Show simple item record

Liquid- Crystal- Elastomer- Actuated Reconfigurable Microscale Kirigami Metastructures

dc.contributor.authorZhang, Mingchao
dc.contributor.authorShahsavan, Hamed
dc.contributor.authorGuo, Yubing
dc.contributor.authorPena‐francesch, Abdon
dc.contributor.authorZhang, Yingying
dc.contributor.authorSitti, Metin
dc.date.accessioned2021-07-01T20:12:13Z
dc.date.available2022-07-01 16:12:11en
dc.date.available2021-07-01T20:12:13Z
dc.date.issued2021-06
dc.identifier.citationZhang, Mingchao; Shahsavan, Hamed; Guo, Yubing; Pena‐francesch, Abdon ; Zhang, Yingying; Sitti, Metin (2021). "Liquid- Crystal- Elastomer- Actuated Reconfigurable Microscale Kirigami Metastructures." Advanced Materials 33(25): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/168316
dc.description.abstractProgrammable actuation of metastructures with predesigned geometrical configurations has recently drawn significant attention in many applications, such as smart structures, medical devices, soft robotics, prosthetics, and wearable devices. Despite remarkable progress in this field, achieving wireless miniaturized reconfigurable metastructures remains a challenge due to the difficult nature of the fabrication and actuation processes at the micrometer scale. Herein, microscale thermo- responsive reconfigurable metasurfaces using stimuli- responsive liquid crystal elastomers (LCEs) is fabricated as an artificial muscle for reconfiguring the 2D microscale kirigami structures. Such structures are fabricated via two- photon polymerization with sub- micrometer precision. Through rationally designed experiments guided by simulations, the optimal formulation of the LCE artificial muscle is explored and the relationship between shape transformation behaviors and geometrical parameters of the kirigami structures is build. As a proof of concept demonstration, the constructs for temperature- dependent switching and information encryption is applied. Such reconfigurable kirigami metastructures have significant potential for boosting the fundamental small- scale metastructure research and the design and fabrication of wireless functional devices, wearables, and soft robots at the microscale as well.Programmable and reconfigurable metasurfaces at the microscale are achieved by using uniaxially aligned liquid crystal elastomer film as artificial muscle to thermally actuate kirigami microstructures 3D- printed via the two- photon polymerization technique. This strategy paves the way to a host of potential applications, such as tunable phononic/photonic crystals, optoelectronics, biomedical devices, camouflage, microelectromechanical systems, and soft microrobots.
dc.publisherWiley Periodicals, Inc.
dc.subject.othertwo- photon polymerization
dc.subject.otherwireless microscale devices
dc.subject.otherkirigami
dc.subject.otherliquid crystal elastomers
dc.subject.otherreconfigurable metastructures
dc.titleLiquid- Crystal- Elastomer- Actuated Reconfigurable Microscale Kirigami Metastructures
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168316/1/adma202008605-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168316/2/adma202008605.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168316/3/adma202008605_am.pdf
dc.identifier.doi10.1002/adma.202008605
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceD. R. Merkel, N. A. Traugutt, R. Visvanathan, C. M. Yakacki, C. P. Frick, Soft Matter 2018, 14, 6024.
dc.identifier.citedreferenceH. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, D. S. Wiersma, Adv. Mater. 2015, 27, 3883.
dc.identifier.citedreferenceJ. M. McCracken, V. P. Tondiglia, A. D. Auguste, N. P. Godman, B. R. Donovan, B. N. Bagnall, H. E. Fowler, C. M. Baxter, V. Matavulj, J. D. Berrigan, T. J. White, Adv. Funct. Mater. 2019, 29, 1903761.
dc.identifier.citedreferenceZ. Lin, L. S. Novelino, H. Wei, N. A. Alderete, G. H. Paulino, H. D. Espinosa, S. Krishnaswamy, Small 2020, 16, 2002229.
dc.identifier.citedreferenceJ.- H. Jang, C. Y. Koh, K. Bertoldi, M. C. Boyce, E. L. Thomas, Nano Lett. 2009, 9, 2113.
dc.identifier.citedreferenceS. Woska, A. Münchinger, D. Beutel, E. Blasco, J. Hessenauer, O. Karayel, P. Rietz, S. Pfleging, R. Oberle, C. Rockstuhl, M. Wegener, H. Kalt, Opt. Mater. Express 2020, 10, 2928.
dc.identifier.citedreferenceT. J. White, D. J. Broer, Nat. Mater. 2015, 14, 1087.
dc.identifier.citedreferenceT. H. Ware, J. S. Biggins, A. F. Shick, M. Warner, T. J. White, Nat. Commun. 2016, 7, 10781.
dc.identifier.citedreferenceT. H. Ware, M. E. McConney, J. J. Wie, V. P. Tondiglia, T. J. White, Science 2015, 347, 982.
dc.identifier.citedreferenceH. Shahsavan, L. Yu, A. Jákli, B. Zhao, Soft Matter 2017, 13, 8006.
dc.identifier.citedreferenceM. Barnes, R. Verduzco, Soft Matter 2019, 15, 870.
dc.identifier.citedreferenceZ. S. Davidson, H. Shahsavan, A. Aghakhani, Y. Guo, L. Hines, Y. Xia, S. Yang, M. Sitti, Sci. Adv. 2019, 5, eaay0855.
dc.identifier.citedreferenceH. Shahsavan, A. Aghakhani, H. Zeng, Y. Guo, Z. S. Davidson, A. Priimagi, M. Sitti, Proc. Natl. Acad. Sci. USA 2020, 117, 5125.
dc.identifier.citedreferenceR. S. Kularatne, H. Kim, J. M. Boothby, T. H. Ware, J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 395.
dc.identifier.citedreferenceA. Martinez, H. C. Mireles, I. I. Smalyukh, Proc. Natl. Acad. Sci. USA 2011, 108, 20891.
dc.identifier.citedreferenceX. Liu, R. Wei, P. T. Hoang, X. Wang, T. Liu, P. Keller, Adv. Funct. Mater. 2015, 25, 3022.
dc.identifier.citedreferenceG. Babakhanova, T. Turiv, Y. Guo, M. Hendrikx, Q.- H. Wei, A. P. Schenning, D. J. Broer, O. D. Lavrentovich, Nat. Commun. 2018, 9, 456.
dc.identifier.citedreferenceJ. Ignés- Mullol, M. Mora, B. Martínez- Prat, I. Vélez- Cerón, R. S. Herrera, F. Sagués, Crystals 2020, 10, 138.
dc.identifier.citedreferenceT. Guin, M. J. Settle, B. A. Kowalski, A. D. Auguste, R. V. Beblo, G. W. Reich, T. J. White, Nat. Commun. 2018, 9, 2531.
dc.identifier.citedreferenceH. Shahsavan, S. M. Salili, A. Jákli, B. Zhao, Adv. Mater. 2017, 29, 1604021.
dc.identifier.citedreferenceH. Stoyanov, P. Brochu, X. Niu, E. D. Gaspera, Q. Pei, Appl. Phys. Lett. 2012, 100, 262902.
dc.identifier.citedreferenceH. Shahsavan, S. M. Salili, A. Jákli, B. Zhao, Adv. Mater. 2015, 27, 6828.
dc.identifier.citedreferenceB. Li, Y.- P. Cao, X.- Q. Feng, H. Gao, Soft Matter 2012, 8, 5728.
dc.identifier.citedreferenceR. Xu, G. Wang, J. Eng. Mech. 2013, 139, 1881.
dc.identifier.citedreferenceN. An, A. G. Domel, J. Zhou, A. Rafsanjani, K. Bertoldi, Adv. Funct. Mater. 2020, 30, 1906711.
dc.identifier.citedreferenceY. Cho, J.- H. Shin, A. Costa, T. A. Kim, V. Kunin, J. Li, S. Y. Lee, S. Yang, H. N. Han, I. S. Choi, D. J. Srolovitz, Proc. Natl. Acad. Sci. USA 2014, 111, 17390.
dc.identifier.citedreferenceY. Liu, O. Stein, J. Campbell, L. Jiang, N. Petta, Y. Lu, Proc. SPIE 2017, 10354, 103541U.
dc.identifier.citedreferenceM. Del Pozo, C. Delaney, C. W. Bastiaansen, D. Diamond, A. P. Schenning, L. Florea, ACS Nano 2020, 14, 9832.
dc.identifier.citedreferenceL. Chen, Y. Dong, C.- Y. Tang, L. Zhong, W.- C. Law, G. C. Tsui, Y. Yang, X. Xie, ACS Appl. Mater. Interfaces 2019, 11, 19541.
dc.identifier.citedreferenceX. Xia, A. Afshar, H. Yang, C. M. Portela, D. M. Kochmann, C. V. Di Leo, J. R. Greer, Nature 2019, 573, 205.
dc.identifier.citedreferenceN. I. Zheludev, Y. S. Kivshar, Nat. Mater. 2012, 11, 917.
dc.identifier.citedreferenceD. R. Smith, J. B. Pendry, M. C. Wiltshire, Science 2004, 305, 788.
dc.identifier.citedreferenceQ. Zhang, X. Xu, D. Lin, W. Chen, G. Xiong, Y. Yu, T. S. Fisher, H. Li, Adv. Mater. 2016, 28, 2229.
dc.identifier.citedreferenceT. Frenzel, M. Kadic, M. Wegener, Science 2017, 358, 1072.
dc.identifier.citedreferenceZ. Wang, L. Jing, K. Yao, Y. Yang, B. Zheng, C. M. Soukoulis, H. Chen, Y. Liu, Adv. Mater. 2017, 29, 1700412.
dc.identifier.citedreferenceQ. Wang, E. T. Rogers, B. Gholipour, C.- M. Wang, G. Yuan, J. Teng, N. I. Zheludev, Nat. Photonics 2016, 10, 60.
dc.identifier.citedreferenceH. Yang, B. S. Yeow, Z. Li, K. Li, T. H. Chang, L. Jing, Y. Li, J. S. Ho, H. Ren, P. Y. Chen, Sci. Rob. 2019, 4, eaax7020.
dc.identifier.citedreferenceJ. Zhu, M. Dexheimer, H. Cheng, npj Flexible Electron. 2017, 1, 8.
dc.identifier.citedreferenceT. Mukhopadhyay, J. Ma, H. Feng, D. Hou, J. M. Gattas, Y. Chen, Z. You, Appl. Mater. Today 2020, 19, 100537.
dc.identifier.citedreferenceY. Tang, Y. Li, Y. Hong, S. Yang, J. Yin, Proc. Natl. Acad. Sci. USA 2019, 116, 26407.
dc.identifier.citedreferenceY. Ke, Y. Yin, Q. Zhang, Y. Tan, P. Hu, S. Wang, Y. Tang, Y. Zhou, X. Wen, S. Wu, Joule 2019, 3, 858.
dc.identifier.citedreferenceA. Oyefusi, J. Chen, Angew. Chem., Int. Ed. 2017, 56, 8250.
dc.identifier.citedreferenceA. Rafsanjani, Y. Zhang, B. Liu, S. M. Rubinstein, K. Bertoldi, Sci. Rob. 2018, 3, eaar7555.
dc.identifier.citedreferenceA. Rafsanjani, L. Jin, B. Deng, K. Bertoldi, Proc. Natl. Acad. Sci. USA 2019, 116, 8200.
dc.identifier.citedreferenceS. Babaee, S. Pajovic, A. Rafsanjani, Y. Shi, K. Bertoldi, G. Traverso, Nat. Biomed. Eng. 2020, 4, 778.
dc.identifier.citedreferenceA. Rafsanjani, K. Bertoldi, Phys. Rev. Lett. 2017, 118, 084301.
dc.identifier.citedreferenceJ. Li, Z. Liu, Nanophotonics 2018, 7, 1637.
dc.identifier.citedreferenceZ. Liu, H. Du, J. Li, L. Lu, Z.- Y. Li, N. X. Fang, Sci. Adv. 2018, 4, eaat4436.
dc.identifier.citedreferenceY. Sun, J. S. Evans, T. Lee, B. Senyuk, P. Keller, S. He, I. I. Smalyukh, Appl. Phys. Lett. 2012, 100, 241901.
dc.identifier.citedreferenceH. Fu, K. Nan, W. Bai, W. Huang, K. Bai, L. Lu, C. Zhou, Y. Liu, F. Liu, J. Wang, Nat. Mater. 2018, 17, 268.
dc.identifier.citedreferenceY. Zhang, F. Zhang, Z. Yan, Q. Ma, X. Li, Y. Huang, J. A. Rogers, Nat. Rev. Mater. 2017, 2, 17019.
dc.identifier.citedreferenceY. Guo, H. Shahsavan, M. Sitti, Adv. Mater. 2020, 32, 2002753.
dc.identifier.citedreferenceH. Zeng, D. Martella, P. Wasylczyk, G. Cerretti, J. C. G. Lavocat, C. H. Ho, C. Parmeggiani, D. S. Wiersma, Adv. Mater. 2014, 26, 2319.
dc.identifier.citedreferenceD. Martella, S. Nocentini, D. Nuzhdin, C. Parmeggiani, D. S. Wiersma, Adv. Mater. 2017, 29, 1704047.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.