXN) was obtained. The fundamental structure‐activity interpretation of the hydrogen bonding interactions provides an insight into the modelling of trans‐1,2‐peroxodicopper mimics.Critical roles of intramolecular out‐sphere hydrogen bonds in the stabilization of CuI−Cl bonds and in the formation of trans‐1,2‐peroxodicopper complexes are theoretically investigated. Reasonable structure‐activity models for chloride dissociation and O2 binding are established, and the fundamental interpretation of modelling the trans‐1,2‐peroxodicopper mimics is provided.
dc.publisherOxford University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherHydrogen bonds
dc.subject.otherAtoms-in-molecules theory
dc.subject.otherTrans-1,2-peroxodicopper
dc.subject.otherDensity functional calculations
dc.subject.otherStructure-activity model
dc.titleTheoretical Investigation of Hydrogen‐Bond‐Assisted Tetradentate N4 Copper(I) Chloride and trans‐1,2‐Peroxodicopper Complexes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168265/1/ejic202100178.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168265/2/ejic202100178-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168265/3/ejic202100178_am.pdf
dc.identifier.doi10.1002/ejic.202100178
dc.identifier.sourceEuropean Journal of Inorganic Chemistry
dc.identifier.citedreferenceW. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33 – 38.
dc.identifier.citedreferenceM. Lerch, M. Weitzer, T.-D. J. Stumpf, L. Laurini, A. Hoffmann, J. Becker, A. Miska, R. Göttlich, S. Herres-Pawlis, S. Schindler, Eur. J. Inorg. Chem. 2020, 2020, 3143 – 3150.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Yamaguchi, S. Nagatomo, T. Kitagawa, Y. Funahashi, T. Ozawa, K. Jitsukawa, H. Masuda, Inorg. Chem. 2003, 42, 6968 – 6970;
dc.identifier.citedreferenceA. Chapovetsky, M. Welborn, J. M. Luna, R. Haiges, T. F. Miller, S. C. Marinescu, ACS Cent. Sci. 2018, 4, 397 – 404;
dc.identifier.citedreferenceE. W. Dahl, J. J. Kiernicki, M. Zeller, N. K. Szymczak, J. Am. Chem. Soc. 2018, 140, 10075 – 10079;
dc.identifier.citedreferenceS. Kim, C. Saracini, M. A. Siegler, N. Drichko, K. D. Karlin, Inorg. Chem. 2012, 51, 12603 – 12605;
dc.identifier.citedreferenceY. J. Park, N. S. Sickerman, J. W. Ziller, A. S. Borovik, Chem. Commun. 2010, 46, 2584 – 2586;
dc.identifier.citedreferenceN. S. Sickerman, Y. J. Park, G. K. Y. Ng, J. E. Bates, M. Hilkert, J. W. Ziller, F. Furche, A. S. Borovik, Dalton Trans. 2012, 41, 4358 – 4364.
dc.identifier.citedreferenceE. W. Dahl, H. T. Dong, N. K. Szymczak, Chem. Commun. 2018, 54, 892 – 895.
dc.identifier.citedreferenceC. M. Moore, D. A. Quist, J. W. Kampf, N. K. Szymczak, Inorg. Chem. 2014, 53, 3278 – 3280.
dc.identifier.citedreferenceW. T. Eckenhoff, T. Pintauer, Inorg. Chem. 2007, 46, 5844 – 5846.
dc.identifier.citedreferenceA. Wada, Y. Honda, S. Yamaguchi, S. Nagatomo, T. Kitagawa, K. Jitsukawa, H. Masuda, Inorg. Chem. 2004, 43, 5725 – 5735.
dc.identifier.citedreferenceC. A. Tolman, Chem. Rev. 1977, 77, 313 – 348;
dc.identifier.citedreferenceC. A. Tolman, W. C. Seidel, L. W. Gosser, J. Am. Chem. Soc. 1974, 96, 53 – 60;
dc.identifier.citedreferenceC. A. Tolman, J. Am. Chem. Soc. 1970, 92, 2956 – 2965.
dc.identifier.citedreference 
dc.identifier.citedreferenceR. F. W. Bader, Acc. Chem. Res. 1985, 18, 9 – 15;
dc.identifier.citedreferenceR. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, 1990;
dc.identifier.citedreferenceR. F. W. Bader, Chem. Rev. 1991, 91, 893 – 928.
dc.identifier.citedreferenceF. Fuster, B. Silvi, Theor. Chem. Acc. 2000, 104, 13 – 21.
dc.identifier.citedreferenceT. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580 – 592.
dc.identifier.citedreferenceA. Hoffmann, M. Wern, T. Hoppe, M. Witte, R. Haase, P. Liebhäuser, J. Glatthaar, S. Herres-Pawlis, S. Schindler, Eur. J. Inorg. Chem. 2016, 2016, 4744 – 4751;
dc.identifier.citedreferenceC. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, P. A. Wood, J. Appl. Crystallogr. 2020, 53, 226 – 235.
dc.identifier.citedreference 
dc.identifier.citedreferenceL. Falivene, R. Credendino, A. Poater, A. Petta, L. Serra, R. Oliva, V. Scarano, L. Cavallo, Organometallics 2016, 35, 2286 – 2293;
dc.identifier.citedreferenceSambVca, version 2.1. https://www.molnac.unisa.it/OMtools/sambvca2.1/index.html, 2019;
dc.identifier.citedreferenceL. Falivene, Z. Cao, A. Petta, L. Serra, A. Poater, R. Oliva, V. Scarano, L. Cavallo, Nat. Chem. 2019, 11, 872 – 879.
dc.identifier.citedreferenceA. Poater, F. Ragone, S. Giudice, C. Costabile, R. Dorta, S. P. Nolan, L. Cavallo, Organometallics 2008, 27, 2679 – 2681.
dc.identifier.citedreferenceA. Poater, F. Ragone, R. Mariz, R. Dorta, L. Cavallo, Chem. Eur. J. 2010, 16, 14348 – 14353.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. J. Zerk, P. V. Bernhardt, Coord. Chem. Rev. 2018, 375, 173 – 190;
dc.identifier.citedreferenceC. Bravin, E. Badetti, G. Licini, C. Zonta, Coord. Chem. Rev. 2021, 427, 213558.
dc.identifier.citedreferenceH. Hideki, U. Kounosuke, F. Shuhei, N. Shigenori, S. Kazushi, F. Hideki, S. Masatatsu, U. Akira, K. Teizo, Chem. Lett. 2002, 31, 416 – 417.
dc.identifier.citedreferenceC.-l. Chuang, K. Lim, Q. Chen, J. Zubieta, J. W. Canary, Inorg. Chem. 1995, 34, 2562 – 2568.
dc.identifier.citedreferenceM. Becker, F. W. Heinemann, S. Schindler, Chem. Eur. J. 1999, 5, 3124 – 3129.
dc.identifier.citedreferenceW. T. Eckenhoff, T. Pintauer, Inorg. Chem. 2010, 49, 10617 – 10626.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. B. Aakeröy, T. A. Evans, K. R. Seddon, I. Pálinkó, New J. Chem. 1999, 23, 145 – 152;
dc.identifier.citedreferenceM. Ikeda, A. K. Sah, M. Iwase, R. Murashige, J.-i. Ishi-i, M. Hasegawa, C. Kachi-Terajima, K.-M. Park, S. Kuwahara, Y. Habata, Dalton Trans. 2017, 46, 3800 – 3804.
dc.identifier.citedreferenceY. Liu, W. Zhao, C.-H. Chen, A. H. Flood, Science 2019, 365, 159 – 161.
dc.identifier.citedreference 
dc.identifier.citedreference 
dc.identifier.citedreferenceE. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera, M. Qayyum, M. T. Kieber-Emmons, C. H. Kjaergaard, R. G. Hadt, L. Tian, Chem. Rev. 2014, 114, 3659 – 3853;
dc.identifier.citedreferenceR. Trammell, K. Rajabimoghadam, I. Garcia-Bosch, Chem. Rev. 2019, 119, 2954 – 3031;
dc.identifier.citedreferenceY. Liang, J. Wei, X. Qiu, N. Jiao, Chem. Rev. 2018, 118, 4912 – 4945;
dc.identifier.citedreferenceP. Chen, E. I. Solomon, Proc. Natl. Acad. Sci. USA 2004, 101, 13105 – 13110;
dc.identifier.citedreferenceR. E. Cowley, L. Tian, E. I. Solomon, Proc. Natl. Acad. Sci. USA 2016, 113, 12035 – 12040.
dc.identifier.citedreference 
dc.identifier.citedreferenceE. I. Solomon, U. M. Sundaram, T. E. Machonkin, Chem. Rev. 1996, 96, 2563 – 2606;
dc.identifier.citedreferenceL. M. Mirica, X. Ottenwaelder, T. D. P. Stack, Chem. Rev. 2004, 104, 1013 – 1046;
dc.identifier.citedreferenceS. M. Adam, G. B. Wijeratne, P. J. Rogler, D. E. Diaz, D. A. Quist, J. J. Liu, K. D. Karlin, Chem. Rev. 2018, 118, 10840 – 11022.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. E. Elwell, N. L. Gagnon, B. D. Neisen, D. Dhar, A. D. Spaeth, G. M. Yee, W. B. Tolman, Chem. Rev. 2017, 117, 2059 – 2107;
dc.identifier.citedreferenceD. Maiti, J. S. Woertink, A. A. Narducci Sarjeant, E. I. Solomon, K. D. Karlin, Inorg. Chem. 2008, 47, 3787 – 3800;
dc.identifier.citedreferenceY. Lee, G. Y. Park, H. R. Lucas, P. L. Vajda, K. Kamaraj, M. A. Vance, A. E. Milligan, J. S. Woertink, M. A. Siegler, A. A. Narducci Sarjeant, L. N. Zakharov, A. L. Rheingold, E. I. Solomon, K. D. Karlin, Inorg. Chem. 2009, 48, 11297 – 11309;
dc.identifier.citedreferenceM. T. Kieber-Emmons, J. W. Ginsbach, P. K. Wick, H. R. Lucas, M. E. Helton, B. Lucchese, M. Suzuki, A. D. Zuberbühler, K. D. Karlin, E. I. Solomon, Angew. Chem. Int. Ed. 2014, 53, 4935 – 4939; Angew. Chem. 2014, 126, 5035 – 5039;
dc.identifier.citedreferenceS. Itoh, Y. Tachi, Dalton Trans. 2006, 4531 – 4538;
dc.identifier.citedreferenceM. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford, CT, 2019.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865 – 3868;
dc.identifier.citedreferenceJ. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.
dc.identifier.citedreferenceA. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829 – 5835.
dc.identifier.citedreferenceS. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
dc.identifier.citedreferenceS. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456 – 1465.
dc.identifier.citedreference 
dc.identifier.citedreferenceB. I. Dunlap, J. Chem. Phys. 1983, 78, 3140 – 3142;
dc.identifier.citedreferenceB. I. Dunlap, J. Mol. Struct. 2000, 529, 37 – 40.
dc.identifier.citedreferenceD. G. Liakos, F. Neese, J. Chem. Theory Comput. 2011, 7, 1511 – 1523.
dc.identifier.citedreferenceF. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297 – 3305.
dc.identifier.citedreferenceA. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378 – 6396.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.