Show simple item record

Phylogenomic resolution of the monotypic and enigmatic Amarsipus, the Bagless Glassfish (Teleostei, Amarsipidae)

dc.contributor.authorHarrington, Richard C.
dc.contributor.authorFriedman, Matt
dc.contributor.authorMiya, Masaki
dc.contributor.authorNear, Thomas J.
dc.contributor.authorCampbell, Matthew A.
dc.date.accessioned2021-07-01T20:14:16Z
dc.date.available2022-08-01 16:14:14en
dc.date.available2021-07-01T20:14:16Z
dc.date.issued2021-07
dc.identifier.citationHarrington, Richard C.; Friedman, Matt; Miya, Masaki; Near, Thomas J.; Campbell, Matthew A. (2021). "Phylogenomic resolution of the monotypic and enigmatic Amarsipus, the Bagless Glassfish (Teleostei, Amarsipidae)." Zoologica Scripta (4): 411-422.
dc.identifier.issn0300-3256
dc.identifier.issn1463-6409
dc.identifier.urihttps://hdl.handle.net/2027.42/168369
dc.description.abstractAmarsipus carlsbergi is a rare mesopelagic fish distributed in the Indian and Pacific Oceans and is the only species classified in the family Amarsipidae. Since its description in 1969, phylogenetic hypotheses have varied regarding its relationship with other percomorph lineages, but most have indicated a close relationship with the traditional suborder Stromateoidei. Molecular phylogenies place families previously classified in Stromateoidei within a diverse clade—Pelagiaria—that includes fishes such as tunas, cutlassfishes and pomfrets. A recent analysis of a small number of loci resolved a clade containing Amarsipus and the stromateoid lineage Tetragonurus. A subsequent high‐throughput sequence phylogeny based on ultraconserved elements (UCEs) of Pelagiaria lacked Amarsipus, but revealed both strong support for stromateoid paraphyly and high levels of gene tree incongruence. We gathered UCE sequence data for 610 UCE loci from Amarsipus and integrate these with samples from all remaining pelagiarian families. This provides a taxonomically comprehensive phylogenomic framework to test the evolutionary relationships of Amarsipus, and evaluate the support for stromateoid monophyly. As in previous studies, our analyses find high levels of gene tree topological discordance with regard to some deeper pelagiarian inter‐relationships. However, we resolve Amarsipus as the sister lineage of a clade containing Tetragonurus and a family not considered a stromateoid lineage, Chiasmodontidae. This relationship is supported by both high gene tree concordance and node support. Our analyses also provide strong support for the paraphyly of Stromateoidei, casting uncertainty on previous hypotheses of the evolution of morphological traits across members of Pelagiaria.
dc.publisherAmerican Society of Ichthyologists and Herpetologists
dc.publisherWiley Periodicals, Inc.
dc.subject.otherultraconserved elements
dc.subject.otherPelagiaria
dc.subject.otherStromateoidei
dc.subject.otherconcordance factors
dc.titlePhylogenomic resolution of the monotypic and enigmatic Amarsipus, the Bagless Glassfish (Teleostei, Amarsipidae)
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168369/1/zsc12477-sup-0001-TableS1-3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168369/2/zsc12477.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168369/3/zsc12477_am.pdf
dc.identifier.doi10.1111/zsc.12477
dc.identifier.sourceZoologica Scripta
dc.identifier.citedreferenceMansueti, R. ( 1963 ). Symbiotic behavior between small fishes and jellyfishes, with new data on that between the stromateid, Peprilus alepidotus, and the Scyphomedusa, Chrysaora quinquecirrha. Copeia, 1963, 40 – 80. https://doi.org/10.2307/1441273
dc.identifier.citedreferenceJohnson, G. D. ( 1993 ). Percomorph phylogeny: Progress and problems. Bulletin of Marine Science, 52, 3 – 28.
dc.identifier.citedreferenceKalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. ( 2017 ). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587 – 589. https://doi.org/10.1038/nmeth.4285
dc.identifier.citedreferenceKatoh, K., Misawa, K., Kuma, K., & Miyata, T. ( 2002 ). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059 – 3066. https://doi.org/10.1093/nar/gkf436
dc.identifier.citedreferenceKatoh, K., & Standley, D. M. ( 2013 ). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772 – 780. https://doi.org/10.1093/molbev/mst010
dc.identifier.citedreferenceLanfear, R., Calcott, B., Kainer, D., Mayer, C., & Stamatakis, A. ( 2014 ). Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evolutionary Biology, 14 ( 1 ), 82. https://doi.org/10.1186/1471‐2148‐14‐82
dc.identifier.citedreferenceLanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. ( 2016 ). PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34, 772 – 773. https://doi.org/10.1093/molbev/msw260
dc.identifier.citedreferenceLi, H., & Durbin, R. ( 2009 ). Fast and accurate short read alignment with Burrows‐Wheeler transform. Bioinformatics, 25, 1754 – 1760. https://doi.org/10.1093/bioinformatics/btp324
dc.identifier.citedreferenceLi, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., & 1000 Genome Project Data Processing Subgroup ( 2009 ). The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078 – 2079. https://doi.org/10.1093/bioinformatics/btp352
dc.identifier.citedreferenceLittle, A. G., Lougheed, S. C., & Moyes, C. D. ( 2010 ). Evolutionary affinity of billfishes (Xiphiidae and Istiophoridae) and flatfishes (Pleuronectiformes): INdependent and trans‐subordinal origins of endothermy in teleost fishes. Molecular Phylogenetics and Evolution, 56 ( 3 ), 897 – 904. https://doi.org/10.1016/j.ympev.2010.04.022
dc.identifier.citedreferenceMendes, F. K., & Hahn, M. W. ( 2018 ). Why concatenation fails near the anomaly zone. Systematic Biology, 67, 158 – 169. https://doi.org/10.1093/sysbio/syx063
dc.identifier.citedreferenceMiya, M., Friedman, M., Satoh, T. O., Takeshima, H., Sado, T., Iwasaki, W., Yamanoue, Y., Nakatani, M., Mabuchi, K., Inoue, J. G., Poulsen, J. Y., Fukunaga, T., Sato, Y., & Nishida, M. ( 2013 ). Evolutionary origin of the Scombridae (tunas and mackerels): Members of a Paleogene adaptive radiation with 14 other pelagic fish families. PLoS One, 8, e73535. https://doi.org/10.1371/journal.pone.0073535
dc.identifier.citedreferenceNear, T. J., Dornburg, A., Eytan, R. I., Keck, B. P., Smith, W. L., Kuhn, K. L., Moore, J. A., Price, S. A., Burbrink, F. T., Friedman, M., & Wainwright, P. C. ( 2013 ). Phylogeny and tempo of diversification in the superradiation of spiny‐rayed fishes. Proceedings of the National Academy of Sciences of the United States of America, 110, 12738 – 12743. https://doi.org/10.1073/pnas.1304661110
dc.identifier.citedreferenceNelson, J. S., Grande, T. C., & Wilson, M. V. H. ( 2016 ). Fishes of the world ( 5 th ed.). John Wiley and Sons.
dc.identifier.citedreferenceNguyen, L. T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. ( 2015 ). IQ‐TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution, 32, 268 – 274. https://doi.org/10.1093/molbev/msu300
dc.identifier.citedreferenceOrrell, T. M., Collette, B. B., & Johnson, G. D. ( 2006 ). Molecular data support separate Scombroid and Xiphioid clades. Bulletin of Marine Science, 79 ( 3 ), 505 – 519.
dc.identifier.citedreferenceRambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. ( 2018 ). Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, 901 – 904. https://doi.org/10.1093/sysbio/syy032
dc.identifier.citedreferenceRonquist, F., Teslenko, M., Van Der Mark, P., Ayers, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. ( 2012 ). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539 – 542. https://doi.org/10.1093/sysbio/sys029
dc.identifier.citedreferenceSmith, S. A., Moore, M. J., Brown, J. W., & Yang, Y. ( 2015 ). Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evolutionary Biology, 15, 150. https://doi.org/10.1186/s12862‐015‐0423‐0
dc.identifier.citedreferenceSmith, W. L., Craig, M. T., & Quattro, J. M. ( 2007 ). Casting the percomorph net broadly: The importance of broad taxonomic sampling in the search for placement of the Serranid and percid fishes. Copeia, 2007, 35 – 55. https://doi.org/10.1643/0045‐8511%282007%297%5B35:CTPNWT%5D2.0.CO;2
dc.identifier.citedreferenceSpringer, V. G., & Johnson, G. D. ( 2004 ). Study of the dorsal gill‐arch musculature of Teleostome fishes, with special reference to the Actinopterygii. Bulletin of the Biological Society of Washington, 11, 1 – 235.
dc.identifier.citedreferenceThacker, C. E., Satoh, T. P., Katayama, E., Harrington, R. C., Eytan, R. I., & Near, T. J. ( 2015 ). Molecular phylogeny of Percomorpha resolves Trichonotus as sister to Gobioidei (Teleostei: Gobiiformes) and confirms the polyphyly of Trachinoidei. Molecular Phylogenetics and Evolution, 93, 172 – 179. https://doi.org/10.1016/j.ympev.2015.08.001
dc.identifier.citedreferenceWalker, J. F., Brown, J. W., & Smith, S. A. ( 2018 ). Analyzing contentious relationships and outlier genes in phylogenomics. Sytematic Biology, 67, 916 – 924. https://doi.org/10.1093/sysbio/syy043
dc.identifier.citedreferenceYagashita, N., Miya, M., Yamanoue, Y., Shirai, S. M., Nakayama, K., Suzuki, N., Satoh, T. P., Mabuchi, K., Nishida, M., & Nakabo, T. ( 2009 ). Mitogenomic evaluation of the unique facial nerve pattern as a phylogenetic marker within the perciform fishes (Teleostei: Percomorpha). Molecular Phylogenetics and Evolution, 53, 258 – 266. https://doi.org/10.1016/j.ympev.2009.06.009
dc.identifier.citedreferenceZhang, C., Rabiee, M., Sayyari, E., & Mirarab, S. ( 2018 ). ASTRAL‐III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics, 19, 153. https://doi.org/10.1186/s12859‐018‐2129‐y
dc.identifier.citedreferenceAberer, A. J., Kobert, K., & Stamatakis, A. ( 2014 ). ExaBayes: Massively parallel Bayesian tree inference for the whole‐genome era. Molecular Biology and Evolution, 31, 2553 – 2556. https://doi.org/10.1093/molbev/msu236
dc.identifier.citedreferenceAlfaro, M. E., Faircloth, B. C., Harrington, R. C., Sorenson, L., Friedman, M., Thacker, C. E., Oliveros, C. H., Černý, D., & Near, T. J. ( 2018 ). Explosive diversification of marine fishes at the Cretaceous‐Paleogene boundary. Nature Ecology & Evolution, 2, 688 – 696. https://doi.org/10.1038/s41559‐018‐0494‐6
dc.identifier.citedreferenceAné, C., Larget, B., Baum, D. A., Smith, S. D., & Rokas, A. ( 2007 ). Bayesian estimation of concordance among gene trees. Molecular Biology and Evolution, 24, 412 – 426. https://doi.org/10.1093/molbev/msl170
dc.identifier.citedreferenceBetancur‐R., R., Broughton, R. E., Wiley, E. O., Carpenter, K., López, J. A., Li, C., Holcroft, N. I., Arcila, D., Sanciangco, M., Cureton II, J. C., Zhang, F., Buser, T., Campbell, M. A., Ballesteros, J. A., Roa‐Varon, A., Willis, S., Borden, W. C., Rowley, T., Reneau, P. C., … Ortí, G. ( 2013 ). The tree of life and a new classification of bony fishes. PLoS Currents, 5. https://doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288
dc.identifier.citedreferenceCampbell, M. A., Alfaro, M. E., Belasco, M., & López, J. A. ( 2017 ). Early‐branching euteleost relationships: Areas of congruence between concatenation and coalescent model inferences. PeerJ, 5, e3548. https://doi.org/10.7717/peerj.3548
dc.identifier.citedreferenceCampbell, M. A., Buser, T. J., Alfaro, M. E., & López, J. A. ( 2020 ). Addressing incomplete lineage sorting and paralogy in the inference of uncertain salmonid phylogenetic relationships. PeerJ, 8, e9389. https://doi.org/10.7717/peerj.9389
dc.identifier.citedreferenceCampbell, M. A., Sado, T., Shinzato, C., Koyanagi, R., Okamoto, M., & Miya, M. ( 2018 ). Multilocus phylogenetic analysis of the first molecular data from the rare and monotypic Amarsipidae places the family within the Pelagia and highlights limitations of existing data sets in resolving pelagian interrelationships. Molecular Phylogenetics and Evolution, 124, 172 – 180. https://doi.org/10.1016/j.ympev.2005.10.007
dc.identifier.citedreferenceChen, W.‐J., Bonillo, C., & Lecointre, G. ( 2003 ). Repeatability of clades as a criterion of reliability: A case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Molecular Phylogenetics and Evolution, 26, 262 – 288. https://doi.org/10.1016/S1055‐7903(02)00371‐8
dc.identifier.citedreferenceDegnan, J. H., & Rosenberg, N. A. ( 2006 ). Discordance of species trees with their most likely gene trees. PLoS Genetics, 2, 762 – 768. https://doi.org/10.1371/journal.pgen.0020068
dc.identifier.citedreferenceDoiuchi, R., Tomoyasu, S., & Nakabo, T. ( 2004 ). Phylogenetic relationships of the stromateoid fishes (Perciformes). Ichthyological Research, 51, 202 – 212. https://doi.org/10.1007/s10228‐004‐0216‐8
dc.identifier.citedreferenceFricke, R., Eschmeyer, W. N., & van der Laan, R. (eds) ( 2020 ). Eschmeyer’s catalog of fishes, genera, species, references. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp
dc.identifier.citedreferenceFriedman, M., Feilich, K. L., Beckett, H. T., Alfaro, M. E., Faircloth, B. C., Černý, D., Miya, M., Near, T. J., & Harrington, R. C. ( 2019 ). A phylogenomic framework for pelagiarian fishes (Acanthomorpha: Percomorpha) highlights mosaic radiation in the open ocean. Proceedings of the Royal Society B, 286, 2091502. https://doi.org/10.1098/rspb.2019.1502
dc.identifier.citedreferenceGatesy, J., Sloan, D. B., Warren, J. M., Baker, R. H., Simmons, M. P., & Springer, M. S. ( 2019 ). Partitioned coalescence support reveals biases in species‐tree methods and detects gene trees that determine phylogenomic conflicts. Molecular Phylogenetics and Evolution, 139, 106539. https://doi.org/10.1016/j.ympev.2019.106539
dc.identifier.citedreferenceGatesy, J., & Springer, M. S. ( 2014 ). Phylogenetic analysis at deep timescales: Unreliable gene trees, bypassed hidden support, and the coalescent/concatenation conundrum. Molecular Phylogenetics and Evolution, 80, 231 – 266. https://doi.org/10.1016/j.ympev.2014.08.013
dc.identifier.citedreferenceGirard, M. G., Davis, M. P., & Smith, W. L. ( 2020 ). The phylogeny of carangiform fishes: Morphological and genomic investigations of a new fish clade. Copeia, 108 ( 2 ), 265 – 298. https://doi.org/10.1643/CI‐19‐320
dc.identifier.citedreferenceGreenwood, P. H., Rosen, D. E., Weitzman, S. H., & Myers, G. S. ( 1966 ). Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bulletin of the American Museum of Natural History, 131, 339 – 456.
dc.identifier.citedreferenceHackl, T., Hedrich, R., Schultz, J., & Förster, F. ( 2014 ). proovread: Large‐scale high‐accuracy PacBio correction through iterative short read consensus. Bioinformatics, 30, 3004 – 3011. https://doi.org/10.1093/bioinformatics/btu392
dc.identifier.citedreferenceHaedrich, R. L. ( 1967 ). The stromateoid fishes: Systematics and classification. Bulletin of the Museum of Comparative Zoology at Harvard College, 135, 31 – 139.
dc.identifier.citedreferenceHaedrich, R. L. ( 1969 ). A new family of aberrant stromateoid fishes from the equatorial Indo‐Pacific. Dana Rep, 76, 1 – 14.
dc.identifier.citedreferenceHarrington, R. C., Faircloth, B. C., Eytan, R. I., Smith, W. L., Near, T. J., Alfaro, M. E., & Friedman, M. ( 2016 ). Phylogenomic analysis of carangimorph fishes reveals flatfish asymmetry arose in a blink of the evolutionary eye. BMC Evolutionary Biology, 16, 224. https://doi.org/10.1186/s12862‐016‐0786‐x
dc.identifier.citedreferenceHoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. ( 2018 ). UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biolology and Evolution, 35, 518 – 522. https://doi.org/10.1093/molbev/msx281
dc.identifier.citedreferenceHorn, M. H. ( 1984 ). Stromateoidei: Development and relationships. In W. J. Richards, D. M. Cohen, M. P. Fahay, A. W. Kendall, & S. L. Richardson (Eds.), Ontogeny and systematics of fishes (pp. 620 – 628 ). Special Publication. American Society of Ichthyologists and Herpetologists.
dc.identifier.citedreferenceHughes, L. C., Ortí, G., Huang, Y. U., Sun, Y., Baldwin, C. C., Thompson, A. W., Arcila, D., Betancur‐R., R., Li, C., Becker, L., Bellora, N., Zhao, X., Li, X., Wang, M., Fang, C., Xie, B., Zhou, Z., Huang, H., Chen, S., … Shi, Q. ( 2018 ). Comprehensive phylogeny of ray‐finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proceedings of the National Academy of Sciences of the United States of America, 115, 6249 – 6254. https://doi.org/10.1073/pnas.1719358115
dc.identifier.citedreferenceJanssen, J., & Harbison, G. R. ( 1981 ). Fish in salps: The association of squaretails ( Tetragonurus spp.) with pelagic tunicates. Journal of the Marine Biological Association of the United Kingdom, 61, 917 – 927. https://doi.org/10.1017/S0025315400023055
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.