Show simple item record

Improved phenological escape can help temperate tree seedlings maintain demographic performance under climate change conditions

dc.contributor.authorLee, Benjamin R.
dc.contributor.authorIbáñez, Inés
dc.date.accessioned2021-08-03T18:14:08Z
dc.date.available2022-09-03 14:14:07en
dc.date.available2021-08-03T18:14:08Z
dc.date.issued2021-08
dc.identifier.citationLee, Benjamin R.; Ibáñez, Inés (2021). "Improved phenological escape can help temperate tree seedlings maintain demographic performance under climate change conditions." Global Change Biology (16): 3883-3897.
dc.identifier.issn1354-1013
dc.identifier.issn1365-2486
dc.identifier.urihttps://hdl.handle.net/2027.42/168436
dc.description.abstractPhenological escape, a strategy that deciduous understory plants use to access direct light in spring by leafing out before the canopy closes, plays an important role in shaping the recruitment of temperate tree seedlings. Previous studies have investigated how climate change will alter these dynamics for herbaceous species, but there is a knowledge gap related to how woody species such as tree seedlings will be affected. Here, we modeled temperate tree seedling leaf‐out phenology and canopy close phenology in response to environmental drivers and used climate change projections to forecast changes to the duration of spring phenological escape. We then used these predictions to estimate changes in annual carbon assimilation while accounting for reduced carbon assimilation rates associated with hotter and drier summers. Lastly, we applied these estimates to previously published models of seedling growth and survival to investigate the net effect on seedling demographic performance. Our models predict that temperate tree seedlings will experience improved phenological escape and, therefore, increased spring carbon assimilation under climate change conditions. However, increased summer respiration costs will offset the gains in spring under extreme climate change leading to a net loss in annual carbon assimilation and demographic performance. Furthermore, we found that annual carbon assimilation predictions depend strongly on the species of nearby canopy tree that seedlings were planted near, with all seedlings projected to assimilate less carbon (and therefore experience worse demographic performance) when planted near Quercus rubra canopy trees as opposed to Acer saccharum canopy trees. We conclude that changes to spring phenological escape will have important effects on how tree seedling recruitment is affected by climate change, with the magnitude of these effects dependent upon climate change severity and biological interactions with neighboring adults. Thus, future studies of temperate forest recruitment should account for phenological escape dynamics in their models.Deciduous tree seedlings in temperate forests rely on phenological escape in spring to access light and assimilate positive carbon balances that allow them to survive and grow throughout the rest of the growing season. However, climate change is shifting leaf‐out phenology for seedlings and canopy trees alike and it is yet unknown if this will result in differences in access to spring light for understory trees. Here, we found that climate change will increase seedling access to light in spring, but that reduced summer precipitation and hotter temperatures will lead to net negative changes in seedling performance.
dc.publisherAcademic Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othersurvival
dc.subject.otherrecruitment
dc.subject.otherrespiration
dc.subject.otherAcer saccharum
dc.subject.othercarbon assimilation
dc.subject.othergrowth
dc.subject.otherphenological mismatch
dc.subject.otherQuercus rubra
dc.titleImproved phenological escape can help temperate tree seedlings maintain demographic performance under climate change conditions
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168436/1/gcb15678.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168436/2/gcb15678_am.pdf
dc.identifier.doi10.1111/gcb.15678
dc.identifier.sourceGlobal Change Biology
dc.identifier.citedreferencePeltier, D. M. P., & Ibáñez, I. ( 2015 ). Patterns and variability in seedling carbon assimilation: Implications for tree recruitment under climate change. Tree Physiology, 35 ( 1 ), 71 – 85. https://doi.org/10.1093/treephys/tpu103
dc.identifier.citedreferencePiao, S., Liu, Q., Chen, A., Janssens, I. A., Fu, Y., Dai, J., Liu, L., Lian, X., Shen, M., & Zhu, X. ( 2019 ). Plant phenology and global climate change: Current progresses and challenges. Global Change Biology, 25 ( 6 ), 1922 – 1940. https://doi.org/10.1111/gcb.14619
dc.identifier.citedreferencePolgar, C. A., & Primack, R. B. ( 2011 ). Leaf‐out phenology of temperate woody plants: From trees to ecosystems. New Phytologist, 191 ( 4 ), 926 – 941. https://doi.org/10.1111/j.1469‐8137.2011.03803.x
dc.identifier.citedreferenceRedding, T. E., Hope, G. D., Fortin, M. J., Schmidt, M. G., & Bailey, W. G. ( 2003 ). Spatial patterns of soil temperature and moisture across subalpine forest‐clearcut edges in the southern interior of British Columbia. Canadian Journal of Soil Science, 83 ( 1 ), 121 – 130. https://doi.org/10.4141/S02‐010
dc.identifier.citedreferenceRich, P. M., Breshears, D. D., & White, A. B. ( 2008 ). Phenology of mixed woody‐herbaceous ecosystems following extreme events: Net and differential responses. Ecology, 89 ( 2 ), 342 – 352. https://doi.org/10.1890/06‐2137.1
dc.identifier.citedreferenceRichardson, A. D., Bailey, A. S., Denny, E. G., Martin, C. W., & O’Keefe, J. ( 2006 ). Phenology of a northern hardwood forest canopy. Global Change Biology, 12 ( 7 ), 1174 – 1188. https://doi.org/10.1111/j.1365‐2486.2006.01164.x
dc.identifier.citedreferenceRoberts, A. M. I., Tansey, C., Smithers, R. J., & Phillimore, A. B. ( 2015 ). Predicting a change in the order of spring phenology in temperate forests. Global Change Biology, 21, 2603 – 2611. https://doi.org/10.1111/gcb.12896
dc.identifier.citedreferenceRoman, D. T., Novick, K. A., Brzostek, E. R., Dragoni, D., Rahman, F., & Phillips, R. P. ( 2015 ). The role of isohydric and anisohydric species in determining ecosystem‐scale response to severe drought. Oecologia, 179 ( 3 ), 641 – 654. https://doi.org/10.1007/s00442‐015‐3380‐9
dc.identifier.citedreferenceRouthier, M. C., & Lapointe, L. ( 2002 ). Impact of tree leaf phenology on growth rates and reproduction in the spring flowering species Trillium erectum (Liliaceae). American Journal of Botany, 89 ( 3 ), 500 – 505. https://doi.org/10.3732/ajb.89.3.500
dc.identifier.citedreferenceSchleip, C., Rais, A., & Menzel, A. ( 2009 ). Bayesian analysis of temperature sensitivity of plant phenology in Germany. Agricultural and Forest Meteorology, 149 ( 10 ), 1699 – 1708. https://doi.org/10.1016/j.agrformet.2009.05.014
dc.identifier.citedreferenceSeiwa, K. ( 1998 ). Advantages of early germination for growth and survival of seedlings of Acer mono under different overstorey phenologies in deciduous broad‐leaved forests. Journal of Ecology, 86 ( 2 ), 219 – 228. https://doi.org/10.1046/j.1365‐2745.1998.00245.x
dc.identifier.citedreferenceSendall, K. M., Reich, P. B., Zhao, C., Jihua, H., Wei, X., Stefanski, A., Rice, K., Rich, R. L., & Montgomery, R. A. ( 2015 ). Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming. Global Change Biology, 21 ( 3 ), 1342 – 1357. https://doi.org/10.1111/gcb.12781
dc.identifier.citedreferenceSpiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. ( 2002 ). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 64 ( 4 ), 583 – 616. https://doi.org/10.1111/1467‐9868.00353
dc.identifier.citedreferenceUmaña, M. N., Forero‐Montaña, J., Muscarella, R., Nytch, C. J., Thompson, J., Uriarte, M., Zimmerman, J., & Swenson, N. G. ( 2016 ). Interspecific functional convergence and divergence and intraspecific negative density dependence underlie the seed‐to‐seedling transition in tropical trees. The American Naturalist, 187 ( 1 ), 99 – 109. https://doi.org/10.1086/684174
dc.identifier.citedreferenceVandvik, V., Skarpaas, O., Klanderud, K., Telford, R. J., Halbritter, A. H., & Goldberg, D. E. ( 2020 ). Biotic rescaling reveals importance of species interactions for variation in biodiversity responses to climate change. Proceedings of the National Academy of Sciences of the United States of America, 117 ( 37 ), 22858 – 22865. https://doi.org/10.1073/pnas.2003377117
dc.identifier.citedreferenceVillegas, J. C., Breshears, D. D., Zou, C. B., & Royer, P. D. ( 2010 ). Seasonally pulsed heterogeneity in microclimate: Phenology and cover effects along deciduous grassland‐forest continuum. Vadose Zone Journal, 9 ( 3 ), 537 – 547. https://doi.org/10.2136/vzj2009.0032
dc.identifier.citedreferenceVitasse, Y. ( 2013 ). Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier. New Phytologist, 198 ( 1 ), 149 – 155. https://doi.org/10.1111/nph.12130
dc.identifier.citedreferenceVitasse, Y., Lenz, A., Hoch, G., & Körner, C. ( 2014 ). Earlier leaf‐out rather than difference in freezing resistance puts juvenile trees at greater risk of damage than adult trees. Journal of Ecology, 102 ( 4 ), 981 – 988. https://doi.org/10.1111/1365‐2745.12251
dc.identifier.citedreferenceWashington, W. M., Weatherly, J. W., Meehl, G. A., Semtner, A. J., Bettge, T. W., Craig, A. P., Strand, W. G., Arblaster, J., Wayland, V. B., James, R., & Zhang, Y. ( 2000 ). Parallel climate model (PCM) control and transient simulations. Climate Dynamics, 16 ( 10–11 ), 755 – 774. https://doi.org/10.1007/s003820000079
dc.identifier.citedreferenceWay, D. A., & Montgomery, R. A. ( 2015 ). Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant, Cell and Environment, 38 ( 9 ), 1725 – 1736. https://doi.org/10.1111/pce.12431
dc.identifier.citedreferenceWertin, T. M., McGuire, M. A., Teskey, R. O., & Tissue, D. ( 2011 ). Higher growth temperatures decreased net carbon assimilation and biomass accumulation of northern red oak seedlings near the southern limit of the species range. Tree Physiology, 31 ( 12 ), 1277 – 1288. https://doi.org/10.1093/treephys/tpr091
dc.identifier.citedreferenceWilliams, A. P., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., Swetnam, T. W., Rauscher, S. A., Seager, R., Grissino‐Mayer, H. D., Dean, J. S., Cook, E. R., Gangodagamage, C., Cai, M., & Mcdowell, N. G. ( 2013 ). Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change, 3 ( 3 ), 292 – 297. https://doi.org/10.1038/nclimate1693
dc.identifier.citedreferenceWilliams, J. W., & Jackson, S. T. ( 2007 ). Novel climates, no‐analog communities, and ecological surprises. Frontiers in Ecology and the Environment, 5 ( 9 ), 475 – 482.
dc.identifier.citedreferenceYoshie, F. ( 2008 ). Effects of growth temperature and winter duration on leaf phenology of a spring ephemeral ( Gagea lutea ) and a summergreen forb ( Maianthemum dilatatum ). Journal of Plant Research, 121 ( 5 ), 483 – 492. https://doi.org/10.1007/s10265‐008‐0173‐9
dc.identifier.citedreferenceZhao, M., & Running, S. W. ( 2010 ). Drought‐induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329 ( 5994 ), 940 – 943. https://doi.org/10.1126/science.1192666
dc.identifier.citedreferenceZheng, Z., Zhu, W., Chen, G., Jiang, N., Fan, D., & Zhang, D. ( 2016 ). Continuous but diverse advancement of spring‐summer phenology in response to climate warming across the Qinghai‐Tibetan Plateau. Agricultural and Forest Meteorology, 223, 194 – 202. https://doi.org/10.1016/j.agrformet.2016.04.012
dc.identifier.citedreferenceZogg, G. P., Zak, D. R., Burton, A. J., & Pregitzer, K. S. ( 1996 ). Fine root respiration in northern hardwood forests in relation to temperature and nitrogen availability. Tree Physiology, 16 ( 8 ), 719 – 725. https://doi.org/10.1093/treephys/16.8.719
dc.identifier.citedreferenceHeberling, J. M., McDonough MacKenzie, C., Fridley, J. D., Kalisz, S., & Primack, R. B. ( 2019 ). Phenological mismatch with trees reduces wildflower carbon budgets. Ecology Letters, 22 ( 4 ), 616 – 623. https://doi.org/10.1111/ele.13224
dc.identifier.citedreferenceAinsworth, E. A., & Rogers, A. ( 2007 ). The response of photosynthesis and stomatal conductance to rising [CO 2 ]: Mechanisms and environmental interactions. Plant, Cell and Environment, 30 ( 3 ), 258 – 270. https://doi.org/10.1111/j.1365‐3040.2007.01641.x
dc.identifier.citedreferenceAllen, C. D., Breshears, D. D., & McDowell, N. G. ( 2015 ). On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene. Ecosphere, 6 ( 8 ), art129. https://doi.org/10.1890/ES15‐00203.1
dc.identifier.citedreferenceAtkin, O. K., Edwards, E. J., & Loveys, B. R. ( 2000 ). Response of root respiration to changes in temperature and its relevance to global. New Phytologist, 147 ( 1 ), 141 – 154. https://doi.org/10.1046/j.1469‐8137.2000.00683.x
dc.identifier.citedreferenceAugspurger, C. K. ( 2008 ). Early spring leaf out enhances growth and survival of saplings in a temperate deciduous forest. Oecologia, 156 ( 2 ), 281 – 286. https://doi.org/10.1007/s00442‐008‐1000‐7
dc.identifier.citedreferenceAugspurger, C. K., & Bartlett, E. A. ( 2003 ). Differences in leaf phenology between juvenile and adult trees in a temperate deciduous forest. Tree Physiology, 23 ( 8 ), 517 – 525. https://doi.org/10.1093/treephys/23.8.517
dc.identifier.citedreferenceAugspurger, C. K., & Salk, C. F. ( 2017 ). Constraints of cold and shade on the phenology of spring ephemeral herb species. Journal of Ecology, 105 ( 1 ), 246 – 254. https://doi.org/10.1111/1365‐2745.12651
dc.identifier.citedreferenceBatllori, E., Camarero, J. J., Ninot, J. M., & Gutiérrez, E. ( 2009 ). Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential responses to climate warming. Global Ecology and Biogeography, 18 ( 4 ), 460 – 472. https://doi.org/10.1111/j.1466‐8238.2009.00464.x
dc.identifier.citedreferenceBauerle, W. L., Oren, R., Way, D. A., Qian, S. S., Stoy, P. C., Thornton, P. E., Bowden, J. D., Hoffman, F. M., & Reynolds, R. F. ( 2012 ). Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling. Proceedings of the National Academy of Sciences of the United States of America, 109 ( 22 ), 8612 – 8617. https://doi.org/10.1073/pnas.1119131109
dc.identifier.citedreferenceCanham, C. D. ( 1988 ). An index for understory light levels in and around canopy gaps. Ecology, 69 ( 5 ), 1634 – 1638.
dc.identifier.citedreferenceCanham, C. D., Coates, K. D., Bartemucci, P., & Quaglia, S. ( 1999 ). Measurement and modeling of spatially explicit variation in light transmission through interior cedar‐hemlock forests of British Columbia. Canadian Journal of Forest Research, 29 ( 11 ), 1775 – 1783. https://doi.org/10.1139/x99‐151
dc.identifier.citedreferenceChazdon, R. L., & Pearcy, R. W. ( 1991 ). The importance of sunflecks for forest understory plants. BioScience, 41 ( 11 ), 760 – 766. https://doi.org/10.2307/1311725
dc.identifier.citedreferenceChoat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S. J., Feild, T. S., Gleason, S. M., Hacke, U. G., Jacobsen, A. L., Lens, F., Maherali, H., Martínez‐Vilalta, J., Mayr, S., Mencuccini, M., Mitchell, P. J., Nardini, A., Pittermann, J., … Zanne, A. E. ( 2012 ). Global convergence in the vulnerability of forests to drought. Nature, 491 ( 7426 ), 752 – 755. https://doi.org/10.1038/nature11688
dc.identifier.citedreferenceChuine, I. ( 2010 ). Why does phenology drive species distribution? Philosophical Transactions of the Royal Society B: Biological Sciences, 365 ( 1555 ), 3149 – 3160. https://doi.org/10.1098/rstb.2010.0142
dc.identifier.citedreferenceChuine, I., & Beaubien, E. ( 2001 ). Phenology is a major determinant of tree species range. Ecology Letters, 4, 500 – 510. https://doi.org/10.1046/j.1461‐0248.2001.00261.x
dc.identifier.citedreferenceClassen, A. T., Sundqvist, M. K., Henning, J. A., Newman, G. S., Moore, J. A. M., Cregger, M. A., Moorhead, L. C., & Patterson, C. M. ( 2015 ). Direct and indirect effects of climate change on soil microbial and soil microbial‐plant interactions: What lies ahead? Ecosphere, 6 ( 8 ), https://doi.org/10.1890/ES15‐00217.1
dc.identifier.citedreferenceHopkins, F., Gonzalez‐Meler, M. A., Flower, C. E., Lynch, D. J., Czimczik, C., Tang, J., & Subke, J. ( 2013 ). Ecosystem‐level controls on root‐rhizosphere respiration. New Phytologist, 199 ( 2 ), 339 – 351. https://doi.org/10.1111/nph.12271
dc.identifier.citedreferenceDavies, T. J., Wolkovich, E. M., Kraft, N. J. B., Salamin, N., Allen, J. M., Ault, T. R., Betancourt, J. L., Bolmgren, K., Cleland, E. E., Cook, B. I., Crimmins, T. M., Mazer, S. J., McCabe, G. J., Pau, S., Regetz, J., Schwartz, M. D., & Travers, S. E. ( 2013 ). Phylogenetic conservatism in plant phenology. Journal of Ecology, 101 ( 6 ), 1520 – 1530. https://doi.org/10.1111/1365‐2745.12154
dc.identifier.citedreferenceDelworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V., Beesley, J. A., Cooke, W. F., Dixon, K. W., Dunne, J., Dunne, K. A., Durachta, J. W., Findell, K. L., Ginoux, P., Gnanadesikan, A., Gordon, C. T., Griffies, S. M., Gudgel, R., Harrison, M. J., Held, I. M., & Zhang, R. ( 2006 ). GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. Journal of Climate, 19 ( 5 ), 643 – 674. https://doi.org/10.1175/JCLI3629.1
dc.identifier.citedreferenceDenny, E. G., Gerst, K. L., Miller‐Rushing, A. J., Tierney, G. L., Crimmins, T. M., Enquist, C. A. F., Guertin, P., Rosemartin, A. H., Schwartz, M. D., Thomas, K. A., & Weltzin, J. F. ( 2014 ). Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications. International Journal of Biometeorology, 58 ( 4 ), 591 – 601. https://doi.org/10.1007/s00484‐014‐0789‐5
dc.identifier.citedreferenceDiez, J. M., Ibáñez, I., Silander, J. A., Primack, R. B., Higuchi, H., Kobori, H., Sen, A., & James, T. Y. ( 2014 ). Beyond seasonal climate: Statistical estimation of phenological responses to weather. Ecological Applications, 24 ( 7 ), 1793 – 1802. https://doi.org/10.1890/13‐1533.1
dc.identifier.citedreferenceElliott, K. J., Miniat, C. F., Pederson, N., & Laseter, S. H. ( 2015 ). Forest tree growth response to hydroclimate variability in the southern Appalachians. Global Change Biology, 21 ( 12 ), 4627 – 4641. https://doi.org/10.1111/gcb.13045
dc.identifier.citedreferenceEttinger, A. K., Chamberlain, C. J., Morales‐Castilla, I., Buonaiuto, D. M., Flynn, D. F. B., Savas, T., Samaha, J. A., & Wolkovich, E. M. ( 2020 ). Winter temperatures predominate in spring phenological responses to warming. Nature Climate Change, 10 ( 12 ), 1137 – 1142. https://doi.org/10.1038/s41558‐020‐00917‐3
dc.identifier.citedreferenceFu, Y. S. H., Campioli, M., Vitasse, Y., De Boeck, H. J., Van den Berge, J., AbdElgawad, H., Asard, H., Piao, S., Deckmyn, G., & Janssens, I. A. ( 2014 ). Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proceedings of the National Academy of Sciences of the United States of America, 111 ( 20 ), 7355 – 7360. https://doi.org/10.1073/pnas.1321727111.
dc.identifier.citedreferenceGamache, I., & Payette, S. ( 2005 ). Latitudinal response of subarctic tree lines to recent climate change in eastern Canada. Journal of Biogeography, 32 ( 5 ), 849 – 862. https://doi.org/10.1111/j.1365‐2699.2004.01182.x
dc.identifier.citedreferenceGelman, A., & Rubin, D. B. ( 1992 ). Inference from interative simulation using multiple sequences. Statistical Science, 7 ( 4 ), 457 – 511. https://doi.org/10.1214/ss/1177011136
dc.identifier.citedreferenceGill, D. S., Amthor, J. S., & Bormann, F. H. ( 1998 ). Leaf phenology, photosynthesis, and the persistence of saplings and shrubs in a mature northern hardwood forest. Tree Physiology, 18 ( 5 ), 281 – 289. https://doi.org/10.1093/treephys/18.5.281
dc.identifier.citedreferenceGómez‐Aparicio, L., & Canham, C. D. ( 2008 ). Neighbourhood analyses of the allelopathic effects of the invasive tree Ailanthus altissima in temperate forests. Journal of Ecology, 96 ( 3 ), 447 – 458. https://doi.org/10.1111/j.1365‐2745.2007.01352.x
dc.identifier.citedreferenceGreen, P. T., Harms, K. E., & Connell, J. H. ( 2014 ). Nonrandom, diversifying processes are disproportionately strong in the smallest size classes of a tropical forest. Proceedings of the National Academy of Sciences of the United States of America, 111 ( 52 ), 18649 – 18654. https://doi.org/10.1073/pnas.1321892112
dc.identifier.citedreferenceGrossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., & McDowell, N. G. ( 2020 ). Plant responses to rising vapor pressure deficit. New Phytologist, 226 ( 6 ), 1550 – 1566. https://doi.org/10.1111/nph.16485
dc.identifier.citedreferenceGrubb, P. J. ( 1977 ). The maintenance of species‐richness in plant communities: The importance of the regeneration niche. Biological Reviews, 52 ( 4 ), 107 – 145. https://doi.org/10.1111/j.1469‐185X.1977.tb01347.x
dc.identifier.citedreferenceHandler, S., Duveneck, M. J., Iverson, L., Peters, E., Scheller, R. M., Wythers, K. R., Brandt, L., Butler, P., Janowiak, M., Shannon, P. D., Swanston, C., Eagle, A. C., Cohen, J. G., Corner, R., Reich, P. B., Baker, T., Chhin, S., Clark, E., Fehringer, D., … Ziel, R. ( 2014 ). Michigan forest ecosystem vulnerability assessment and synthesis: A report from the northwoods climate change response framework project. In General technical report NRS‐129. https://doi.org/10.2737/NRS‐GTR‐129
dc.identifier.citedreferenceHarper, J. L. ( 1977 ). Population biology of plants. Academic Press.
dc.identifier.citedreferenceHartmann, H. ( 2011 ). Will a 385 million year‐struggle for light become a struggle for water and for carbon? – How trees may cope with more frequent climate change‐type drought events. Global Change Biology, 17 ( 1 ), 642 – 655. https://doi.org/10.1111/j.1365‐2486.2010.02248.x
dc.identifier.citedreferenceHausfather, Z., Drake, H. F., Abbott, T., & Schmidt, G. A. ( 2020 ). Evaluating the performance of past climate model projections. Geophysical Research Letters, 47 ( 1 ), 1 – 10. https://doi.org/10.1029/2019GL085378
dc.identifier.citedreferenceHeberling, J. M., Cassidy, S. T., Fridley, J. D., & Kalisz, S. ( 2019 ). Carbon gain phenologies of spring‐flowering perennials in a deciduous forest indicate a novel niche for a widespread invader. New Phytologist, 221 ( 2 ), 778 – 788. https://doi.org/10.1111/nph.15404
dc.identifier.citedreferenceHull, J. C. ( 2002 ). Photosynthetic induction dynamics to sunflecks of four deciduous forest understory herbs with different phenologies. International Journal of Plant Sciences, 163 ( 6 ), 913 – 924. https://doi.org/10.1086/342633
dc.identifier.citedreferenceIbáñez, I., Gornish, E. S., Buckley, L., Debinski, D. M., Hellmann, J., Helmuth, B., Hillerislambers, J., Latimer, A. M., Miller‐Rushing, A. J., & Uriarte, M. ( 2013 ). Moving forward in global‐change ecology: Capitalizing on natural variability. Ecology and Evolution, 3 ( 1 ), 170 – 181. https://doi.org/10.1002/ece3.433
dc.identifier.citedreferenceIbáñez, I., Katz, D. S. W., & Lee, B. R. ( 2017 ). The contrasting effects of short‐term climate change on the early recruitment of tree species. Oecologia, 184 ( 3 ), 701 – 713. https://doi.org/10.1007/s00442‐017‐3889‐1
dc.identifier.citedreferenceIbáñez, I., Primack, R. B., Miller‐Rushing, A. J., Ellwood, E., Higuchi, H., Lee, S. D., Kobori, H., & Silander, J. A. ( 2010 ). Forecasting phenology under global warming. Philosophical Transactions of the Royal Society B: Biological Sciences, 365 ( 1555 ), 3247 – 3260. https://doi.org/10.1098/rstb.2010.0120
dc.identifier.citedreferenceIPCC. ( 2014 ). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. In C. W. Team, R. K. Pachauri, & L. A. Meyers (Eds.). Author.
dc.identifier.citedreferenceIverson, L. R., Prasad, A. M., Matthews, S. N., & Peters, M. ( 2008 ). Estimating potential habitat for 134 eastern US tree species under six climate scenarios. Forest Ecology and Management, 254 ( 3 ), 390 – 406. https://doi.org/10.1016/j.foreco.2007.07.023
dc.identifier.citedreferenceJackson, S. T., & Williams, J. W. ( 2004 ). Modern analogs in quaternary paleoecology: Here today, gone yesterday, gone tomorrow? Annual Review of Earth and Planetary Sciences, 32 ( 1 ), 495 – 537. https://doi.org/10.1146/annurev.earth.32.101802.120435
dc.identifier.citedreferenceJacques, M. H., Lapointe, L., Rice, K., Montgomery, R. A., Stefanski, A., & Reich, P. B. ( 2015 ). Responses of two understory herbs, Maianthemum canadense and Eurybia macrophylla, to experimental forest warming: Early emergence is the key to enhanced reproductive output. American Journal of Botany, 102 ( 10 ), 1610 – 1624. https://doi.org/10.3732/ajb.1500046
dc.identifier.citedreferenceJuice, S. M., Fahey, T. J., Siccama, T. G., Driscoll, C. T., Denny, E. G., Eagar, C., Cleavitt, N. L., Minocha, R., & Richardson, A. D. ( 2006 ). Response of sugar maple to calcium addition to northern hardwood forest. Ecology, 87 ( 5 ), 1267 – 1280.
dc.identifier.citedreferenceKobe, R. K., Pacala, S. W., Silander, J. A., & Canham, C. D. ( 1995 ). Juvenile tree survivorship as a component of shade tolerance. Ecological Applications, 5 ( 2 ), 517 – 532.
dc.identifier.citedreferenceKudo, G., Ida, T. Y., & Tani, T. ( 2008 ). Linkages between phenology, pollination, photosynthesis, and reproduction in deciduous forest understory plants. Ecology, 89 ( 2 ), 321 – 331.
dc.identifier.citedreferenceKwit, M. C., Rigg, L. S., & Goldblum, D. ( 2010 ). Sugar maple seedling carbon assimilation at the northern limit of its range: The importance of seasonal light. Canadian Journal of Forest Research, 40 ( 2 ), 385 – 393. https://doi.org/10.1139/X09‐196
dc.identifier.citedreferenceLee, B. R., & Ibáñez, I. ( 2021a ). Data and model code for “Improved phenological escape can help temperate tree seedlings maintain demographic performance under climate change conditions”. Zenodo. https://doi.org/10.5281/zenodo.4737332
dc.identifier.citedreferenceLee, B. R., & Ibáñez, I. ( 2021b ). Spring phenological escape is critical for the survival of temperate tree seedlings. Functional Ecology. https://doi.org/10.1111/1365‐2435.13821
dc.identifier.citedreferenceLi, Q., Lu, X., Wang, Y., Huang, X., Cox, P. M., & Luo, Y. ( 2018 ). Leaf area index identified as a major source of variability in modeled CO 2 fertilization. Biogeosciences, 15 ( 22 ), 6909 – 6925. https://doi.org/10.5194/bg‐15‐6909‐2018
dc.identifier.citedreferenceLiang, X., Zhang, T., Lu, X., Ellsworth, D. S., BassiriRad, H., You, C., Wang, D., He, P., Deng, Q., Liu, H., Mo, J., & Ye, Q. ( 2020 ). Global response patterns of plant photosynthesis to nitrogen addition: A meta‐analysis. Global Change Biology, 26 ( 6 ), 3585 – 3600. https://doi.org/10.1111/gcb.15071
dc.identifier.citedreferenceLunn, D., Spiegelhalter, D. J., Thomas, A., & Best, N. ( 2009 ). The BUGS project: Evolution, critique and future directions. Statistics in Medicine, 28, 3049 – 3067. https://doi.org/10.1002/sim.3680
dc.identifier.citedreferenceMcCarthy‐Neumann, S., & Ibáñez, I. ( 2012 ). Tree range expansion may be enhanced by escape from negative plant‐soil feedbacks. Ecology, 93 ( 12 ), 2637 – 2649. https://doi.org/10.1890/11‐2281.1
dc.identifier.citedreferenceMcCarthy‐Neumann, S., & Ibáñez, I. ( 2013 ). Plant‐soil feedback links negative distance dependence and light gradient partitioning during seedling establishment. Ecology, 94 ( 4 ), 780 – 786.
dc.identifier.citedreferenceMcCarthy‐Neumann, S., & Kobe, R. K. ( 2010 ). Conspecific and heterospecific plant‐soil feedbacks influence survivorship and growth of temperate tree seedlings. Journal of Ecology, 98 ( 2 ), 408 – 418. https://doi.org/10.1111/j.1365‐2745.2009.01620.x
dc.identifier.citedreferenceMcDowell, N. G., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J. S., West, A., Williams, D. G., Yepez, E. A. ( 2008 ). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178 ( 4 ), 719 – 739. https://doi.org/10.1111/j.1469‐8137.2008.02436.x
dc.identifier.citedreferenceMenzel, A., & Fabian, P. ( 1999 ). Growing season extended in Europe. Nature, 397 ( 6721 ), 659. https://doi.org/10.1038/17709
dc.identifier.citedreferenceMuller, R. N. ( 1978 ). The phenology, growth and ecosystem dynamics of Erythronium americanum in the northern hardwood forest. Ecological Monographs, 48 ( 1 ), 1 – 20. https://doi.org/10.2307/2937357
dc.identifier.citedreferenceNeufeld, H. S., & Young, D. R. ( 2014 ). Ecophysiology of the herbaceous layer in temperate deciduous forests. In F. S. Gilliam (Ed.), The herbaceous layer in forests of eastern North America ( 2nd ed., pp. 35 – 95 ). Oxford University Press. https://doi.org/10.1093/acprof:osobl/9780199837656.003.0003
dc.identifier.citedreferenceNiinemets, Ü. ( 2010 ). Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. Forest Ecology and Management, 260 ( 10 ), 1623 – 1639. https://doi.org/10.1016/j.foreco.2010.07.054
dc.identifier.citedreferenceOren, R., Sperry, J. S., Katul, G. G., Pataki, D. E., Ewers, B. E., Phillips, N., & Schäfer, K. V. R. ( 1999 ). Survey and synthesis of intra‐and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant, Cell & Environment, 22 ( 12 ), 1515 – 1526. https://doi.org/10.1046/j.1365‐3040.1999.00513.x
dc.identifier.citedreferencePatrick, L. D., Ogle, K., & Tissue, D. T. ( 2009 ). A hierarchical Bayesian approach for estimation of photosynthetic parameters of C3 plants. Plant, Cell and Environment, 32 ( 12 ), 1695 – 1709. https://doi.org/10.1111/j.1365‐3040.2009.02029.x
dc.identifier.citedreferencePellissier, F., & Souto, X. C. ( 1999 ). Allelopathy in Northern temperate and boreal semi‐natural woodland. Critical Reviews in Plant Sciences, 18 ( 5 ), 637 – 652. https://doi.org/10.1080/07352689991309423
dc.identifier.citedreferenceMooney, H. A. ( 1972 ). The carbon balance of plants. Annual Review of Ecology and Systematics, 3 ( 1 ), 315 – 346. https://doi.org/10.1146/annurev.es.03.110172.001531
dc.identifier.citedreferencePhillips, R. P., & Fahey, T. J. ( 2006 ). Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology, 87 ( 5 ), 1302 – 1313.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.