Show simple item record

Vitamin D and Vitamin D‐binding protein and risk of bladder cancer: A nested case‐control study in the Norwegian Janus Serum Bank Cohort

dc.contributor.authorHektoen, Helga H.
dc.contributor.authorRobsahm, Trude E.
dc.contributor.authorStenehjem, Jo S.
dc.contributor.authorAxcrona, Karol
dc.contributor.authorBabigumira, Ronnie
dc.contributor.authorMondul, Alison M.
dc.contributor.authorGislefoss, Randi E.
dc.contributor.authorAndreassen, Bettina K
dc.date.accessioned2021-07-01T20:12:27Z
dc.date.available2022-07-01 16:12:26en
dc.date.available2021-07-01T20:12:27Z
dc.date.issued2021-06
dc.identifier.citationHektoen, Helga H.; Robsahm, Trude E.; Stenehjem, Jo S.; Axcrona, Karol; Babigumira, Ronnie; Mondul, Alison M.; Gislefoss, Randi E.; Andreassen, Bettina K (2021). "Vitamin D and Vitamin D‐binding protein and risk of bladder cancer: A nested case‐control study in the Norwegian Janus Serum Bank Cohort." Cancer Medicine (12): 4107-4116.
dc.identifier.issn2045-7634
dc.identifier.issn2045-7634
dc.identifier.urihttps://hdl.handle.net/2027.42/168323
dc.description.abstractBackground High circulating levels of vitamin D (25(OH)D) are suggested to reduce the risk of urinary bladder cancer (BC), but the evidence is weak, and several studies lack sufficient adjustment for potential confounders (e.g., smoking, body mass index (BMI), and physical activity). Moreover, few studies have investigated the role of vitamin D‐binding protein (DBP) in this context. We conducted a matched nested case–control study including 378 cases and 378 controls within the Norwegian population‐based Janus cohort, using serum collected 5–41 years prior to diagnosis, to study 25(OH)D and BC risk, by taking circulating DBP into account.MethodsCox regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs), for 25(OH)D, DBP, and the molar ratio of 25(OH)D:DBP, an estimate of unbound (free) 25(OH)D levels. We adjusted for smoking (status and pack‐years), BMI, physical activity, education and (mutually) for 25(OH)D and DBP. Restricted cubic splines were employed to examine nonlinear associations.ResultsHigh optimal levels of circulating 25(OH)D (≥100 nmol/L) (HR 0.35, 95% CI 0.19–0.64) were associated with decreased BC risk, when compared with insufficient concentrations (50–74 nmol/L). This association was less pronounced for optimal levels (75–99 nmol/L) (HR = 0.69, 95% CI 0.47–1.01). Moreover, estimated free 25(OH)D, was associated with decreased BC risk for molar ratio 17–21 (HR 0.66, 95% CI 0.44–0.97) and ≥22 (HR 0.50, 95% CI 0.29–0.82), compared to molar ratio 11–16. The HR function for BC risk was not linear, rather reversed u‐shaped, with the highest HR at 62.5 nmol/L and 13.5 molar ratio, respectively.ConclusionHigh levels of total and estimated free 25(OH)D were associated with reduced risk of BC, compared with insufficient concentrations. DBP was not associated with BC risk. We did not observe any impact of DBP or any of the studied lifestyle factors on the association between 25(OH)D and BC.In this large prospective case‐control study nested in a population‐based cohort, we found that high circulating levels of 25(OH)D, both total and free concentrations, were associated with reduced risk of bladder cancer, compared with insufficient levels. Vitamin D binding protein was not associated with bladder cancer risk.​
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer International Publishing
dc.subject.othercancer risk
dc.subject.othervitamin D
dc.subject.othervitamin‐binding protein
dc.subject.otherbladder cancer risk
dc.subject.othercase–control study
dc.titleVitamin D and Vitamin D‐binding protein and risk of bladder cancer: A nested case‐control study in the Norwegian Janus Serum Bank Cohort
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelHematology and Oncology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168323/1/cam43960_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168323/2/cam43960.pdf
dc.identifier.doi10.1002/cam4.3960
dc.identifier.sourceCancer Medicine
dc.identifier.citedreferenceKlingberg E, Oleröd G, Konar J, Petzold M, Hammarsten O. Seasonal variations in serum 25‐hydroxy vitamin D levels in a Swedish cohort. Endocrine. 2015; 49 ( 3 ): 800 ‐ 808.
dc.identifier.citedreferenceKonety BR, Lavelle JP, Pirtskalaishvili G, et al. Effects of vitamin D (calcitriol) on transitional cell carcinoma of the bladder in vitro and in vivo. J Urol. 2001; 165 ( 1 ): 253 ‐ 258.
dc.identifier.citedreferenceHolick MF. Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol. 2009; 19 ( 2 ): 73 ‐ 78.
dc.identifier.citedreferenceBikle DD, Gee E, Halloran B, Kowalski MA, Ryzen E, Haddad JG. Assessment of the free fraction of 25‐hydroxyvitamin D in serum and its regulation by albumin and the vitamin D‐binding protein. J Clin Endocrinol Metab. 1986; 63 ( 4 ): 954 ‐ 959.
dc.identifier.citedreferenceSpeeckaert M, Huang G, Delanghe JR, Taes YE. Biological and clinical aspects of the vitamin D binding protein (Gc‐globulin) and its polymorphism. Clin Chim Acta. 2006; 372 ( 1–2 ): 33 ‐ 42.
dc.identifier.citedreferenceAl‐oanzi ZH, Tuck SP, Raj N, et al. Assessment of vitamin D status in male osteoporosis. Clin Chem. 2006; 52 ( 2 ): 248 ‐ 254.
dc.identifier.citedreferenceGrant WB. A review of the evidence supporting the Vitamin D‐cancer prevention hypothesis in 2017. Anticancer Res. 2018; 38 ( 2 ): 1121 ‐ 1136.
dc.identifier.citedreferenceZhang H, Zhang H, Wen X, Zhang Y, Wei X, Liu T. Vitamin D deficiency and increased risk of bladder carcinoma: a meta‐analysis. Cell Physiol Biochem. 2015; 37 ( 5 ): 1686 ‐ 1692.
dc.identifier.citedreferenceZhao Y, Chen C, Pan W, et al. Comparative efficacy of vitamin D status in reducing the risk of bladder cancer: A systematic review and network meta‐analysis. Nutrition. 2016; 32 ( 5 ): 515 ‐ 523.
dc.identifier.citedreferenceBrot C, Jorgensen NR, Sorensen OH. The influence of smoking on vitamin D status and calcium metabolism. Eur J Clin Nutr. 1999; 53 ( 12 ): 920 ‐ 926.
dc.identifier.citedreferenceJääskeläinen T, Knekt P, Marniemi J, et al. Vitamin D status is associated with sociodemographic factors, lifestyle and metabolic health. Eur J Nutr. 2013; 52 ( 2 ): 513 ‐ 525.
dc.identifier.citedreferenceMondul AM, Weinstein SJ, Virtamo J, Albanes D. Influence of vitamin D binding protein on the association between circulating vitamin D and risk of bladder cancer. Br J Cancer. 2012; 107 ( 9 ): 1589 ‐ 1594.
dc.identifier.citedreferenceHjerkind KV, Gislefoss RE, Tretli S, et al. Cohort profile update: The Janus Serum Bank Cohort in Norway. Int J Epidemiol. 2017; 46 ( 4 ): 1101 ‐ 1102f.
dc.identifier.citedreferenceGislefoss RE, Stenehjem JS, Hektoen HH, et al. Vitamin D, obesity and leptin in relation to bladder cancer incidence and survival: prospective protocol study. BMJ Open. 2018; 8 ( 3 ): e019309.
dc.identifier.citedreferenceLarsen IK, Smastuen M, Johannesen TB, et al. Data quality at the cancer registry of Norway: an overview of comparability, completeness, validity and timeliness. Eur J Cancer. 2009; 45 ( 7 ): 1218 ‐ 1231.
dc.identifier.citedreferenceLips P, Cashman KD, Lamberg‐Allardt C, et al. Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: a position statement of the European calcified tissue society. Eur J Endocrinol. 2019; 180 ( 4 ): P23 ‐ P54.
dc.identifier.citedreferenceHadkhale K, MacLeod J, Demers PA, et al. Occupational variation in incidence of bladder cancer: a comparison of population‐representative cohorts from Nordic countries and Canada. BMJ Open. 2017; 7 ( 8 ): e016538.
dc.identifier.citedreferenceCogliano VJ, Baan R, Straif K, et al. Preventable exposures associated with human cancers. J Natl Cancer Inst. 2011; 103 ( 24 ): 1827 ‐ 1839.
dc.identifier.citedreferenceHarrell FE. General Aspects of Fitting Regression Models. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival, Analysis. edn. Cham: Springer International Publishing; 2015: 13 ‐ 44.
dc.identifier.citedreferenceMcCullough ML, Zoltick ES, Weinstein SJ, et al. Circulating vitamin D and colorectal cancer risk: an international pooling project of 17 cohorts. J Natl Cancer Inst. 2019; 111 ( 2 ): 158 ‐ 169.
dc.identifier.citedreferenceMendel CM. The free hormone hypothesis: a physiologically based mathematical model*. Endocr Rev. 1989; 10 ( 3 ): 232 ‐ 274.
dc.identifier.citedreferenceFleet JC, DeSmet M, Johnson R, Li Y. Vitamin D and cancer: a review of molecular mechanisms. Biochem J. 2012; 441 ( 1 ): 61 ‐ 76.
dc.identifier.citedreferenceHill AB. The environment and disease: association or Causation? Proc R Soc Med. 1965; 58: 295 ‐ 300.
dc.identifier.citedreferenceVanlint S. Vitamin D and obesity. Nutrients. 2013; 5 ( 3 ): 949 ‐ 956.
dc.identifier.citedreferenceHaddad JG. Plasma vitamin D‐binding protein (Gc‐globulin): multiple tasks. J Steroid Biochem Mol Biol. 1995; 53 ( 1–6 ): 579 ‐ 582.
dc.identifier.citedreferenceMcKenna MJ, Murray BF, O’Keane M, Kilbane MT. Rising trend in vitamin D status from 1993 to 2013: dual concerns for the future. Endocrine Connections. 2015; 4 ( 3 ): 163 ‐ 171.
dc.identifier.citedreferenceHofmann JN, Yu K, Horst RL, Hayes RB, Purdue MP. Long‐term variation in serum 25‐hydroxyvitamin D concentration among participants in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol Biomarkers Prev. 2010; 19 ( 4 ): 927 ‐ 931.
dc.identifier.citedreferenceJorde R, Sneve M, Hutchinson M, Emaus N, Figenschau Y, Grimnes G. Tracking of serum 25‐hydroxyvitamin D levels during 14 years in a population‐based study and during 12 months in an intervention study. Am J Epidemiol. 2010; 171 ( 8 ): 903 ‐ 908.
dc.identifier.citedreferenceMcKibben RA, Zhao D, Lutsey PL, et al. Factors associated with change in 25‐hydroxyvitamin d levels over longitudinal follow‐up in the ARIC Study. J Clin Endocrinol Metab. 2016; 101 ( 1 ): 33 ‐ 43.
dc.identifier.citedreferenceKubiak J, Kamycheva E, Jorde R. Tracking of serum 25‐hydroxyvitamin D during 21 years. Eur J Clin Nutr. 2020.
dc.identifier.citedreferenceBray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68 ( 6 ): 394 ‐ 424.
dc.identifier.citedreferencePloeg M, Aben KK, Kiemeney LA. The present and future burden of urinary bladder cancer in the world. World J Urol. 2009; 27 ( 3 ): 289 ‐ 293.
dc.identifier.citedreferenceAntoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol. 2017; 71 ( 1 ): 96 ‐ 108.
dc.identifier.citedreferenceBrown T, Slack R, Rushton L. British occupational cancer burden study G: occupational cancer in Britain. urinary tract cancers: bladder and kidney. Br J Cancer. 2012; 107 ( Suppl 1 ): S76 ‐ S84.
dc.identifier.citedreferenceBurger M, Catto JWF, Dalbagni G, et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol. 2013; 63 ( 2 ): 234 ‐ 241.
dc.identifier.citedreferenceRushton L, Bagga S, Bevan R, et al. Occupation and cancer in Britain. Br J Cancer. 2010; 102 ( 9 ): 1428 ‐ 1437.
dc.identifier.citedreferenceHektoen HH, Robsahm TE, Andreassen BK, et al. Lifestyle associated factors and risk of urinary bladder cancer: A prospective cohort study from Norway. Cancer Med. 2020; 9 ( 12 ): 4420 ‐ 4432.
dc.identifier.citedreferenceMondul AM, Weinstein SJ, Mannisto S, et al. Serum vitamin D and risk of bladder cancer. Cancer Res. 2010; 70 ( 22 ): 9218 ‐ 9223.
dc.identifier.citedreferenceBrinkman M, Zeegers MP. Nutrition, total fluid and bladder cancer. Scand J Urol Nephrol Suppl. 2008; 218: 25 ‐ 36.
dc.identifier.citedreferenceBikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014; 21 ( 3 ): 319 ‐ 329.
dc.identifier.citedreferenceBikle D. Nonclassic actions of vitamin D. J Clin Endocrinol Metab. 2009; 94 ( 1 ): 26 ‐ 34.
dc.identifier.citedreferenceVanoirbeek E, Krishnan A, Eelen G, et al. The anti‐cancer and anti‐inflammatory actions of 1,25(OH)₂D₃. Best Pract Res Clin Endocrinol Metab. 2011; 25 ( 4 ): 593 ‐ 604.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.