Show simple item record

Mycobacterium leprae induces a tolerogenic profile in monocyte‐derived dendritic cells via TLR2 induction of IDO

dc.contributor.authorOliveira, Jéssica A. P.
dc.contributor.authorGandini, Mariana
dc.contributor.authorSales, Jorgenilce S.
dc.contributor.authorFujimori, Sérgio K.
dc.contributor.authorBarbosa, Mayara G. M.
dc.contributor.authorFrutuoso, Valber S.
dc.contributor.authorMoraes, Milton O.
dc.contributor.authorSarno, Euzenir N.
dc.contributor.authorPessolani, Maria C. V.
dc.contributor.authorPinheiro, Roberta O.
dc.date.accessioned2021-07-01T20:14:26Z
dc.date.available2022-08-01 16:14:25en
dc.date.available2021-07-01T20:14:26Z
dc.date.issued2021-07
dc.identifier.citationOliveira, Jéssica A. P. ; Gandini, Mariana; Sales, Jorgenilce S.; Fujimori, S�rgio K. ; Barbosa, Mayara G. M.; Frutuoso, Valber S.; Moraes, Milton O.; Sarno, Euzenir N.; Pessolani, Maria C. V.; Pinheiro, Roberta O. (2021). "Mycobacterium leprae induces a tolerogenic profile in monocyte‐derived dendritic cells via TLR2 induction of IDO." Journal of Leukocyte Biology 110(1): 167-176.
dc.identifier.issn0741-5400
dc.identifier.issn1938-3673
dc.identifier.urihttps://hdl.handle.net/2027.42/168373
dc.description.abstractThe enzyme IDO‐1 is involved in the first stage of tryptophan catabolism and has been described in both microbicidal and tolerogenic microenvironments. Previous data from our group have shown that IDO‐1 is differentially regulated in the distinctive clinical forms of leprosy. The present study aims to investigate the mechanisms associated with IDO‐1 expression and activity in human monocyte‐derived dendritic cells (mDCs) after stimulation with irradiated Mycobacterium leprae and its fractions. M. leprae and its fractions induced the expression and activity of IDO‐1 in human mDCs. Among the stimuli studied, irradiated M. leprae and its membrane fraction (MLMA) induced the production of proinflammatory cytokines TNF and IL‐6 whereas irradiated M. leprae and its cytosol fraction (MLSA) induced an increase in IL‐10. We investigated if TLR2 activation was necessary for IDO‐1 induction in mDCs. We observed that in cultures treated with a neutralizing anti‐TLR2 antibody, there was a decrease in IDO‐1 activity and expression induced by M. leprae and MLMA. The same effect was observed when we used a MyD88 inhibitor. Our data demonstrate that coculture of mDCs with autologous lymphocytes induced an increase in regulatory T (Treg) cell frequency in MLSA‐stimulated cultures, showing that M. leprae constituents may play opposite roles that may possibly be related to the dubious effect of IDO‐1 in the different clinical forms of disease. Our data show that M. leprae and its fractions are able to differentially modulate the activity and functionality of IDO‐1 in mDCs by a pathway that involves TLR2, suggesting that this enzyme may play an important role in leprosy immunopathogenesis.Graphical AbstractMycobacterium leprae and its fractions are able to differentially modulate the activity and functionality of Indoleamine 2,3 dioxygenase in human monocyte‐derived dendritic cells via a pathway that involves TLR2.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdendritic cells
dc.subject.otherIDO
dc.subject.otherlepromatous leprosy
dc.subject.otherleprosy
dc.subject.otherMycobacterium leprae
dc.subject.otherreversal reaction
dc.titleMycobacterium leprae induces a tolerogenic profile in monocyte‐derived dendritic cells via TLR2 induction of IDO
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168373/1/jlb10827_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168373/2/jlb10827.pdf
dc.identifier.doi10.1002/JLB.4A0320-188R
dc.identifier.sourceJournal of Leukocyte Biology
dc.identifier.citedreferenceYe Z, Yue L, Shi J, Shao M, Wu T. Role of IDO and TDO in cancers and related diseases and the therapeutic implications. J Cancer. 2019; 10: 2771 ‐ 2782.
dc.identifier.citedreferenceScollard DM, Adams LB, Gillis TP, Krahenbuhl JL, Truman RW, Williams DL. The continuing challenges of leprosy. Clin Microbiol Rev. 2006; 19: 338 ‐ 381.
dc.identifier.citedreferenceMoura DF, de Mattos KA, Amadeu TP, et al. CD163 favors Mycobacterium leprae survival and persistence by promoting anti‐inflammatory pathways in lepromatous macrophages. Eur J Immunol. 2012; 42: 2925 ‐ 2936.
dc.identifier.citedreferenceMellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol. 2004; 4: 762 ‐ 774.
dc.identifier.citedreferenceMbongue JC, Nicholas DA, Torrez TW, Kim NS, Firek AF, Langridge WH. The role of Indoleamine 2, 3‐dioxygenase in immune suppression and autoimmunity. Vaccine. 2015; 3: 703 ‐ 729.
dc.identifier.citedreferenceHeitger A. Regulation of expression and function of IDO in human dendritic cells. Curr Med Chem. 2011; 18: 2222 ‐ 2233.
dc.identifier.citedreferenceHarden JL, Elgimez NK. Indoleamine 2,3 dioxygenase and dendritic cell tolerogenicity. Immunol Invest. 2012; 41: 738 ‐ 764.
dc.identifier.citedreferenceSchmidt SV, Schultze JL. New insights into IDO biology in bacterial and viral infections. Front Immunol. 2014; 5: 1 ‐ 12.
dc.identifier.citedreferenceDe Souza Sales J, Lara FA, Amadeu TP, et al. The role of Indoleamine 2, 3‐dioxygenase in lepromatous leprosy immunosuppression. Clin Exp Immunol. 2011; 165: 251 ‐ 263.
dc.identifier.citedreferenceDe Mattos Barbosa MG, da Silva Prata RB, Andrade PR, et al. Indoleamine 2,3‐dioxygenase and iron are required for Mycobacterium leprae survival. Microbe Infect. 2017; 19: 505 ‐ 514.
dc.identifier.citedreferenceAndrade PR, Pinheiro RO, Sales AM, et al. Type 1 reaction in leprosy: a model for a better understanding of tissue immunity under an immunopathological condition. Exp Rev Clin Immunol. 2015; 11: 391 ‐ 407.
dc.identifier.citedreferenceKrutzik SR, Ochoa MT, Sieling PA, et al. Activation and regulation of Toll‐like receptors 2 and 1 in human leprosy. Nat Med. 2003; 9: 525 ‐ 532.
dc.identifier.citedreferenceKrutzik SR, Tan B, Li H, et al. TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nature. 2005; 11: 653 ‐ 660.
dc.identifier.citedreferenceManeglier B, Rogez‐Kreuz C, Cordonnier P, et al. Simultaneous measurement of kynurenine and tryptophan in human plasma and supernatants of cultured human cells by HPLC with coulometric detection. Clin Chem. 2004; 50: 2166 ‐ 2168.
dc.identifier.citedreferenceRobinson CM, Shirey KA, Carlin JM. Synergistic Transcriptional Activation of IDO by IFN‐γ and TNG‐α. J Interferon Cytokine Res. 2006; 23: 413 ‐ 421.
dc.identifier.citedreferenceModlin R. The innate immune response in leprosy. Curr Opin Immunol. 2010; 22 ( 1 ): 48 ‐ 54.
dc.identifier.citedreferencePinheiro RO, Schmitz V, Silva BJA, et al. Innate immune responses in leprosy. Front Immunol. 2018; 9: 518.
dc.identifier.citedreferenceBlumenthal A, Nagalingam G, Huch JH, et al. M. tuberculosis induces potent activation of IDO‐1, but this is not essential for the immunological control of infection. PLoS ONE. 2012; 7: 37314.
dc.identifier.citedreferenceChu W. Tumor necrosis factor. Cancer Lett. 2013; 328: 222 ‐ 225.
dc.identifier.citedreferenceUnderhill DM, Ozinsky A, Smith KD, Aderem A. Toll‐like receptor‐2 mediates mycobacteria‐induced proinflammatory signaling in macrophages. Proc Natl Acad Sci U S A. 1999; 96: 14459 ‐ 14463.
dc.identifier.citedreferenceGehring AJ, Rojas RE, Canaday DH, Lakey DL, Harding CV, Boom WH. The Mycobacterium tuberculosis 19‐kilodalton lipoprotein inhibits gamma interferon‐regulated HLA‐DR and FcγR1 on human macrophages through Toll‐like receptor 2. Infect Immun. 2003; 71: 4487 ‐ 4497.
dc.identifier.citedreferenceLiu H, Komai‐Koma M, Xu D, Liew FY. Toll‐like receptor 2 signaling modulates the functions of CD4 +CD25+ regulatory T cells. Proc Natl Acad Sci U S A. 2006; 103: 7048 ‐ 7053.
dc.identifier.citedreferenceGarg A, Barnes PF, Roy S, et al. Prostaglandin E2‐dependent expansion of regulatory T cells in human Mycobacterium tuberculosis infection. Eur J Immunol. 2008; 38: 459 ‐ 469.
dc.identifier.citedreferenceTounsi N, Meghari S, Moser M, Djerdjouri B. lysophosphatidylcholine exacerbates Leishmania major‐dendritic cell infection through interleukin‐10 and a burst in arginase1 and Indoleamine 2,3‐dioxygenase activities. Int Immunopharmacol. 2015; 25: 1 ‐ 9.
dc.identifier.citedreferenceAlameddine J, Godefroy E, Papargyris L, et al. Faecalibacterium prausnitzii skews human dC to prime IL10‐producing T cells through TLR2/6/JNK signaling and IL‐10, IL‐27, CD39, and IDO‐1 induction. Front Immunol. 2019; 10: 1 ‐ 11.
dc.identifier.citedreferencePolycarpou A, Holland MJ, Karageorgiou I, et al. Mycobacterium leprae activates Toll‐like receptor‐4 signaling and expression on macrophages depending on previous Bacillus Calmette‐Guerin vaccination. Front Cell Infect Microbiol. 2016; 6: 72.
dc.identifier.citedreferenceShon WJ, Lee YK, Shin JH, Choi EY, Shin DM. Severity of DSS‐induced colitis is reduced in Ido1‐deficient mice with down‐regulation of TLR‐MyD88‐NF‐kB transcriptional networks. Sci Rep. 2015; 5: 1 ‐ 12.
dc.identifier.citedreferenceMellor AL, Lemos H, Huang L. Indoleamine 2,3 dioxygenase and tolerance: where are we now? Front Immunol. 2017; 8: 1360.
dc.identifier.citedreferenceIlic N, Gruden‐Movsesijan A, Cvetkovic J, et al. Trichinella spiralis excretory‐secretory products induce tolerogenic properties in human dendritic cells via Toll‐like receptors 2 and 4. Front Immunol. 2018; 9: 11.
dc.identifier.citedreferenceJurado‐Manzano BB, Zavala‐Reyes D, Turrubiartes‐Martínez EA, Portales‐Pérez DP, González‐Amaro R, Layseca‐Espinosa E. FICZ generates human tDCs that induce CD4+ CD25high Foxp3+ Treg‐like cell differentiation. Immunol Lett. 2017; 190: 84 ‐ 92.
dc.identifier.citedreferencePalermo ML, Pagliari C, Trindade MAB, et al. Increased expression of regulatory T cells and down‐regulatory molecules in lepromatous leprosy. Am J Trop Med Hyg. 2012; 86: 878 ‐ 883.
dc.identifier.citedreferenceMontoya D, Modlin RL. Learning from leprosy. Insight into the human innate immune response. Adv Immunol. 2010; 105: 1 ‐ 24.
dc.identifier.citedreferenceFujigaki S, Saito K, Sekikawa K, et al. Lipopolysaccharide induction of Indoleamine 2,3‐dioxygenase is mediated dominantly by an IFN‐gamma‐independent mechanism. Eur J Immunol. 2001; 31: 2313 ‐ 2318.
dc.identifier.citedreferenceLiu YN, Peng YL, Lei‐Liu TY, et al. TNFα mediates stress‐induced depression by upregulating Indoleamine 2,3‐dioxygenase in a mouse model of unpredictable chronic mild stress. Eur Cytokine Netw. 2015; 26: 15 ‐ 25.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.