Show simple item record

High‐Pressure Phase Stability and Thermoelastic Properties of Iron Carbonitrides and Nitrogen in the Deep Earth

dc.contributor.authorHuang, Shengxuan
dc.contributor.authorWu, Xiang
dc.contributor.authorZhu, Feng
dc.contributor.authorLai, Xiaojing
dc.contributor.authorLi, Jie
dc.contributor.authorNeill, Owen K.
dc.contributor.authorQin, Shan
dc.contributor.authorRapp, Robert
dc.contributor.authorZhang, Dongzhou
dc.contributor.authorDera, Przemyslaw
dc.contributor.authorChariton, Stella
dc.contributor.authorPrakapenka, Vitali B.
dc.contributor.authorChen, Bin
dc.date.accessioned2021-07-01T20:11:37Z
dc.date.available2022-07-01 16:11:35en
dc.date.available2021-07-01T20:11:37Z
dc.date.issued2021-06
dc.identifier.citationHuang, Shengxuan; Wu, Xiang; Zhu, Feng; Lai, Xiaojing; Li, Jie; Neill, Owen K.; Qin, Shan; Rapp, Robert; Zhang, Dongzhou; Dera, Przemyslaw; Chariton, Stella; Prakapenka, Vitali B.; Chen, Bin (2021). "High‐Pressure Phase Stability and Thermoelastic Properties of Iron Carbonitrides and Nitrogen in the Deep Earth." Journal of Geophysical Research: Solid Earth 126(6): n/a-n/a.
dc.identifier.issn2169-9313
dc.identifier.issn2169-9356
dc.identifier.urihttps://hdl.handle.net/2027.42/168299
dc.description.abstractIron‐dominant metallic phases are likely the primary hosts for nitrogen in the reduced deep Earth, hence the storage of nitrogen in the lower mantle and the core is governed by the behavior of the Fe‐N‐C system at high temperatures and pressures. In this study, phase transitions and thermoelastic properties of iron carbonitrides were investigated at high pressure‐temperature conditions by diamond anvil cell experiments and first‐principles calculations. Experimental data revealed no phase transition in ε‐type Fe4 (N0.6C0.4) or Fe7 (N0.75C0.25)3 up to 60 GPa at room temperature. At high temperature, Fe7 (N0.75C0.25)3 transforms into the Fe3C‐type phase at ∼27 GPa, and then into the Fe7C3‐type phase at ∼45 GPa, which is also corroborated by our theoretical calculations. We found that the phase stability of iron carbonitrides mainly depends on the N/C ratio, and the elastic properties of iron carbonitrides are dominantly affected by the Fe/(N+C) ratio. Iron carbonitrides with diverse structures may be the main host for nitrogen in the deep mantle. Some iron carbonitride inclusions in lower mantle diamonds could be the residue of the primordial mantle or originate from subducted nitrogen‐bearing materials, rather than iron‐enriched phases of the outer core. In addition, our experiments confirmed the existence of Fe7C3‐type Fe7C3‐Fe7N3 solid solutions above 40 GPa. Fe7C3‐type Fe7(C, N)3 has comparable density and thermoelastic properties to its isostructural endmembers and may be a promising candidate constituent of the Earth’s inner core.Plain Language SummaryNitrogen is an essential element for the Earth’s atmosphere and life. Most of the Earth’s nitrogen may reside in Earth’s interior, which may profoundly influence the partial pressure of atmospheric nitrogen. Knowledge on the storage and cycling of nitrogen in the deep Earth is crucial for our understanding of the Earth’s evolution and dynamics. We combined high‐pressure and high‐temperature experiments and theoretical calculations to investigate the phase transitions and elasticity of iron carbonitrides. The results show that iron carbonitrides are stable upon compression at room temperature, but transformed into two high‐pressure structures at lower pressures at high temperatures than their iron carbide counterparts. N/C and Fe/(N+C) atomic ratios are two key factors affecting the phase stability and elasticity of iron carbonitrides. Nitrogen could be stored in the Earth’s lower mantle in the form of iron carbonitrides. Iron carbonitrides may be the main nitrogen host and be trapped as inclusions in some superdeep diamonds and carried to the shallow regions through geodynamic processes, as we can find in some diamonds of sublithospheric origin.Key Pointsε‐type iron carbonitrides undergo two phase transitions at high pressure and high temperatureN/C and Fe/(N+C) atomic ratios are two key factors affecting the phase stability and elasticity of iron carbonitridesIron carbonitrides with diverse structures may be the main host for nitrogen in the deep mantle and encapsulated in superdeep diamonds
dc.publisherWiley Periodicals, Inc.
dc.subject.otheriron carbonitride
dc.subject.otherphase transition
dc.subject.othersuperdeep diamond
dc.subject.otherequation of state
dc.subject.otherinner core
dc.subject.otherDeep nitrogen host
dc.titleHigh‐Pressure Phase Stability and Thermoelastic Properties of Iron Carbonitrides and Nitrogen in the Deep Earth
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168299/1/jgrb54998_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168299/2/jgrb54998.pdf
dc.identifier.doi10.1029/2021JB021934
dc.identifier.sourceJournal of Geophysical Research: Solid Earth
dc.identifier.citedreferencePerdew, J. P., Burke, K., & Ernzerhof, M. ( 1996 ). Generalized gradient approximation made simple. Physical Review Letters, 77 ( 18 ), 3865 – 3868. https://doi.org/10.1103/PhysRevLett.77.3865
dc.identifier.citedreferenceLiu, J., Lin, J. F., Prakapenka, V. B., Prescher, C., & Yoshino, T. ( 2016 ). Phase relations of Fe 3 C and Fe 7 C 3 up to 185 GPa and 5200 K: Implication for the stability of iron carbide in the Earth’s core. Geophysical Research Letters, 43 ( 24 ), 12415 – 12422. https://doi.org/10.1002/2016GL071353
dc.identifier.citedreferenceLiu, Y., Li, H., Lai, X., Zhu, F., Rapp, R. P., & Chen, B. ( 2020 ). Casting octahedra for reproducible multi‐anvil experiments by 3D‐printed molds. Minerals, 10, 4. https://doi.org/10.3390/min10010004
dc.identifier.citedreferenceLv, M., Liu, J., Zhu, F., Li, J., Zhang, D., Xiao, Y., & Dorfman, S. M. ( 2020 ). Spin transitions and compressibility of ε‐Fe 7 N 3 and γ ’ ‐Fe 4 N: Implications for iron alloys in terrestrial planet cores. Journal of Geophysical Research: Solid Earth, 124, e2020JB020660. https://doi.org/10.1029/2020JB020660
dc.identifier.citedreferenceMarty, B. ( 2012 ). The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth and Planetary Science Letters, 313, 56 – 66. https://doi.org/10.1016/j.epsl.2011.10.040
dc.identifier.citedreferenceMashino, I., Miozzi, F., Hirose, K., Morard, G., & Sinmyo, R. ( 2019 ). Melting experiments on the Fe‐C binary system up to 255 GPa: Constraints on the carbon content in the Earth’s core. Earth and Planetary Science Letters, 515, 135 – 144. https://doi.org/10.1016/j.epsl.2019.03.020
dc.identifier.citedreferenceMikhail, S., & Sverjensky, D. A. ( 2014 ). Nitrogen speciation in upper mantle fluids and the origin of Earth’s nitrogen‐rich atmosphere. Nature Geoscience, 7 ( 11 ), 816 – 819. https://doi.org/10.1038/ngeo2271
dc.identifier.citedreferenceMinobe, S., Nakajima, Y., Hirose, K., & Ohishi, Y. ( 2015 ). Stability and compressibility of a new iron‐nitride β ‐Fe 7 N 3 to core pressures. Geophysical Research Letters, 42 ( 13 ), 5206 – 5211. https://doi.org/10.1002/2015GL064496
dc.identifier.citedreferenceMookherjee, M., Nakajima, Y., Steinle‐Neumann, G., Glazyrin, K., Wu, X., Dubrovinsky, L., et al. ( 2011 ). High‐pressure behavior of iron carbide (Fe 7 C 3 ) at inner core conditions. Journal of Geophysical Research, 116 ( B4 ), B04201. https://doi.org/10.1029/2010JB007819
dc.identifier.citedreferenceMurnaghan, F. D. ( 1944 ). The compressibility of media under extreme pressures. Proceedings of the National Academy of Sciences, 30 ( 9 ), 244 – 247. https://doi.org/10.1073/pnas.30.9.244
dc.identifier.citedreferenceNakajima, Y., Takahashi, E., Sata, N., Nishihara, Y., Hirose, K., Funakoshi, K. I., & Ohishi, Y. ( 2011 ). Thermoelastic property and high‐pressure stability of Fe 7 C 3: Implication for iron‐carbide in the Earth’s core. American Mineralogist, 96 ( 7 ), 1158 – 1165. https://doi.org/10.2138/am.2011.3703
dc.identifier.citedreferenceNiewa, R., Rau, D., Wosylus, A., Meier, K., Hanfland, M., Wessel, M., et al. ( 2009 ). High‐pressure, high‐temperature single‐crystal growth, ab initio electronic structure calculations, and equation of state of ε‐Fe 3 N 1+x. Chemistry of Materials, 21 ( 2 ), 392 – 398. https://doi.org/10.1021/cm802721k
dc.identifier.citedreferenceNiewa, R., Rau, D., Wosylus, A., Meier, K., Wessel, M., Hanfland, M., et al. ( 2009 ). High‐pressure high‐temperature phase transition of γ ’ ‐Fe 4 N. Journal of Alloys and Compounds, 480 ( 1 ), 76 – 80. https://doi.org/10.1016/j.jallcom.2008.09.178
dc.identifier.citedreferencePopov, Z. I., Litasov, K. D., Gavryushkin, P. N., Ovchinnikov, S., & Fedorov, A. S. ( 2015 ). Theoretical study of γ′‐Fe 4 N and ɛ‐Fe x N iron nitrides at pressures up to 500 GPa. JETP Letters, 101 ( 6 ), 371 – 375. https://doi.org/10.1134/S0021364015060090
dc.identifier.citedreferencePrescher, C., Dubrovinsky, L., McCammon, C., Glazyrin, K., Nakajima, Y., Kantor, A., et al. ( 2012 ). Structurally hidden magnetic transitions in Fe 3 C at high pressures. Physical Review B, 85 ( 14 ), 140402. https://doi.org/10.1103/PhysRevB.85.140402
dc.identifier.citedreferenceRoskosz, M., Bouhifd, M. A., Jephcoat, A. P., Marty, B., & Mysen, B. O. ( 2013 ). Nitrogen solubility in molten metal and silicate at high pressure and temperature. Geochimica et Cosmochimica Acta, 121, 15 – 28. https://doi.org/10.1016/j.gca.2013.07.007
dc.identifier.citedreferenceSagatov, N., Gavryushkin, P. N., Inerbaev, T. M., & Litasov, K. D. ( 2019 ). New high‐pressure phases of Fe 7 N 3 and Fe 7 C 3 stable at Earth’s core conditions: Evidences for carbon‐nitrogen isomorphism in Fe‐compounds. The Royal Society of Chemistry Advances, 9 ( 7 ), 3577 – 3581. https://doi.org/10.1039/C8RA09942A
dc.identifier.citedreferenceSagatov, N. E., Gavryushkin, P. N., Medrish, I. V., Inerbaev, T. M., & Litasov, K. D. ( 2020 ). Phase relations of iron carbides Fe 2 C, Fe 3 C, and Fe 7 C 3 at the Earth’s core pressures and temperatures. Russian Geology and Geophysics, 61 ( 12 ), 1345 – 1353. https://doi.org/10.15372/RGG2019146
dc.identifier.citedreferenceSchwarz, U., Wosylus, A., Wessel, M., Dronskowski, R., Hanfland, M., Rau, D., & Niewa, R. ( 2009 ). High‐pressure‐high‐temperature behavior of ζ ‐Fe 2 N and phase transition to ε ‐Fe 3 N 1.5. European Journal of Inorganic Chemistry, 2009 ( 12 ), 1634 – 1639. https://doi.org/10.1002/ejic.200801222
dc.identifier.citedreferenceSmith, E. M., Shirey, S. B., Nestola, F., Bullock, E. S., Wang, J., Richardson, S. H., & Wang, W. ( 2016 ). Large gem diamonds from metallic liquid in Earth’s deep mantle. Science, 354 ( 6318 ), 1403 – 1405. https://doi.org/10.1126/science.aal1303
dc.identifier.citedreferenceSokol, A. G., Kruk, A. N., Seryotkin, Y. V., Korablin, A. A., & Palyanov, Y. N. ( 2017 ). Phase relations in the Fe‐Fe 3 C‐Fe 3 N system at 7.8 GPa and 1350°C: Implications for carbon and nitrogen hosts in Fe 0 ‐saturated upper mantle. Physics of the Earth and Planetary Interiors, 265, 43 – 53. https://doi.org/10.1016/j.pepi.2017.02.007
dc.identifier.citedreferenceSokol, A. G., Kupriyanov, I. N., Seryotkin, Y. V., Sokol, E. V., Kruk, A. N., Tomilenko, A. A., et al. ( 2020 ). Cymrite as mineral clathrate: An overlooked redox insensitive transporter of nitrogen in the mantle. Gondwana Research, 79, 70 – 86. https://doi.org/10.1016/j.gr.2019.08.013
dc.identifier.citedreferenceTateno, S., Komabayashi, T., Hirose, K., Hirao, N., & Ohishi, Y. ( 2019 ). Static compression of B2 KCl to 230 GPa and its PVT equation of state. American Mineralogist, 104 ( 5 ), 718 – 723. https://doi.org/10.2138/am-2019-6779
dc.identifier.citedreferencevon der Handt, A., & Dalou, C. ( 2016 ). Quantitative EPMA of nitrogen in silicate glasses. Microscopy and Microanalysis, 22 ( S3 ), 1810 – 1811. https://doi.org/10.1017/S1431927616009892
dc.identifier.citedreferenceWalker, D., Dasgupta, R., Li, J., & Buono, A. ( 2013 ). Nonstoichiometry and growth of some Fe carbides. Contributions to Mineralogy and Petrology, 166 ( 3 ), 935 – 957. https://doi.org/10.1007/s00410-013-0900-7
dc.identifier.citedreferenceWalker, D., Li, J., Kalkan, B., & Clark, S. M. ( 2015 ). Thermal, compositional, and compressional demagnetization of cementite. American Mineralogist, 100 ( 11–12 ), 2610 – 2624. https://doi.org/10.2138/am-2015-5306
dc.identifier.citedreferenceWatenphul, A., Wunder, B., & Heinrich, W. ( 2009 ). High‐pressure ammonium‐bearing silicates: Implications for nitrogen and hydrogen storage in the Earth’s mantle. American Mineralogist, 94 ( 2–3 ), 283 – 292. https://doi.org/10.2138/am.2009.2995
dc.identifier.citedreferenceWriedt, H., Gokcen, N., & Nafziger, R. ( 1987 ). The Fe‐N (iron‐nitrogen) system. Bulletin of Alloy Phase Diagrams, 8 ( 4 ), 355 – 377. https://doi.org/10.1007/bf02869273
dc.identifier.citedreferenceYin, W., Lei, L., Jiang, X., Liu, P., Liu, F., Li, Y., et al. ( 2014 ). High pressure synthesis and properties studies on spherical bulk ϵ‐Fe 3 N. High Pressure Research, 34 ( 3 ), 317 – 326. https://doi.org/10.1080/08957959.2014.944910
dc.identifier.citedreferenceYoshioka, T., Wiedenbeck, M., Shcheka, S., & Keppler, H. ( 2018 ). Nitrogen solubility in the deep mantle and the origin of Earth’s primordial nitrogen budget. Earth and Planetary Science Letters, 488, 134 – 143. https://doi.org/10.1016/j.epsl.2018.02.021
dc.identifier.citedreferenceZedgenizov, D. A., & Litasov, K. D. ( 2017 ). Looking for “missing” nitrogen in the deep Earth. American Mineralogist, 102 ( 9 ), 1769 – 1770. https://doi.org/10.2138/am-2017-6218
dc.identifier.citedreferenceZhu, F., Li, J., Liu, J., Lai, X., Chen, B., & Meng, Y. ( 2019 ). Kinetic control on the depth distribution of superdeep diamonds. Geophysical Research Letters, 46 ( 4 ), 1984 – 1992. https://doi.org/10.1029/2018GL080740
dc.identifier.citedreferenceZhu, F., Li, J., Walker, D., Liu, J., Lai, X., & Zhang, D. ( 2019 ). Origin and consequences of non‐stoichiometry in iron carbide Fe 7 C 3. American Mineralogist, 104 ( 3 ), 325 – 332. https://doi.org/10.2138/am-2019-6672
dc.identifier.citedreferenceZhuang, Y., Su, X., Salke, N. P., Cui, Z., Hu, Q., Zhang, D., & Liu, J. ( 2021 ). The effect of nitrogen on the compressibility and conductivity of iron at high pressure. Geoscience Frontiers, 12 ( 2 ), 983 – 989. https://doi.org/10.1016/j.gsf.2020.04.012
dc.identifier.citedreferenceAdler, J. F., & Williams, Q. ( 2005 ). A high‐pressure X‐ray diffraction study of iron nitrides: Implications for Earth’s core. Journal of Geophysical Research, 110, B01203. https://doi.org/10.1029/2004JB003103
dc.identifier.citedreferenceAngel, R. J., Alvaro, M., & Gonzalez‐Platas, J. ( 2014 ). EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift für Kristallographie, 229 ( 5 ), 405 – 419. https://doi.org/10.1515/zkri-2013-1711
dc.identifier.citedreferenceArmstrong, K., Frost, D. J., McCammon, C. A., Rubie, D. C., & Ballaran, T. B. ( 2019 ). Deep magma ocean formation set the oxidation state of Earth’s mantle. Science, 365 ( 6456 ), 903 – 906. https://doi.org/10.1126/science.aax8376
dc.identifier.citedreferenceBergin, E. A., Blake, G. A., Ciesla, F., Hirschmann, M. M., & Li, J. ( 2015 ). Tracing the ingredients for a habitable earth from interstellar space through planet formation. Proceedings of the National Academy of Sciences, 112 ( 29 ), 8965 – 8970. https://doi.org/10.1073/pnas.1500954112
dc.identifier.citedreferenceBerman, R. G. ( 1988 ). Internally‐consistent thermodynamic data for minerals in the system Na 2 O‐K 2 O‐CaO‐MgO‐FeO‐Fe 2 O 3 ‐Al 2 O 3 ‐SiO 2 ‐TiO 2 ‐H 2 O‐CO 2. Journal of Petrology, 29 ( 2 ), 445 – 522. https://doi.org/10.1093/petrology/29.2.445
dc.identifier.citedreferenceBirch, F. ( 1947 ). Finite elastic strain of cubic crystals. Physical Review, 71 ( 11 ), 809 – 824. https://doi.org/10.1103/PhysRev.71.809
dc.identifier.citedreferenceBusigny, V., Cartigny, P., Laverne, C., Teagle, D., Bonifacie, M., & Agrinier, P. ( 2019 ). A re‐assessment of the nitrogen geochemical behavior in upper oceanic crust from Hole 504B: Implications for subduction budget in Central America. Earth and Planetary Science Letters, 525, 115735. https://doi.org/10.1016/j.epsl.2019.115735
dc.identifier.citedreferenceCampbell, A. J., Danielson, L., Righter, K., Seagle, C. T., Wang, Y., & Prakapenka, V. B. ( 2009 ). High pressure effects on the iron‐iron oxide and nickel‐nickel oxide oxygen fugacity buffers. Earth and Planetary Science Letters, 286, 556 – 564. https://doi.org/10.1016/j.epsl.2009.07.022
dc.identifier.citedreferenceChen, B., Gao, L., Lavina, B., Dera, P., Alp, E. E., Zhao, J., & Li, J. ( 2012 ). Magneto‐elastic coupling in compressed Fe 7 C 3 supports carbon in Earth’s inner core. Geophysical Research Letters, 39 ( 18 ), L18301. https://doi.org/10.1029/2012GL052875
dc.identifier.citedreferenceChen, B., Lai, X., Li, J., Liu, J., Zhao, J., Bi, W., et al. ( 2018 ). Experimental constrains on the sound velocities of cementite Fe 3 C to core pressures. Earth and Planetary Science Letters, 494, 164 – 171. https://doi.org/10.1016/j.epsl.2018.05.002
dc.identifier.citedreferenceChen, B., Li, Z., Zhang, D., Liu, J., Hu, M. Y., Zhao, J., et al. ( 2014 ). Hidden carbon in Earth’s inner core revealed by shear softening in dense Fe 7 C 3. Proceedings of the National Academy of Sciences, 111 ( 50 ), 17755 – 17758. https://doi.org/10.1073/pnas.1411154111
dc.identifier.citedreferenceDalou, C., Füri, E., Deligny, C., Piani, L., Caumon, M. C., Laumonier, M., et al. ( 2019 ). Redox control on nitrogen isotope fractionation during planetary core formation. Proceedings of the National Academy of Sciences, 116 ( 29 ), 14485 – 14494. https://doi.org/10.1073/pnas.1820719116
dc.identifier.citedreferenceDalou, C., Hirschmann, M. M., Handt, von der, A., Mosenfelder, J., & Armstrong, L. S. ( 2017 ). Nitrogen and carbon fractionation during core‐mantle differentiation at shallow depth. Earth and Planetary Science Letters, 458, 141 – 151. https://doi.org/10.1016/j.epsl.2016.10.026
dc.identifier.citedreferenceFei, Y., & Brosh, E. ( 2014 ). Experimental study and thermodynamic calculations of phase relations in the Fe‐C system at high pressure. Earth and Planetary Science Letters, 408, 155 – 162. https://doi.org/10.1016/j.epsl.2014.09.044
dc.identifier.citedreferenceFei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., & Prakapenka, V. ( 2007 ). Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104 ( 22 ), 9182 – 9186. https://doi.org/10.1073/pnas.0609013104
dc.identifier.citedreferenceFrost, D. J., Liebske, C., Langenhorst, F., McCammon, C. A., Trønnes, R. G., & Rubie, D. C. ( 2004 ). Experimental evidence for the existence of iron‐rich metal in the Earth’s lower mantle. Nature, 428 ( 6981 ), 409 – 412. https://doi.org/10.1038/nature02413
dc.identifier.citedreferenceFukuyama, K., Kagi, H., Inoue, T., Kakizawa, S., Shinmei, T., Hishita, S., et al. ( 2020 ). High nitrogen solubility in stishovite (SiO 2 ) under lower mantle conditions. Scientific Reports, 10, 10897. https://doi.org/10.1038/s41598-020-67621-2
dc.identifier.citedreferenceGilfoy, F., & Li, J. ( 2020 ). Thermal state and solidification regime of the martian core: Insights from the melting behavior of FeNi‐S at 20 GPa. Earth and Planetary Science Letters, 541, 116285. https://doi.org/10.1016/j.epsl.2020.116285
dc.identifier.citedreferenceGrewal, D. S., Dasgupta, R., Holmes, A. K., Costin, G., Li, Y., & Tsuno, K. ( 2019 ). The fate of nitrogen during core‐mantle separation on Earth. Geochimica et Cosmochimica Acta, 251, 87 – 115. https://doi.org/10.1016/j.gca.2019.02.009
dc.identifier.citedreferenceGrewal, D. S., Dasgupta, R., Sun, C., Tsuno, K., & Costin, G. ( 2019 ). Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Science Advances, 5 ( 1 ), eaau3669. https://doi.org/10.1126/sciadv.aau3669
dc.identifier.citedreferenceGuo, K., Rau, D., Appen, von, J., Prots, Y., Schnelle, W., Dronskowski, R., Niewa, R., & Schwarz, U. ( 2013 ). High pressure high‐temperature behavior and magnetic properties of Fe 4 N: Experiment and theory. High Pressure Research, 33 ( 3 ), 684 – 696. https://doi.org/10.1080/08957959.2013.809715
dc.identifier.citedreferenceJohnson, B., & Goldblatt, C. ( 2015 ). The nitrogen budget of Earth. Earth‐Science Reviews, 148, 150 – 173. https://doi.org/10.1016/j.earscirev.2015.05.006
dc.identifier.citedreferenceKaminsky, F. ( 2012 ). Mineralogy of the lower mantle: A review of ‘super‐deep’mineral inclusions in diamond. Earth‐Science Reviews, 110, 127 – 147. https://doi.org/10.1016/j.earscirev.2011.10005
dc.identifier.citedreferenceKaminsky, F., & Wirth, R. ( 2017 ). Nitrides and carbonitrides from the lowermost mantle and their importance in the search for Earth’s “lost” nitrogen. American Mineralogist, 102 ( 8 ), 1667 – 1676. https://doi.org/10.2138/am-2017-6101
dc.identifier.citedreferenceKresse, G., & Joubert, D. ( 1999 ). From ultrasoft pseudopotentials to the projector augmented‐wave method. Physical Review B, 59 ( 3 ), 1758 – 1775. https://doi.org/10.1103/PhysRevB.59.1758
dc.identifier.citedreferenceKusakabe, M., Hirose, K., Sinmyo, R., Kuwayama, Y., Ohishi, Y., & Helffrich, G. ( 2019 ). Melting curve and equation of state of β‐Fe 7 N 3: Nitrogen in the core? Journal of Geophysical Research: Solid Earth, 124 ( 4 ), 3448 – 3457. https://doi.org/10.1029/2018JB015823
dc.identifier.citedreferenceLai, X., Zhu, F., Liu, J., Zhang, D., Hu, Y., Finkelstein, G. J., et al. ( 2018 ). The high‐pressure anisotropic thermoelastic properties of a potential inner core carbon‐bearing phase, Fe 7 C 3, by single‐crystal X‐ray diffraction. American Mineralogist, 103 ( 10 ), 1568 – 1574. https://doi.org/10.2138/am-2018-6527
dc.identifier.citedreferenceLai, X., Zhu, F., Zhang, J. S., Zhang, D., Tkachev, S., Prakapenka, V. B., & Chen, B. ( 2020 ). An externally‐heated diamond anvil cell for synthesis and single‐crystal elasticity determination of ice‐VII at high pressure‐temperature conditions. Journal of Visualized Experiments, 160, e61389. https://doi.org/10.3791/61389
dc.identifier.citedreferenceLei, L., Zhang, L., Gao, S., Hu, Q., Fang, L., Chen, X., et al. ( 2018 ). Neutron diffraction study of the structural and magnetic properties of ε‐Fe 3 N 1.098 and ε‐Fe 2.322 Co 0.678 N 0.888. Journal of Alloys and Compounds, 752, 99 – 105. https://doi.org/10.1016/j.jallcom.2018.04.143
dc.identifier.citedreferenceLeinenweber, K., Tyburczy, J. A., Sharp, T., Soignard, E., Diedrich, T., Petuskey, W. B., et al. ( 2012 ). Cell assemblies for reproducible multi‐anvil experiments (the COMPRES assemblies). American Mineralogist, 97, 353 – 368. https://doi.org/10.2138/am.2012.3844
dc.identifier.citedreferenceLitasov, K. D., Popov, Z. I., Gavryushkin, P. N., Ovchinnikov, S. G., & Fedorov, A. S. ( 2015 ). First‐principles calculations of the equations of state and relative stability of iron carbides at the Earth’s core pressures. Russian Geology and Geophysics, 56 ( 1–2 ), 164 – 171. https://doi.org/10.1016/j.rgg.2015.01.010
dc.identifier.citedreferenceLitasov, K. D., Shatskiy, A., Ponomarev, D. S., & Gavryushkin, P. N. ( 2017 ). Equations of state of iron nitrides ε‐Fe 3 N x and γ‐Fe 4 N y to 30 GPa and 1200 K and implication for nitrogen in the Earth’s core. Journal of Geophysical Research: Solid Earth, 122 ( 5 ), 3574 – 3584. https://doi.org/10.1002/2017JB014059
dc.identifier.citedreferenceLitasov, K. D., Shatskiy, A. F., & Ohtani, E. ( 2016 ). Interaction of Fe and Fe 3 C with hydrogen and nitrogen at 6–20 GPa: A study by in situ X‐ray diffraction. Geochemistry International, 54 ( 10 ), 914 – 921. https://doi.org/10.1134/S0016702916100074
dc.identifier.citedreferenceLitasov, K. D., Shatskiy, A. F., Ovchinnikov, S. G., Popov, Z. I., Ponomarev, D. S., & Ohtani, E. ( 2014 ). Phase transformations of iron nitrides Fe 3 N‐Fe 4 N studied by in situ X‐ray diffractions. JETP Letters, 98 ( 12 ), 805 – 808. https://doi.org/10.1134/S0021364013250140
dc.identifier.citedreferenceLiu, J., Li, J., & Ikuta, D. ( 2016 ). Elastic softening in Fe 7 C 3 with implications for Earth’s deep carbon reservoirs. Journal of Geophysical Research: Solid Earth, 121 ( 3 ), 1514 – 1524. https://doi.org/10.1002/2015JB012701
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.