Show simple item record

Metal- Bridged Graphene- Protein Supraparticles for Analog and Digital Nitric Oxide Sensing

dc.contributor.authorQu, Zhi‐bei
dc.contributor.authorZhou, Xinguang
dc.contributor.authorZhang, Min
dc.contributor.authorShen, Jianlei
dc.contributor.authorLi, Qian
dc.contributor.authorXu, Feng
dc.contributor.authorKotov, Nicholas
dc.contributor.authorFan, Chunhai
dc.date.accessioned2021-07-01T20:14:50Z
dc.date.available2022-07-01 16:14:48en
dc.date.available2021-07-01T20:14:50Z
dc.date.issued2021-06
dc.identifier.citationQu, Zhi‐bei ; Zhou, Xinguang; Zhang, Min; Shen, Jianlei; Li, Qian; Xu, Feng; Kotov, Nicholas; Fan, Chunhai (2021). "Metal- Bridged Graphene- Protein Supraparticles for Analog and Digital Nitric Oxide Sensing." Advanced Materials 33(24): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/168383
dc.description.abstractSelf- limited nanoassemblies, such as supraparticles (SPs), can be made from virtually any nanoscale components, but SPs from nanocarbons including graphene quantum dots (GQDs), are hardly known because of the weak van der Waals attraction between them. Here it is shown that highly uniform SPs from GQDs can be successfully assembled when the components are bridged by Tb3+ ions supplementing van der Waals interactions. Furthermore, they can be coassembled with superoxide dismutase, which also has weak attraction to GQDs. Tight structural integration of multilevel components into SPs enables efficient transfer of excitonic energy from GQDs and protein to Tb3+. This mechanism is activated when Cu2+ is reduced to Cu1+ by nitric oxide (NO)- an important biomarker for viral pulmonary infections and Alzheimer’s disease. Due to multipronged fluorescence enhancement, the limit of NO detection improves 200 times reaching 10 Ã 10- 12 m. Furthermore, the uniform size of SPs enables digitization of the NO detection using the single particle detection format resulting in confident registration of as few as 600 molecules mL- 1. The practicality of the SP- based assay is demonstrated by the successful monitoring of NO in human breath. The biocompatible SPs combining proteins, carbonaceous nanostructures, and ionic components provide a general path for engineering uniquely sensitive assays for noninvasive tracking of infections and other diseases.Graphene quantum dots (GQDs) can assemble into self- limited supraparticles when van der Waals forces are supplemented by coordination bonds with Tb3+ ions. Superoxide dismutase (SOD) is incorporated into supraparticles, which enables a selective assay for nitric oxide (NO) with ultrahigh sensitivity. Practical for NO detection in exhaled breath, a rapid non- invasive test is approached for pulmonary inflammation, such as coronavirus pneumonia.
dc.publisherWiley Periodicals, Inc.
dc.subject.othersupraparticles
dc.subject.otherfluorescent probes
dc.subject.othergraphene quantum dots
dc.subject.othersensors
dc.subject.otherself- assembly
dc.titleMetal- Bridged Graphene- Protein Supraparticles for Analog and Digital Nitric Oxide Sensing
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168383/1/adma202007900_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168383/2/adma202007900.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168383/3/adma202007900-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/adma.202007900
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceM. E. Murphy, H. Sies, Proc. Natl. Acad. Sci. USA 1991, 88, 10860.
dc.identifier.citedreferenceM. H. Lim, B. A. Wong, W. H. Pitcock, D. Mokshagundam, M.- H. Baik, S. J. Lippard, J. Am. Chem. Soc. 2006, 128, 14364.
dc.identifier.citedreferenceD. J. Lamb, M. L. Tickner, S. M. O. Hourani, G. A. A. Ferns, Int. J. Exp. Pathol. 2005, 86, 247.
dc.identifier.citedreferenceA. G. Estévez, J. P. Crow, J. B. Sampson, C. Reiter, Y. Zhuang, G. J. Richardson, M. M. Tarpey, L. Barbeito, J. S. Beckman, Science 1999, 286, 2498.
dc.identifier.citedreferenceS.- F. Xue, L.- F. Lu, Q.- X. Wang, S. Zhang, M. Zhang, G. Shi, Talanta 2016, 158, 208.
dc.identifier.citedreferenceK. Redeckas, V. Voiciuk, D. Zigmantas, R. G. Hiller, M. Vengris, Biochim. Biophys. Acta, Bioenerg. 2017, 1858, 297.
dc.identifier.citedreferenceM. Zhang, Z. B. Qu, H. Y. Ma, T. Zhou, G. Shi, Chem. Commun. 2014, 50, 4677.
dc.identifier.citedreferenceM. Isaac, S. A. Denisov, A. Roux, D. Imbert, G. Jonusauskas, N. D. McClenaghan, O. Sénèque, Angew. Chem., Int. Ed. 2015, 54, 11453.
dc.identifier.citedreferenceM. A. Salim, G. D. Khattak, N. Tabet, L. E. Wenger, J. Electron Spectrosc. Relat. Phenom. 2003, 128, 75.
dc.identifier.citedreferenceT. Malinski, F. Bailey, Z. G. Zhang, M. Chopp, J. Cereb. Blood Flow Metab. 1993, 13, 355.
dc.identifier.citedreferenceN. Xia, L. Liu, M. G. Harrington, J. Wang, F. Zhou, Anal. Chem. 2010, 82, 10151.
dc.identifier.citedreferenceK. Soga, K. Tokuzen, K. Tsuji, T. Yamano, H. Hyodo, H. Kishimoto, Eur. J. Inorg. Chem. 2010, 2010, 2673.
dc.identifier.citedreferenceS. W. Thomas, G. D. Joly, T. M. Swager, Chem. Rev. 2007, 107, 1339.
dc.identifier.citedreferenceY. Zou, X. Zhang, C. An, C. Ran, K. Ying, P. Wang, Biomed. Microdevices 2014, 16, 927.
dc.identifier.citedreferenceJ. K. Robinson, M. J. Bollinger, J. W. Birks, Anal. Chem. 1999, 71, 5131.
dc.identifier.citedreferenceA. M. Leone, L. E. Gustafsson, P. L. Francis, M. G. Persson, N. P. Wiklund, S. Moncada, Biochem. Biophys. Res. Commun. 1994, 201, 883.
dc.identifier.citedreferenceH. Kojima, N. Nakatsubo, K. Kikuchi, S. Kawahara, Y. Kirino, H. Nagoshi, Y. Hirata, T. Nagano, Anal. Chem. 1998, 70, 2446.
dc.identifier.citedreferenceE. Planchet, W. M. Kaiser, J. Exp. Bot. 2006, 57, 3043.
dc.identifier.citedreferenceZ. Qu, X. Zhou, L. Gu, R. Lan, D. Sun, D. Yu, G. Shi, Chem. Commun. 2013, 49, 9830.
dc.identifier.citedreferenceK. Niikura, N. Iyo, Y. Matsuo, H. Mitomo, K. Ijiro, ACS Appl. Mater. Interfaces 2013, 5, 3900.
dc.identifier.citedreferenceS. Jiang, M. Chekini, Z. B. Qu, Y. Wang, A. Yeltik, Y. Liu, A. Kotlyar, T. Zhang, B. Li, H. V. Demir, N. A. Kotov, J. Am. Chem. Soc. 2017, 139, 13701.
dc.identifier.citedreferenceW. Yan, L. Xu, C. Xu, W. Ma, H. Kuang, L. Wang, N. A. Kotov, J. Am. Chem. Soc. 2012, 134, 15114.
dc.identifier.citedreferenceK. Zhu, D. Wang, J. Liu, Nano Res. 2009, 2, 1.
dc.identifier.citedreferenceS. Liu, T. H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, ACS Nano 2016, 5, 6971.
dc.identifier.citedreferenceC. Xia, S. Zhu, T. Feng, M. Yang, B. Yang, Adv. Sci. 2019, 6, 1901316.
dc.identifier.citedreferenceD. Pan, J. Zhang, Z. Li, M. Wu, Adv. Mater. 2010, 22, 734.
dc.identifier.citedreferenceL. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, A. K. Geim, Science 2008, 320, 356.
dc.identifier.citedreferenceH. Sun, L. Wu, W. Wei, X. Qu, Mater. Today 2013, 16, 433.
dc.identifier.citedreferenceX. Yan, X. Cui, L.- S. Li, J. Am. Chem. Soc. 2010, 132, 5944.
dc.identifier.citedreferenceK. Li, W. Liu, Y. Ni, D. Li, D. Lin, Z. Su, G. Wei, J. Mater. Chem. B 2017, 5, 4811.
dc.identifier.citedreferenceJ. Shen, Y. Zhu, X. Yang, C. Li, Chem. Commun. 2012, 48, 3686.
dc.identifier.citedreferenceR. Ye, C. Xiang, J. Lin, Z. Peng, K. Huang, Z. Yan, N. P. Cook, E. L. G. Samuel, C.- C. Hwang, G. Ruan, G. Ceriotti, A.- R. O. Raji, A. A. Martí, J. M. Tour, Nat. Commun. 2013, 4, 2943.
dc.identifier.citedreferenceQ. Zhang, X. Wang, Y. Zhu, J. Mater. Chem. 2011, 21, 12132.
dc.identifier.citedreferenceY. Ma, K. Promthaveepong, N. Li, ACS Appl. Mater. Interfaces 2017, 9, 10530.
dc.identifier.citedreferenceH. Cheng, Y. Zhao, Y. Fan, X. Xie, L. Qu, G. Shi, ACS Nano 2012, 6, 2237.
dc.identifier.citedreferenceH. Cheng, L. Wang, M. Mollica, A. T. Re, S. Wu, L. Zuo, Cancer Lett. 2014, 353, 1.
dc.identifier.citedreferenceK. M. Sanders, S. M. Ward, Am. J. Physiol. Gastrointest. Liver Physiol. 1992, 262, G379.
dc.identifier.citedreferenceX. Chen, F. Niroomand, Z. Liu, A. Zankl, H. A. Katus, L. Jahn, C. P. Tiefenbacher, Basic Res. Cardiol. 2006, 101, 346.
dc.identifier.citedreferenceT. Malinski, J. Alzheimer’s Dis. 2007, 11, 207.
dc.identifier.citedreferenceN. Pitsikas, Nitric Oxide 2018, 77, 6.
dc.identifier.citedreferenceM. Belvisi, P. J. Barnes, S. Larkin, M. Yacoub, S. Tadjkarimi, T. J. Williams, J. A. Mitchell, Eur. J. Pharmacol. 1995, 283, 255.
dc.identifier.citedreferenceS. à kerström, M. Mousavi- Jazi, J. Klingström, M. Leijon, à . Lundkvist, A. Mirazimi, J. Virol. 2005, 79, 1966.
dc.identifier.citedreferenceE. Keyaerts, L. Vijgen, L. Chen, P. Maes, G. Hedenstierna, M. Van Ranst, Int. J. Infect. Dis. 2004, 8, 223.
dc.identifier.citedreferenceP. Mehta, D. F. McAuley, M. Brown, E. Sanchez, R. S. Tattersall, J. J. Manson, Lancet 2020, 395, 1033.
dc.identifier.citedreferenceZ. Qu, M. Zhang, T. Zhou, G. Shi, Chem. - Eur. J. 2014, 20, 13777.
dc.identifier.citedreferenceJ. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero- Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.- J. Zhu, P. M. Ajayan, Nano Lett. 2012, 12, 844.
dc.identifier.citedreferenceZ.- Y. Lin, Z. Qu, Z.- H. Chen, X.- Y. Han, L.- X. Deng, Q. Luo, Z. Jin, G. Shi, M. Zhang, Anal. Chem. 2019, 91, 11170.
dc.identifier.citedreferenceY. Xia, T. D. T. D. Nguyen, M. Yang, B. Lee, A. Santos, P. Podsiadlo, Z. Tang, S. C. Glotzer, N. A. Kotov, Nat. Nanotechnol. 2011, 6, 580.
dc.identifier.citedreferenceS. Li, J. Liu, N. S. Ramesar, H. Heinz, L. Xu, C. Xu, N. A. Kotov, Nat. Commun. 2019, 10, 4826.
dc.identifier.citedreferenceJ. Il Park, T. D. Nguyen, G. de Queirós Silveira, J. H. Bahng, S. Srivastava, G. Zhao, K. Sun, P. Zhang, S. C. Glotzer, N. A. Kotov, Nat. Commun. 2014, 5, 3593.
dc.identifier.citedreferenceZ. Qu, W.- J. Feng, Y. Wang, F. Romanenko, N. A. Kotov, Angew. Chem. 2020, 59, 8542.
dc.identifier.citedreferenceA. Aggeli, I. A. Nyrkova, M. Bell, R. Harding, L. Carrick, T. C. B. McLeish, A. N. Semenov, N. Boden, Proc. Natl. Acad. Sci. USA 2001, 98, 11857.
dc.identifier.citedreferenceW. Jiang, Z. Qu, P. Kumar, D. Vecchio, Y. Wang, Y. Ma, J. H. Bahng, K. Bernardino, W. R. Gomes, F. M. Colombari, A. Lozada- Blanco, M. Veksler, E. Marino, A. Simon, C. Murray, S. R. Muniz, A. F. de Moura, N. A. Kotov, Science 2020, 368, 642.
dc.identifier.citedreferenceJ. Yan, W. Feng, J.- Y. Kim, J. Lu, P. Kumar, Z. Mu, X. Wu, X. Mao, N. A. Kotov, N. A. Kotov, N. A. Kotov, Chem. Mater. 2020, 32, 476.
dc.identifier.citedreferenceE. Piccinini, D. Pallarola, F. Battaglini, O. Azzaroni, Mol. Syst. Des. Eng. 2016, 1, 155.
dc.identifier.citedreferenceK. Zhang, J. Yi, D. Chen, J. Mater. Chem. A 2013, 1, 14649.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.