Show simple item record

Observing and Modeling the Sequential Pairwise Reactions that Drive Solid- State Ceramic Synthesis

dc.contributor.authorMiura, Akira
dc.contributor.authorBartel, Christopher J.
dc.contributor.authorGoto, Yosuke
dc.contributor.authorMizuguchi, Yoshikazu
dc.contributor.authorMoriyoshi, Chikako
dc.contributor.authorKuroiwa, Yoshihiro
dc.contributor.authorWang, Yongming
dc.contributor.authorYaguchi, Toshie
dc.contributor.authorShirai, Manabu
dc.contributor.authorNagao, Masanori
dc.contributor.authorRosero‐navarro, Nataly Carolina
dc.contributor.authorTadanaga, Kiyoharu
dc.contributor.authorCeder, Gerbrand
dc.contributor.authorSun, Wenhao
dc.date.accessioned2021-07-01T20:10:54Z
dc.date.available2022-07-01 16:10:53en
dc.date.available2021-07-01T20:10:54Z
dc.date.issued2021-06
dc.identifier.citationMiura, Akira; Bartel, Christopher J.; Goto, Yosuke; Mizuguchi, Yoshikazu; Moriyoshi, Chikako; Kuroiwa, Yoshihiro; Wang, Yongming; Yaguchi, Toshie; Shirai, Manabu; Nagao, Masanori; Rosero‐navarro, Nataly Carolina ; Tadanaga, Kiyoharu; Ceder, Gerbrand; Sun, Wenhao (2021). "Observing and Modeling the Sequential Pairwise Reactions that Drive Solid- State Ceramic Synthesis." Advanced Materials 33(24): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/168276
dc.description.abstractSolid- state synthesis from powder precursors is the primary processing route to advanced multicomponent ceramic materials. Designing reaction conditions and precursors for ceramic synthesis can be a laborious, trial- and- error process, as heterogeneous mixtures of precursors often evolve through a complicated series of reaction intermediates. Here, ab initio thermodynamics is used to model which pair of precursors has the most reactive interface, enabling the understanding and anticipation of which non- equilibrium intermediates form in the early stages of a solid- state reaction. In situ X- ray diffraction and in situ electron microscopy are then used to observe how these initial intermediates influence phase evolution in the synthesis of the classic high- temperature superconductor YBa2Cu3O6+x (YBCO). The model developed herein rationalizes how the replacement of the traditional BaCO3 precursor with BaO2 redirects phase evolution through a low- temperature eutectic melt, facilitating the formation of YBCO in 30 min instead of 12+ h. Precursor selection plays an important role in tuning the thermodynamics of interfacial reactions and emerges as an important design parameter in planning kinetically favorable synthesis pathways to complex ceramic materials.Multicomponent ceramics are often synthesized in a - black- box- reactor, with little understanding of how multiple precursors evolve into a target material. Ab initio modeling and in situ observations are used to interrogate the phase evolution of YBa2Cu3O6+x (YBCO), highlighting the critical role of precursor selection in designing kinetically favorable synthesis pathways.
dc.publisherWiley- Blackwell
dc.subject.otherYBa2Cu3O6+x
dc.subject.othersolid- state synthesis
dc.subject.otherpredictive synthesis
dc.subject.otherphase evolution
dc.subject.otherceramics
dc.subject.otherab initio thermodynamics
dc.titleObserving and Modeling the Sequential Pairwise Reactions that Drive Solid- State Ceramic Synthesis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168276/1/adma202100312_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168276/2/adma202100312-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168276/3/adma202100312.pdf
dc.identifier.doi10.1002/adma.202100312
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceR. M. Walser, R. W. Bené, Appl. Phys. Lett. 1976, 28, 624.
dc.identifier.citedreferenceR. Pretorius, A. M. Vredenberg, F. W. Saris, R. de Reus, J. Appl. Phys. 1991, 70, 3636.
dc.identifier.citedreferenceC. C. Theron, O. M. Ndwandwe, J. C. Lombaard, R. Pretorius, Mater. Chem. Phys. 1996, 46, 238.
dc.identifier.citedreferenceG. F. Voronin, S. A. Degterov, J. Solid State Chem. 1994, 110, 50.
dc.identifier.citedreferenceB.- J. Lee, D. N. Lee, J. Am. Ceram. Soc. 1991, 74, 78.
dc.identifier.citedreferenceW. Wong- Ng, L. P. Cook, J. Res. Natl. Inst. Stand. Technol. 1998, 103, 379.
dc.identifier.citedreferenceJ. D. Jorgensen, M. A. Beno, D. G. Hinks, L. Soderholm, K. J. Volin, R. L. Hitterman, J. D. Grace, I. K. Schuller, C. U. Segre, K. Zhang, M. S. Kleefisch, Phys. Rev. B 1987, 36, 3608.
dc.identifier.citedreferenceR. P. Stoffel, C. Wessel, M. W. Lumey, R. Dronskowski, Angew. Chem., Int. Ed. 2010, 49, 5242.
dc.identifier.citedreferenceE. L. Brosha, P. K. Davies, F. H. Garzon, I. D. Raistrick, Science 1993, 260, 196.
dc.identifier.citedreferenceN. Chen, S. J. Rothman, J. L. Routbort, K. C. Goretta, J. Mater. Res. 1992, 7, 2308.
dc.identifier.citedreferenceD. de Fontaine, G. Ceder, M. Asta, Nature 1990, 343, 544.
dc.identifier.citedreferenceT. He, W. Sun, H. Huo, O. Kononova, Z. Rong, V. Tshitoyan, T. Botari, G. Ceder, Chem. Mater. 2020, 32, 7861.
dc.identifier.citedreferenceS. Kawaguchi, M. Takemoto, K. Osaka, E. Nishibori, C. Moriyoshi, Y. Kubota, Y. Kuroiwa, K. Sugimoto, Rev. Sci. Instrum. 2017, 88, 085111.
dc.identifier.citedreferenceF. Izumi, K. Momma, Solid State Phenom. 2007, 130, 15.
dc.identifier.citedreferenceK. Momma, F. Izumi, J. Appl. Crystallogr. 2008, 41, 653.
dc.identifier.citedreferenceM. W. Chase, NIST- JANAF Thermochemical Tables, 4th ed., American Institute of Physics, New York 1998.
dc.identifier.citedreferenceA. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, APL Mater. 2013, 1, 011002.
dc.identifier.citedreferenceG. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
dc.identifier.citedreferenceG. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
dc.identifier.citedreferenceW. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, 2nd ed., Wiley- Blackwell, Hoboken, NJ, USA 1976.
dc.identifier.citedreferenceM. G. Kanatzidis, K. R. Poeppelmeier, S. Bobev, A. M. Guloy, S.- J. Hwu, A. Lachgar, S. E. Latturner, S. E. Raymond, D.- K. Seo, S. C. Sevov, A. Stein, B. Dabrowski, J. E. Greedan, M. Greenblatt, C. P. Grey, A. J. Jacobson, D. A. Keszler, J. Li, M. A. Subramanian, Y. Xia, T. Cagin, U. Häussermann, T. Hughbanks, S. D. Mahanti, D. Morgan, D.- K. Seo, N. A. Spaldin, W. E. Buhro, D. E. Giammar, J. A. Hollingsworth, D. C. Johnson, A. J. Nozik, X. Peng, R. L. Bedard, N. E. Brese, G. Cao, S. S. Dhingra, C. R. Kagan, D. B. Mitzi, M. J. Geselbracht, G. C. Lisensky, M. W. Lufaso, P. A. Maggard, O. K. Michael, A. P. Wilkinson, H.- C. zur Loye, T. Egami, J. E. Greedan, J. P. Hodges, J. D. Martin, J. B. Parise, B. H. Toby, T. A. Vanderah, P. C. Burns, J. Y. Chan, A. E. Meyer, C. B. Murray, A. P. Ramirez, M. D. Ward, L. Yu, M. A. Alario- Franco, P. D. Battle, T. Bein, C. L. Cahill, P. S. Halasyamani, A. Maignan, R. Seshadri, Prog. Solid State Chem. 2008, 36, 1.
dc.identifier.citedreferenceA. R. West, Solid State Chemistry and its Applications, Wiley, New York 2014.
dc.identifier.citedreferenceM. H. Nielsen, S. Aloni, J. J. De Yoreo, Science 2014, 345, 1158.
dc.identifier.citedreferenceA. J. Martinolich, J. A. Kurzman, J. R. Neilson, J. Am. Chem. Soc. 2016, 138, 11031.
dc.identifier.citedreferenceZ. Jiang, A. Ramanathan, D. P. Shoemaker, J. Mater. Chem. C 2017, 5, 5709.
dc.identifier.citedreferenceA. S. Haynes, C. C. Stoumpos, H. Chen, D. Chica, M. G. Kanatzidis, J. Am. Chem. Soc. 2017, 139, 10814.
dc.identifier.citedreferenceH. He, C.- H. Yee, D. E. McNally, J. W. Simonson, S. Zellman, M. Klemm, P. Kamenov, G. Geschwind, A. Zebro, S. Ghose, J. Bai, E. Dooryhee, G. Kotliar, M. C. Aronson, Proc. Natl. Acad. Sci. USA 2018, 115, 7890.
dc.identifier.citedreferenceH. Kohlmann, Eur. J. Inorg. Chem. 2019, 2019, 4174.
dc.identifier.citedreferenceM. Bianchini, J. Wang, R. J. Clement, B. Ouyang, P. Xiao, D. Kitchaev, T. Shi, Y. Zhang, Y. Wang, H. Kim, M. Zhang, J. Bai, F. Wang, W. Sun, G. Ceder, Nat. Mater. 2020, 19, 1088.
dc.identifier.citedreferenceS. P. Ong, L. Wang, B. Kang, G. Ceder, Chem. Mater. 2008, 20, 1798.
dc.identifier.citedreferenceW. Sun, S. T. Dacek, S. P. Ong, G. Hautier, A. Jain, W. D. Richards, A. C. Gamst, K. A. Persson, G. Ceder, Sci. Adv. 2016, 2, e1600225.
dc.identifier.citedreferenceC. J. Bartel, A. W. Weimer, S. Lany, C. B. Musgrave, A. M. Holder, npj Comput. Mater. 2019, 5, 4.
dc.identifier.citedreferenceA. Narayan, A. Bhutani, S. Rubeck, J. N. Eckstein, D. P. Shoemaker, L. K. Wagner, Phys. Rev. B 2016, 94, 045105.
dc.identifier.citedreferenceM. Jansen, Angew. Chem., Int. Ed. 2002, 41, 3746.
dc.identifier.citedreferenceA. Miura, H. Ito, C. J. Bartel, W. Sun, N. C. Rosero- Navarro, K. Tadanaga, H. Nakata, K. Maeda, G. Ceder, Mater. Horiz. 2020, 7, 1310.
dc.identifier.citedreferenceF. J. DiSalvo, Science 1990, 247, 649.
dc.identifier.citedreferenceA. Sleight, Phys. Today 1991, 44, 24.
dc.identifier.citedreferenceJ. R. Chamorro, T. M. McQueen, Acc. Chem. Res. 2018, 51, 2918.
dc.identifier.citedreferenceD. L. M. Cordova, D. C. Johnson, ChemPhysChem 2020, 21, 1345.
dc.identifier.citedreferenceM. Wu, J. Ashburn, C. Torng, P. Hor, R. Meng, L. Gao, Z. Huang, Y. Wang, C. Chu, Phys. Rev. Lett. 1987, 58, 908.
dc.identifier.citedreferenceS. Hikami, T. Hirai, S. Kagoshima, Jpn. J. Appl. Phys. 1987, 26, L314.
dc.identifier.citedreferenceR. J. Cava, B. Batlogg, R. B. van Dover, D. W. Murphy, S. Sunshine, T. Siegrist, J. P. Remeika, E. A. Rietman, S. Zahurak, G. P. Espinosa, Phys. Rev. Lett. 1987, 58, 1676.
dc.identifier.citedreferenceP. Grant, in New Scientist (July 30 issue), 1987, p. 36.
dc.identifier.citedreferenceC. A. Costa, M. Ferretti, C. L. Olcese, M. R. Cimberle, C. Ferdeghini, G. L. Nicchiotti, A. S. Siri, C. Rizzuto, J. Cryst. Growth 1987, 85, 623.
dc.identifier.citedreferenceB. D. Fahlman, J. Chem. Educ. 2001, 78, 1182.
dc.identifier.citedreferenceX. Jia, A. Lynch, Y. Huang, M. Danielson, I. Lang’at, A. Milder, A. E. Ruby, H. Wang, S. A. Friedler, A. J. Norquist, J. Schrier, Nature 2019, 573, 251.
dc.identifier.citedreferenceJ. L. Jorda, T. K. Jondo, J. Alloys Compd. 2001, 327, 167.
dc.identifier.citedreferenceO. Kononova, H. Huo, T. He, Z. Rong, T. Botari, W. Sun, V. Tshitoyan, G. Ceder, Sci. Data 2019, 6, 203.
dc.identifier.citedreferenceJ. Sun, A. Ruzsinszky, J. P. Perdew, Phys. Rev. Lett. 2015, 115, 036402.
dc.identifier.citedreferenceC. J. Bartel, S. L. Millican, A. M. Deml, J. R. Rumptz, W. Tumas, A. W. Weimer, S. Lany, V. Stevanovic, C. B. Musgrave, A. M. Holder, Nat. Commun. 2018, 9, 4168.
dc.identifier.citedreferenceI. Arvanitidis, D. Siche, S. Seetharaman, Metall. Mater. Trans. B 1996, 27, 409.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.