Theoretical Investigation of Hydrogen‐Bond‐Assisted Tetradentate N4 Copper(I) Chloride and trans‐1,2‐Peroxodicopper Complexes
dc.contributor.author | Zhang, Min | |
dc.contributor.author | Liang, Guangchao | |
dc.contributor.author | Xing, Mengjiang | |
dc.date.accessioned | 2021-07-01T20:10:36Z | |
dc.date.available | 2022-07-01 16:10:35 | en |
dc.date.available | 2021-07-01T20:10:36Z | |
dc.date.issued | 2021-06-21 | |
dc.identifier.citation | Zhang, Min; Liang, Guangchao; Xing, Mengjiang (2021). "Theoretical Investigation of Hydrogen‐Bond‐Assisted Tetradentate N4 Copper(I) Chloride and trans‐1,2‐Peroxodicopper Complexes." European Journal of Inorganic Chemistry 2021(23): 2194-2200. | |
dc.identifier.issn | 1434-1948 | |
dc.identifier.issn | 1099-0682 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/168265 | |
dc.description.abstract | Biological oxygenation catalyzed by copper‐containing enzymes involves a dicopper O2 adduct as the key intermediate. Significant insights were offered by the trans‐1,2‐peroxodicopper intermediates. To understand the activity of the trans‐1,2‐peroxodicopper intermediate in the oxygenation, a series of hydrogen‐bond‐assisted CuI(L)−Cl and trans‐1,2‐peroxodicopper complexes [Cu2−O2]2+ were investigated by DFT computations. A reasonable two‐parameter structure‐activity model (R2=0.8611) and a three‐parameter structure‐activity model (R2=0.8773) for chloride dissociation (ΔG1RXN) were established. The critical intramolecular out‐sphere hydrogen bonds assist the formation of stable trans‐1,2‐peroxodicopper complexes, which overcome the steric hindrances and electrostatic repulsion. An acceptable two‐parameter structure‐activity model (R2=0.7051) for O2 binding (ΔG2RXN) was obtained. The fundamental structure‐activity interpretation of the hydrogen bonding interactions provides an insight into the modelling of trans‐1,2‐peroxodicopper mimics.Critical roles of intramolecular out‐sphere hydrogen bonds in the stabilization of CuI−Cl bonds and in the formation of trans‐1,2‐peroxodicopper complexes are theoretically investigated. Reasonable structure‐activity models for chloride dissociation and O2 binding are established, and the fundamental interpretation of modelling the trans‐1,2‐peroxodicopper mimics is provided. | |
dc.publisher | Oxford University Press | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | Hydrogen bonds | |
dc.subject.other | Atoms-in-molecules theory | |
dc.subject.other | Trans-1,2-peroxodicopper | |
dc.subject.other | Density functional calculations | |
dc.subject.other | Structure-activity model | |
dc.title | Theoretical Investigation of Hydrogen‐Bond‐Assisted Tetradentate N4 Copper(I) Chloride and trans‐1,2‐Peroxodicopper Complexes | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Materials Science and Engineering | |
dc.subject.hlbsecondlevel | Chemical Engineering | |
dc.subject.hlbsecondlevel | Chemistry | |
dc.subject.hlbtoplevel | Engineering | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/168265/1/ejic202100178.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/168265/2/ejic202100178-sup-0001-misc_information.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/168265/3/ejic202100178_am.pdf | |
dc.identifier.doi | 10.1002/ejic.202100178 | |
dc.identifier.source | European Journal of Inorganic Chemistry | |
dc.identifier.citedreference | W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33 – 38. | |
dc.identifier.citedreference | M. Lerch, M. Weitzer, T.-D. J. Stumpf, L. Laurini, A. Hoffmann, J. Becker, A. Miska, R. Göttlich, S. Herres-Pawlis, S. Schindler, Eur. J. Inorg. Chem. 2020, 2020, 3143 – 3150. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | S. Yamaguchi, S. Nagatomo, T. Kitagawa, Y. Funahashi, T. Ozawa, K. Jitsukawa, H. Masuda, Inorg. Chem. 2003, 42, 6968 – 6970; | |
dc.identifier.citedreference | A. Chapovetsky, M. Welborn, J. M. Luna, R. Haiges, T. F. Miller, S. C. Marinescu, ACS Cent. Sci. 2018, 4, 397 – 404; | |
dc.identifier.citedreference | E. W. Dahl, J. J. Kiernicki, M. Zeller, N. K. Szymczak, J. Am. Chem. Soc. 2018, 140, 10075 – 10079; | |
dc.identifier.citedreference | S. Kim, C. Saracini, M. A. Siegler, N. Drichko, K. D. Karlin, Inorg. Chem. 2012, 51, 12603 – 12605; | |
dc.identifier.citedreference | Y. J. Park, N. S. Sickerman, J. W. Ziller, A. S. Borovik, Chem. Commun. 2010, 46, 2584 – 2586; | |
dc.identifier.citedreference | N. S. Sickerman, Y. J. Park, G. K. Y. Ng, J. E. Bates, M. Hilkert, J. W. Ziller, F. Furche, A. S. Borovik, Dalton Trans. 2012, 41, 4358 – 4364. | |
dc.identifier.citedreference | E. W. Dahl, H. T. Dong, N. K. Szymczak, Chem. Commun. 2018, 54, 892 – 895. | |
dc.identifier.citedreference | C. M. Moore, D. A. Quist, J. W. Kampf, N. K. Szymczak, Inorg. Chem. 2014, 53, 3278 – 3280. | |
dc.identifier.citedreference | W. T. Eckenhoff, T. Pintauer, Inorg. Chem. 2007, 46, 5844 – 5846. | |
dc.identifier.citedreference | A. Wada, Y. Honda, S. Yamaguchi, S. Nagatomo, T. Kitagawa, K. Jitsukawa, H. Masuda, Inorg. Chem. 2004, 43, 5725 – 5735. | |
dc.identifier.citedreference | C. A. Tolman, Chem. Rev. 1977, 77, 313 – 348; | |
dc.identifier.citedreference | C. A. Tolman, W. C. Seidel, L. W. Gosser, J. Am. Chem. Soc. 1974, 96, 53 – 60; | |
dc.identifier.citedreference | C. A. Tolman, J. Am. Chem. Soc. 1970, 92, 2956 – 2965. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | R. F. W. Bader, Acc. Chem. Res. 1985, 18, 9 – 15; | |
dc.identifier.citedreference | R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, 1990; | |
dc.identifier.citedreference | R. F. W. Bader, Chem. Rev. 1991, 91, 893 – 928. | |
dc.identifier.citedreference | F. Fuster, B. Silvi, Theor. Chem. Acc. 2000, 104, 13 – 21. | |
dc.identifier.citedreference | T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580 – 592. | |
dc.identifier.citedreference | A. Hoffmann, M. Wern, T. Hoppe, M. Witte, R. Haase, P. Liebhäuser, J. Glatthaar, S. Herres-Pawlis, S. Schindler, Eur. J. Inorg. Chem. 2016, 2016, 4744 – 4751; | |
dc.identifier.citedreference | C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, P. A. Wood, J. Appl. Crystallogr. 2020, 53, 226 – 235. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | L. Falivene, R. Credendino, A. Poater, A. Petta, L. Serra, R. Oliva, V. Scarano, L. Cavallo, Organometallics 2016, 35, 2286 – 2293; | |
dc.identifier.citedreference | SambVca, version 2.1. https://www.molnac.unisa.it/OMtools/sambvca2.1/index.html, 2019; | |
dc.identifier.citedreference | L. Falivene, Z. Cao, A. Petta, L. Serra, A. Poater, R. Oliva, V. Scarano, L. Cavallo, Nat. Chem. 2019, 11, 872 – 879. | |
dc.identifier.citedreference | A. Poater, F. Ragone, S. Giudice, C. Costabile, R. Dorta, S. P. Nolan, L. Cavallo, Organometallics 2008, 27, 2679 – 2681. | |
dc.identifier.citedreference | A. Poater, F. Ragone, R. Mariz, R. Dorta, L. Cavallo, Chem. Eur. J. 2010, 16, 14348 – 14353. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | T. J. Zerk, P. V. Bernhardt, Coord. Chem. Rev. 2018, 375, 173 – 190; | |
dc.identifier.citedreference | C. Bravin, E. Badetti, G. Licini, C. Zonta, Coord. Chem. Rev. 2021, 427, 213558. | |
dc.identifier.citedreference | H. Hideki, U. Kounosuke, F. Shuhei, N. Shigenori, S. Kazushi, F. Hideki, S. Masatatsu, U. Akira, K. Teizo, Chem. Lett. 2002, 31, 416 – 417. | |
dc.identifier.citedreference | C.-l. Chuang, K. Lim, Q. Chen, J. Zubieta, J. W. Canary, Inorg. Chem. 1995, 34, 2562 – 2568. | |
dc.identifier.citedreference | M. Becker, F. W. Heinemann, S. Schindler, Chem. Eur. J. 1999, 5, 3124 – 3129. | |
dc.identifier.citedreference | W. T. Eckenhoff, T. Pintauer, Inorg. Chem. 2010, 49, 10617 – 10626. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | C. B. Aakeröy, T. A. Evans, K. R. Seddon, I. Pálinkó, New J. Chem. 1999, 23, 145 – 152; | |
dc.identifier.citedreference | M. Ikeda, A. K. Sah, M. Iwase, R. Murashige, J.-i. Ishi-i, M. Hasegawa, C. Kachi-Terajima, K.-M. Park, S. Kuwahara, Y. Habata, Dalton Trans. 2017, 46, 3800 – 3804. | |
dc.identifier.citedreference | Y. Liu, W. Zhao, C.-H. Chen, A. H. Flood, Science 2019, 365, 159 – 161. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | ||
dc.identifier.citedreference | E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera, M. Qayyum, M. T. Kieber-Emmons, C. H. Kjaergaard, R. G. Hadt, L. Tian, Chem. Rev. 2014, 114, 3659 – 3853; | |
dc.identifier.citedreference | R. Trammell, K. Rajabimoghadam, I. Garcia-Bosch, Chem. Rev. 2019, 119, 2954 – 3031; | |
dc.identifier.citedreference | Y. Liang, J. Wei, X. Qiu, N. Jiao, Chem. Rev. 2018, 118, 4912 – 4945; | |
dc.identifier.citedreference | P. Chen, E. I. Solomon, Proc. Natl. Acad. Sci. USA 2004, 101, 13105 – 13110; | |
dc.identifier.citedreference | R. E. Cowley, L. Tian, E. I. Solomon, Proc. Natl. Acad. Sci. USA 2016, 113, 12035 – 12040. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | E. I. Solomon, U. M. Sundaram, T. E. Machonkin, Chem. Rev. 1996, 96, 2563 – 2606; | |
dc.identifier.citedreference | L. M. Mirica, X. Ottenwaelder, T. D. P. Stack, Chem. Rev. 2004, 104, 1013 – 1046; | |
dc.identifier.citedreference | S. M. Adam, G. B. Wijeratne, P. J. Rogler, D. E. Diaz, D. A. Quist, J. J. Liu, K. D. Karlin, Chem. Rev. 2018, 118, 10840 – 11022. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | C. E. Elwell, N. L. Gagnon, B. D. Neisen, D. Dhar, A. D. Spaeth, G. M. Yee, W. B. Tolman, Chem. Rev. 2017, 117, 2059 – 2107; | |
dc.identifier.citedreference | D. Maiti, J. S. Woertink, A. A. Narducci Sarjeant, E. I. Solomon, K. D. Karlin, Inorg. Chem. 2008, 47, 3787 – 3800; | |
dc.identifier.citedreference | Y. Lee, G. Y. Park, H. R. Lucas, P. L. Vajda, K. Kamaraj, M. A. Vance, A. E. Milligan, J. S. Woertink, M. A. Siegler, A. A. Narducci Sarjeant, L. N. Zakharov, A. L. Rheingold, E. I. Solomon, K. D. Karlin, Inorg. Chem. 2009, 48, 11297 – 11309; | |
dc.identifier.citedreference | M. T. Kieber-Emmons, J. W. Ginsbach, P. K. Wick, H. R. Lucas, M. E. Helton, B. Lucchese, M. Suzuki, A. D. Zuberbühler, K. D. Karlin, E. I. Solomon, Angew. Chem. Int. Ed. 2014, 53, 4935 – 4939; Angew. Chem. 2014, 126, 5035 – 5039; | |
dc.identifier.citedreference | S. Itoh, Y. Tachi, Dalton Trans. 2006, 4531 – 4538; | |
dc.identifier.citedreference | M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford, CT, 2019. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865 – 3868; | |
dc.identifier.citedreference | J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396. | |
dc.identifier.citedreference | A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829 – 5835. | |
dc.identifier.citedreference | S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104. | |
dc.identifier.citedreference | S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456 – 1465. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | B. I. Dunlap, J. Chem. Phys. 1983, 78, 3140 – 3142; | |
dc.identifier.citedreference | B. I. Dunlap, J. Mol. Struct. 2000, 529, 37 – 40. | |
dc.identifier.citedreference | D. G. Liakos, F. Neese, J. Chem. Theory Comput. 2011, 7, 1511 – 1523. | |
dc.identifier.citedreference | F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297 – 3305. | |
dc.identifier.citedreference | A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378 – 6396. | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.