Show simple item record

α4β2* Nicotinic Cholinergic Receptor Target Engagement in Parkinson Disease Gait–Balance Disorders

dc.contributor.authorAlbin, Roger L.
dc.contributor.authorMüller, Martijn L. T. M.
dc.contributor.authorBohnen, Nicolaas I.
dc.contributor.authorSpino, Cathie
dc.contributor.authorSarter, Martin
dc.contributor.authorKoeppe, Robert A.
dc.contributor.authorSzpara, Ashley
dc.contributor.authorKim, Kamin
dc.contributor.authorLustig, Cindy
dc.contributor.authorDauer, William T.
dc.date.accessioned2021-07-01T20:11:19Z
dc.date.available2022-08-01 16:11:18en
dc.date.available2021-07-01T20:11:19Z
dc.date.issued2021-07
dc.identifier.citationAlbin, Roger L.; Müller, Martijn L. T. M. ; Bohnen, Nicolaas I.; Spino, Cathie; Sarter, Martin; Koeppe, Robert A.; Szpara, Ashley; Kim, Kamin; Lustig, Cindy; Dauer, William T. (2021). "α4β2* Nicotinic Cholinergic Receptor Target Engagement in Parkinson Disease Gait–Balance Disorders." Annals of Neurology 90(1): 130-142.
dc.identifier.issn0364-5134
dc.identifier.issn1531-8249
dc.identifier.urihttps://hdl.handle.net/2027.42/168289
dc.publisherJohn Wiley & Sons, Inc.
dc.titleα4β2* Nicotinic Cholinergic Receptor Target Engagement in Parkinson Disease Gait–Balance Disorders
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPsychiatry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168289/1/ana26102.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168289/2/ana26102_am.pdf
dc.identifier.doi10.1002/ana.26102
dc.identifier.sourceAnnals of Neurology
dc.identifier.citedreferenceFrey PW, Colliver JA. Sensitivity and responsivity measures for discrimination learning. Learn Motiv 1973; 4: 327 – 342.
dc.identifier.citedreferencevan der Zee S, Vállez García D, Elsinga PH, et al. [ 18 F]Fluoroethoxybenzovesamicol in Parkinson’s disease patients: quantification of a novel cholinergic positron emission tomography tracer. Mov Disord 2019; 34: 924 – 926.
dc.identifier.citedreferenceSabri O, Becker GA, Meyer PM, et al. First‐in‐human PET quantification study of cerebral α4β2* nicotinic acetylcholine receptors using the novel specific radioligand (−)‐[(18)F]flubatine. Neuroimage 2015; 118: 199 – 208.
dc.identifier.citedreferenceTurner JR, Castellano LM, Blendy JA. Parallel anxiolytic‐like effects and upregulation of neuronal nicotinic acetylcholine receptors following chronic nicotine and varenicline. Nicotine Tob Res 2011; 13: 41 – 46.
dc.identifier.citedreferenceHockley BG, Stewart MN, Sherman P, et al. (−)‐[(18)F]Flubatine: evaluation in rhesus monkeys and a report of the first fully automated radiosynthesis validated for clinical use. J Labelled Comp Radiopharm 2013; 56: 595 – 599.
dc.identifier.citedreferenceMancini M, Horak FB, Zampieri C, et al. Trunk accelerometry reveals postural instability in untreated Parkinson’s disease. Parkinsonism Relat Disord 2011; 17: 557 – 562.
dc.identifier.citedreferenceMancini M, Carlson‐Kuhta P, Zampieri C, et al. Postural sway as a marker of progression in Parkinson’s disease: a pilot longitudinal study. Gait Posture 2012; 36: 471 – 476.
dc.identifier.citedreferenceKelly VE, Eusterbrock AJ, Shumway‐Cook A. A review of dual‐task walking deficits in people with Parkinson’s disease: motor and cognitive contributions, mechanisms, and clinical implications. Parkinsons Dis 2012; 2012: 918719.
dc.identifier.citedreferenceLustig C, Kozak R, Sarter M, et al. CNTRICS final animal model task selection: control of attention. Neurosci Biobehav Rev 2013; 37: 2099 – 2110.
dc.identifier.citedreferenceBerry AS, Demeter E, Sabhapathy S, et al. Disposed to distraction: genetic variation in the cholinergic system influences distractibility but not time‐on‐task effects. J Cogn Neurosci 2014; 26: 1981 – 1990.
dc.identifier.citedreferenceKim K, Müller MLTM, Bohnen NI, et al. Thalamic cholinergic innervation makes a specific bottom‐up contribution to signal detection: evidence from Parkinson’s disease patients with defined cholinergic losses. Neuroimage 2017; 149: 295 – 304.
dc.identifier.citedreferenceNagelkerke NJ, Hart AA, Oosting J. The two‐period binary response cross‐over trial. Biom J 1986; 28: 863 – 869.
dc.identifier.citedreferenceHuang Y, Li W, Yang L, et al. Long term efficacy and safety of varenicline for smoking cessation: a systematic review and meta‐analysis of randomized controlled trials. J Public Health 2012; 20: 355 – 365.
dc.identifier.citedreferenceLotfipour S, Mandelkern M, Alvarez‐Estrada M, Brody AL. A single administration of low‐dose varenicline saturates α4β2* nicotinic acetylcholine receptors in the human brain. Neuropsychopharmacology 2012; 37: 1738 – 1748.
dc.identifier.citedreferenceHall D, Kapur S, Vaughn C, et al. Varenicline for the treatment of postural and gait dysfunction in Parkinson’s disease (PD). Neurol Clin Pract (in press).
dc.identifier.citedreferenceStuart S, Morris R, Giritharan A, et al. Prefrontal cortex activity and gait in Parkinson’s disease with cholinergic and dopaminergic therapy. Mov Disord 2020; 35: 2019 – 2027.
dc.identifier.citedreferenceVitorio R, Stuart S, Giritharan A, et al. Changes in prefrontal cortex activity and turning in response to dopaminergic and cholinergic therapy in Parkinson’s disease: a randomized cross‐over trial. Parkinsonism Relat Disord 2021; 86: 10 – 14.
dc.identifier.citedreferenceBohnen NI, Kaufer DI, Hendrickson R, et al. Degree of inhibition of cortical acetylcholinesterase and cognitive effects by donepezil in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2005; 76: 315 – 319.
dc.identifier.citedreferenceKucinski A, Lustig C, Sarter M. Addiction vulnerability trait impacts complex movement control: evidence from sign‐trackers. Behav Brain Res 2018; 350: 139 – 148.
dc.identifier.citedreferencePaolone G, Angelakos CC, Meyer PJ, et al. Cholinergic control over attention in rats prone to attribute incentive salience to reward cues. J Neurosci 2013; 33: 8321 – 8335.
dc.identifier.citedreferenceMocking RJ, Patrick Pflanz C, Pringle A, et al. Effects of short‐term varenicline administration on emotional and cognitive processing in healthy, non‐smoking adults: a randomized, double‐blind, study. Neuropsychopharmacology 2013; 38: 476 – 484.
dc.identifier.citedreferenceHorvath K, Aschermann Z, Acs P, et al. Minimal clinically important difference on the motor examination part of the MDS‐UPDRS. Parkinsonism Relat Disord 2015; 21: 1421 – 1425.
dc.identifier.citedreferenceMancini M, Chung K, Zajack A, et al. Effects of augmenting cholinergic neurotransmission on balance in Parkinson’s disease. Parkinsonism Relat Disord 2019; 69: 40 – 47.
dc.identifier.citedreferenceQuik M, Boyd JT, Bordia T, Perez X. Potential therapeutic application for nicotinic receptor drugs in movement disorders. Nicotine Tob Res 2019; 21: 357 – 369.
dc.identifier.citedreferencevan der Marck MA, Klok MP, Okun MS, et al. Consensus‐based clinical practice recommendations for the examination and management of falls in patients with Parkinson’s disease. Parkinsonism Relat Disord 2014; 20: 360 – 369.
dc.identifier.citedreferenceHarris‐Hayes M, Willis AW, Klein SE, et al. Relative mortality in U.S. Medicare beneficiaries with Parkinson disease and hip and pelvic fractures. J Bone Joint Surg Am 2014; 96: e27.
dc.identifier.citedreferenceLord S, Galna B, Yarnall AJ, et al. Natural history of falls in an incident cohort of Parkinson’s disease: early evolution, risk and protective features. J Neurol 2017; 264: 2268 – 2276.
dc.identifier.citedreferenceSchrag A, Hommel ALAJ, Lorenzl S, et al. The late stage of Parkinson’s—results of a large multinational study on motor and non‐motor complications. Parkinsonism Relat Disord 2020; 75: 91 – 96.
dc.identifier.citedreferenceBohnen NI, Müller ML, Koeppe RA, et al. History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 2009; 73: 1670 – 1676.
dc.identifier.citedreferenceBohnen NI, Albin RL. The cholinergic system and Parkinson disease. Behav Brain Res 2011; 221: 564 – 573.
dc.identifier.citedreferenceBohnen NI, Müller ML, Kotagal V, et al. Heterogeneity of cholinergic denervation in Parkinson’s disease without dementia. J Cereb Blood Flow Metab 2012; 32: 1609 – 1617.
dc.identifier.citedreferenceBohnen NI, Frey KA, Studenski S, et al. Gait speed in Parkinson disease correlates with cholinergic degeneration. Neurology 2013; 81: 1611 – 1616.
dc.identifier.citedreferenceBohnen NI, Kanel P, Zhou Z, et al. Cholinergic system changes of falls and freezing of gait in Parkinson’s disease. Ann Neurol 2019; 85: 538 – 549.
dc.identifier.citedreferenceYarnall A, Rochester L, Burn DJ. The interplay of cholinergic function, attention, and falls in Parkinson’s disease. Mov Disord 2011; 26: 2496 – 2503.
dc.identifier.citedreferenceRochester L, Yarnall AJ, Baker MR, et al. Cholinergic dysfunction contributes to gait disturbance in early Parkinson’s disease. Brain 2012; 135: 2779 – 2788.
dc.identifier.citedreferenceSarter M, Albin RL, Kucinski A, Lustig C. Where attention falls: increased risk of falls from the converging impact of cortical cholinergic and midbrain dopamine loss on striatal function. Exp Neurol 2014; 257: 120 – 129.
dc.identifier.citedreferenceMorris R, Martini DN, Madhyastha T, et al. Overview of the cholinergic contribution to gait, balance and falls in Parkinson’s disease. Parkinsonism Relat Disord 2019; 63: 20 – 30.
dc.identifier.citedreferenceBallinger EC, Ananth M, Talmage DA, Role LW. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 2016; 91: 1199 – 1218.
dc.identifier.citedreferenceGut NK, Winn P. The pedunculopontine tegmental nucleus—a functional hypothesis from the comparative literature. Mov Disord 2016; 31: 615 – 624.
dc.identifier.citedreferenceKucinski A, Paolone G, Bradshaw M, et al. Modeling fall propensity in Parkinson’s disease: deficits in the attentional control of complex movements in rats with cortical‐cholinergic and striatal‐dopaminergic deafferentation. J Neurosci 2013; 33: 16522 – 16539.
dc.identifier.citedreferenceStrouwen C, Molenaar EA, Münks L, et al. Dual tasking in Parkinson’s disease: should we train hazardous behavior? Expert Rev Neurother 2015; 15: 1031 – 1039.
dc.identifier.citedreferencePaterson D, Nordberg A. Neuronal nicotinic receptors in the human brain. Prog Neurobiol 2000; 61: 75 – 111.
dc.identifier.citedreferenceRollema H, Chambers LK, Coe JW, et al. Pharmacological profile of the alpha4beta2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid. Neuropharmacology 2007; 52: 985 – 994.
dc.identifier.citedreferenceJordan CJ, Xi ZX. Discovery and development of varenicline for smoking cessation. Expert Opin Drug Discov 2018; 13: 671 – 683.
dc.identifier.citedreferenceBurstein AH, Fullerton T, Clark DJ, Faessel HM. Pharmacokinetics, safety, and tolerability after single and multiple oral doses of varenicline in elderly smokers. J Clin Pharmacol 2006; 46: 1234 – 1240.
dc.identifier.citedreferenceFaessel HM, Obach RS, Rollema H, et al. A review of the clinical pharmacokinetics and pharmacodynamics of varenicline for smoking cessation. Clin Pharmacokinet 2010; 49: 799 – 816.
dc.identifier.citedreferenceObach RS, Reed‐Hagen AE, Krueger SS, et al. Metabolism and disposition of varenicline, a selective alpha4beta2 acetylcholine receptor partial agonist, in vivo and in vitro. Drug Metab Dispos 2006; 34: 121 – 130.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.