Show simple item record

Density, parasitism, and sexual reproduction are strongly correlated in lake Daphnia populations

dc.contributor.authorGowler, Camden D.
dc.contributor.authorRogalski, Mary A.
dc.contributor.authorShaw, Clara L.
dc.contributor.authorHunsberger, Katherine K.
dc.contributor.authorDuffy, Meghan A.
dc.date.accessioned2021-08-03T18:14:36Z
dc.date.available2022-09-03 14:14:35en
dc.date.available2021-08-03T18:14:36Z
dc.date.issued2021-08
dc.identifier.citationGowler, Camden D.; Rogalski, Mary A.; Shaw, Clara L.; Hunsberger, Katherine K.; Duffy, Meghan A. (2021). "Density, parasitism, and sexual reproduction are strongly correlated in lake Daphnia populations." Ecology and Evolution (15): 10446-10456.
dc.identifier.issn2045-7758
dc.identifier.issn2045-7758
dc.identifier.urihttps://hdl.handle.net/2027.42/168451
dc.description.abstractMany organisms can reproduce both asexually and sexually. For cyclical parthenogens, periods of asexual reproduction are punctuated by bouts of sexual reproduction, and the shift from asexual to sexual reproduction has large impacts on fitness and population dynamics. We studied populations of Daphnia dentifera to determine the amount of investment in sexual reproduction as well as the factors associated with variation in investment in sex. To do so, we tracked host density, infections by nine different parasites, and sexual reproduction in 15 lake populations of D. dentifera for 3 years. Sexual reproduction was seasonal, with male and ephippial female production beginning as early as late September and generally increasing through November. However, there was substantial variation in the prevalence of sexual individuals across populations, with some populations remaining entirely asexual throughout the study period and others shifting almost entirely to sexual females and males. We found strong relationships between density, prevalence of infection, parasite species richness, and sexual reproduction in these populations. However, strong collinearity between density, parasitism, and sexual reproduction means that further work will be required to disentangle the causal mechanisms underlying these relationships.Lake populations of Daphnia varied substantially in investment in sex, with some populations reproducing entirely asexually throughout the study period and others shifting almost entirely to sexual reproduction by late autumn. We found that higher Daphnia density and parasitism were associated with greater investment in sex.
dc.publisherNational Library of Medicine
dc.publisherWiley Periodicals, Inc.
dc.subject.othermultiparasite
dc.subject.otherparasitism
dc.subject.otherpathogens
dc.subject.otherphenology
dc.subject.otherRed Queen
dc.subject.otherdensity
dc.subject.otherephippia
dc.titleDensity, parasitism, and sexual reproduction are strongly correlated in lake Daphnia populations
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168451/1/ece37847_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168451/2/ece37847.pdf
dc.identifier.doi10.1002/ece3.7847
dc.identifier.sourceEcology and Evolution
dc.identifier.citedreferenceMorran, L. T., Schmidt, O. G., Gelarden, I. A., Parrish, R. C. 2nd, & Lively, C. M. ( 2011 ). Running with the Red Queen: Host‐parasite coevolution selects for biparental sex. Science, 333, 216 – 218. https://doi.org/10.1126/science.1206360
dc.identifier.citedreferenceLynch, Z. R., Penley, M. J., & Morran, L. T. ( 2018 ). Turnover in local parasite populations temporarily favors host outcrossing over self‐fertilization during experimental evolution. Ecology and Evolution, 8, 6652 – 6662. https://doi.org/10.1002/ece3.4150
dc.identifier.citedreferenceMcKone, M., Gibson, A., Cook, D., Freymiller, L., Mishkind, D., Quinlan, A., York, J., Lively, C., & Neiman, M. ( 2016 ). Fine‐scale association between parasites and sex in Potamopyrgus antipodarum within a New Zealand lake. New Zealand Journal of Ecology, 40, 330 – 333. https://doi.org/10.20417/nzjecol.40.40
dc.identifier.citedreferenceMcLeod, D. V., & Day, T. ( 2014 ). Sexually transmitted infection and the evolution of serial monogamy. Proceedings of the Royal Society B: Biological Sciences, 281, 20141726. https://doi.org/10.1098/rspb.2014.1726
dc.identifier.citedreferenceMitchell, S. E., Read, A. F., & Little, T. J. ( 2004 ). The effect of a pathogen epidemic on the genetic structure and reproductive strategy of the crustacean Daphnia magna: Parasitic infection, sex and diversity. Ecology Letters, 7, 848 – 858. https://doi.org/10.1111/j.1461‐0248.2004.00639.x
dc.identifier.citedreferenceMuller, H. J. ( 1964 ). The relation of recombination to mutational advance. Mutation Research, 106, 2 – 9. https://doi.org/10.1016/0027‐5107(64)90047‐8
dc.identifier.citedreferenceNeiman, M., Lively, C. M., & Meirmans, S. ( 2017 ). Why sex? A pluralist approach revisited. Trends in Ecology & Evolution, 32, 589 – 600. https://doi.org/10.1016/j.tree.2017.05.004
dc.identifier.citedreferenceOtto, S. P. ( 2009 ). The evolutionary enigma of sex. American Naturalist, 174 ( Suppl. 1 ), S1 – S14. https://doi.org/10.1086/599084
dc.identifier.citedreferencePenczykowski, R. M., Hall, S. R., Civitello, D. J., & Duffy, M. A. ( 2014 ). Habitat structure and ecological drivers of disease. Limnology and Oceanography, 59, 340 – 348. https://doi.org/10.4319/lo.2014.59.2.0340
dc.identifier.citedreferencePoulsen, R., De Fine Licht, H. H., Hansen, M., & Cedergreen, N. ( 2021 ). Grandmother’s pesticide exposure revealed bi‐generational effects in Daphnia magna. Aquatic Toxicology, 236, 105861. https://doi.org/10.1016/j.aquatox.2021.105861
dc.identifier.citedreferenceRogalski, M. A., Stewart Merrill, T., Gowler, C. D., Cáceres, C. E., & Duffy, M. A. ( 2021 ). Context dependent host‐symbiont interactions: Shifts along the parasitism‐mutualism continuum. Authorea. https://doi.org/10.22541/au.162454903.33763984/v1
dc.identifier.citedreferenceRoth, O., Ebert, D., Vizoso, D. B., Bieger, A., & Lass, S. ( 2008 ). Male‐biased sex‐ratio distortion caused by Octosporea bayeri, a vertically and horizontally‐transmitted parasite of Daphnia magna. International Journal for Parasitology, 38, 969 – 979.
dc.identifier.citedreferenceSchrag, S. J., Mooers, A. O., Ndifon, G. T., & Read, A. F. ( 1994 ). Ecological correlates of male outcrossing ability in a simultaneous hermaphrodite snail. American Naturalist, 143, 636 – 655. https://doi.org/10.1086/285624
dc.identifier.citedreferenceShaw, C. L., Hall, S. R., Overholt, E. P., Cáceres, C. E., Williamson, C. E., & Duffy, M. A. ( 2020 ). Shedding light on environmentally transmitted parasites: Lighter conditions within lakes restrict epidemic size. Ecology, 101, e03168. https://doi.org/10.1002/ecy.3168
dc.identifier.citedreferenceSlowinski, S. P., Morran, L. T., Parrish, R. C. II, Cui, E. R., Bhattacharya, A., Lively, C. M., & Phillips, P. C. ( 2016 ). Coevolutionary interactions with parasites constrain the spread of self‐fertilization into outcrossing host populations. Evolution, 70, 2632 – 2639. https://doi.org/10.1111/evo.13048
dc.identifier.citedreferenceStelzer, C.‐P. ( 2011 ). The cost of sex and competition between cyclical and obligate parthenogenetic rotifers. American Naturalist, 177, E43 – E53. https://doi.org/10.1086/657685
dc.identifier.citedreferenceStelzer, C. P., & Snell, T. W. ( 2003 ). Induction of sexual reproduction in Brachionus plicatilis (Monogononta, Rotifera) by a density‐dependent chemical cue. Limnology and Oceanography, 48, 939 – 943.
dc.identifier.citedreferenceStrauss, A. T., Shocket, M. S., Civitello, D. J., Hite, J. L., Penczykowski, R. M., Duffy, M. A., Cáceres, C. E., & Hall, S. R. ( 2016 ). Habitat, predators, and hosts regulate disease in Daphnia through direct and indirect pathways. Ecological Monographs, 86, 393 – 411.
dc.identifier.citedreferenceStross, R. G., & Hill, J. C. ( 1965 ). Diapause induction in Daphnia requires two stimuli. Science, 150, 1462 – 1464. https://doi.org/10.1126/science.150.3702.1462
dc.identifier.citedreferenceTessier, A. J., & Cáceres, C. E. ( 2004 ). Differentiation in sex investment by clones and populations of Daphnia. Ecology Letters, 7, 695 – 703. https://doi.org/10.1111/j.1461‐0248.2004.00627.x
dc.identifier.citedreferenceTessier, A. J., & Woodruff, P. ( 2002 ). Cryptic trophic cascade along a gradient of lake size. Ecology, 83, 1263 – 1270. https://doi.org/10.1890/0012‐9658(2002)083[1263:CTCAAG]2.0.CO;2
dc.identifier.citedreferenceThrelkeld, S. T. ( 1979 ). The midsummer dynamics of two Daphnia species in wintergreen lake, Michigan. Ecology, 60, 165 – 179. https://doi.org/10.2307/1936478
dc.identifier.citedreferenceVergara, D., Jokela, J., & Lively, C. M. ( 2014 ). Infection dynamics in coexisting sexual and asexual host populations: Support for the Red Queen hypothesis. American Naturalist, 184, S22 – S30. https://doi.org/10.1086/676886
dc.identifier.citedreferenceVergara, D., Lively, C. M., King, K. C., & Jokela, J. ( 2013 ). The geographic mosaic of sex and infection in lake populations of a New Zealand snail at multiple spatial scales. American Naturalist, 182, 484 – 493. https://doi.org/10.1086/671996
dc.identifier.citedreferenceWale, N., Turrill, M. L., & Duffy, M. A. ( 2019 ). A colorful killer: Daphnia infected with the bacterium Spirobacillus cienkowskii exhibit unexpected color variation. Ecology, 100, e02562.
dc.identifier.citedreferenceWalsh, M. R. ( 2013 ). The link between environmental variation and evolutionary shifts in dormancy in zooplankton. Integrative and Comparative Biology, 53, 713 – 722. https://doi.org/10.1093/icb/ict035
dc.identifier.citedreferenceWalsh, M. R., & Post, D. M. ( 2012 ). The impact of intraspecific variation in a fish predator on the evolution of phenotypic plasticity and investment in sex in Daphnia ambigua. Journal of Evolutionary Biology, 25, 80 – 89. https://doi.org/10.1111/j.1420‐9101.2011.02403.x
dc.identifier.citedreferenceWolinska, J., King, K. C., Vigneux, F., & Lively, C. M. ( 2008 ). Virulence, cultivating conditions, and phylogenetic analyses of oomycete parasites in Daphnia. Parasitology, 135, 1667 – 1678.
dc.identifier.citedreferenceLynch, M., & Ennis, R. ( 1983 ). Resource availability, maternal effects, and longevity. Experimental Gerontology, 18, 147 – 165.
dc.identifier.citedreferenceAuld, S. K. J. R., Hall, S. R., & Duffy, M. A. ( 2012 ). Epidemiology of a Daphnia ‐multiparasite system and its implications for the Red Queen. PLoS One, 7, e39564.– https://doi.org/10.1371/journal.pone.0039564
dc.identifier.citedreferenceAuld, S. K. J. R., Tinkler, S. K., & Tinsley, M. C. ( 2016 ). Sex as a strategy against rapidly evolving parasites. Proceedings of the Royal Society B: Biological Sciences, 283, 20162226. https://doi.org/10.1098/rspb.2016.2226
dc.identifier.citedreferenceBen‐Ami, F., & Heller, J. ( 2005 ). Spatial and temporal patterns of parthenogenesis and parasitism in the freshwater snail Melanoides tuberculata. Journal of Evolutionary Biology, 18, 138 – 146. https://doi.org/10.1111/j.1420‐9101.2004.00791.x
dc.identifier.citedreferenceBerg, L., Pálsson, S., & Lascoux, M. ( 2001 ). Fitness and sexual response to population density in Daphnia pulex. Freshwater Biology, 46, 667 – 677.
dc.identifier.citedreferenceBrooks, J. L. ( 1957 ). The systematics of North American Daphnia. Memoirs of the Connecticut Academy of Arts & Sciences, 13, 1 – 180.
dc.identifier.citedreferenceBrooks, J. L., & Dodson, S. I. ( 1965 ). Predation, body size, and composition of plankton. Science, 150, 28 – 35.
dc.identifier.citedreferenceBurt, A. ( 2000 ). Sex, recombination, and the efficacy of selection – Was Weismann right? Evolution, 54, 337 – 351.
dc.identifier.citedreferenceBusch, J. W., Neiman, M., & Koslow, J. M. ( 2004 ). Evidence for maintenance of sex by pathogens in plants. Evolution, 58, 2584 – 2590. https://doi.org/10.1111/j.0014‐3820.2004.tb00886.x
dc.identifier.citedreferenceCáceres, C. E., Hartway, C., & Paczolt, K. A. ( 2009 ). Inbreeding depression varies with investment in sex in a facultative parthenogen. Evolution, 63, 2474 – 2480. https://doi.org/10.1111/j.1558‐5646.2009.00707.x
dc.identifier.citedreferenceCarius, H. J., Little, T. J., & Ebert, D. ( 2001 ). Genetic variation in a host‐parasite association: Potential for coevolution and frequency‐dependent selection. Evolution, 55, 1136 – 1145. https://doi.org/10.1111/j.0014‐3820.2001.tb00633.x
dc.identifier.citedreferenceDagan, Y., Liljeroos, K., Jokela, J., & Ben‐Ami, F. ( 2013 ). Clonal diversity driven by parasitism in a freshwater snail. Journal of Evolutionary Biology, 26, 2509 – 2519. https://doi.org/10.1111/jeb.12245
dc.identifier.citedreferenceDecaestecker, E., Gaba, S., Raeymaekers, J. A. M., Stoks, R., Van Kerckhoven, L., Ebert, D., & De Meester, L. ( 2007 ). Host–parasite “Red Queen” dynamics archived in pond sediment. Nature, 450, 870 – 873. https://doi.org/10.1038/nature06291
dc.identifier.citedreferenceDuffy, M. A., Brassil, C. E., Hall, S. R., Tessier, A. J., Cáceres, C. E., & Conner, J. K. ( 2008 ). Parasite‐mediated disruptive selection in a natural Daphnia population. BMC Evolutionary Biology, 8, 80. https://doi.org/10.1186/1471‐2148‐8‐80
dc.identifier.citedreferenceDuffy, M. A., Cáceres, C. E., Hall, S. R., Tessier, A. J., & Ives, A. R. ( 2010 ). Temporal, spatial, and between‐host comparisons of patterns of parasitism in lake zooplankton. Ecology, 91, 3322 – 3331. https://doi.org/10.1890/09‐1611.1
dc.identifier.citedreferenceDuffy, M. A., & Hall, S. R. ( 2008 ). Selective predation and rapid evolution can jointly dampen effects of virulent parasites on Daphnia populations. American Naturalist, 171, 499 – 510.
dc.identifier.citedreferenceDuffy, M. A., & Hunsberger, K. K. ( 2018 ). Infectivity is influenced by parasite spore age and exposure to freezing: Do shallow waters provide Daphnia a refuge from some parasites? Journal of Plankton Research, 41, 12 – 16.
dc.identifier.citedreferenceDuffy, M. A., James, T. Y., & Longworth, A. ( 2015 ). Ecology, virulence, and phylogeny of Blastulidium paedophthorum, a widespread brood parasite of Daphnia spp. Applied and Environment Microbiology, 81, 5486 – 5496.
dc.identifier.citedreferenceDuncan, A. B., & Little, T. J. ( 2007 ). Parasite‐driven genetic change in a natural population of Daphnia. Evolution, 61, 796 – 803. https://doi.org/10.1111/j.1558‐5646.2007.00072.x
dc.identifier.citedreferenceDuncan, A. B., Mitchell, S. E., & Little, T. J. ( 2006 ). Parasite‐mediated selection and the role of sex and diapause in Daphnia. Journal of Evolutionary Biology, 19, 1183 – 1189. https://doi.org/10.1111/j.1420‐9101.2006.01085.x
dc.identifier.citedreferenceEbert, D. ( 2005 ). Ecology, epidemiology, and evolution of parasitism in Daphnia. National Library of Medicine.
dc.identifier.citedreferenceEbert, D., Altermatt, F., & Lass, S. ( 2007 ). A short term benefit for outcrossing in a Daphnia metapopulation in relation to parasitism. Journal of the Royal Society, Interface, 4, 777 – 785.
dc.identifier.citedreferenceEbert, D., Duneau, D., Hall, M. D., Luijckx, P., Andras, J. P., Du Pasquier, L., & Ben‐Ami, F. ( 2016 ). Chapter five – A population biology perspective on the stepwise infection process of the bacterial pathogen Pasteuria ramosa in Daphnia. In D. Rollinson, & J. R. Stothard (Eds.), Advances in parasitology (pp. 265 – 310 ). Academic Press.
dc.identifier.citedreferenceEbert, D., Lipsitch, M., & Mangin, K. L. ( 2000 ). The effect of parasites on host population density and extinction: Experimental epidemiology with Daphnia and six microparasites. American Naturalist, 156, 459 – 477.
dc.identifier.citedreferenceGerber, N., & Kokko, H. ( 2018 ). Abandoning the ship using sex, dispersal or dormancy: Multiple escape routes from challenging conditions. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373, 20170424. https://doi.org/10.1098/rstb.2017.0424
dc.identifier.citedreferenceGerber, N., Kokko, H., Ebert, D., & Booksmythe, I. ( 2018 ). Daphnia invest in sexual reproduction when its relative costs are reduced. Proceedings of the Royal Society B: Biological Sciences, 285, 20172176. https://doi.org/10.1098/rspb.2017.2176
dc.identifier.citedreferenceGibson, A. K., Delph, L. F., Vergara, D., & Lively, C. M. ( 2018 ). Periodic, parasite‐mediated selection for and against sex. American Naturalist, 192, 537 – 551.
dc.identifier.citedreferenceGibson, A. K., & Lively, C. M. ( 2019 ). Chapter 2‐Genetic diversity and disease spread: Epidemiological models and empirical studies of a snail–trematode system. In K. Wilson, A. Fenton, & D. Tompkins (Eds.), Wildlife disease ecology: Linking theory to data and application (pp. 32 ‐ 57 ). British Ecological Society, Cambridge University Press.
dc.identifier.citedreferenceGilbert, J. J. ( 2020 ). Variation in the life cycle of monogonont rotifers: Commitment to sex and emergence from diapause. Freshwater Biology, 65, 786 – 810. https://doi.org/10.1111/fwb.13440
dc.identifier.citedreferenceGreen, J. ( 1974 ). Parasites and epibionts of Cladocera. The Transactions of the Zoological Society of London, 32, 417 – 515. https://doi.org/10.1111/j.1096‐3642.1974.tb00031.x
dc.identifier.citedreferenceHairston, N. G. Jr ( 1996 ). Zooplankton egg banks as biotic reservoirs in changing environments. Limnology and Oceanography, 41, 1087 – 1092. https://doi.org/10.4319/lo.1996.41.5.1087
dc.identifier.citedreferenceHaltiner, L., Hänggi, C., Spaak, P., & Dennis, S. R. ( 2020 ). Sex in crowded places: Population density regulates reproductive strategy. Hydrobiologia, 847, 1727 – 1738. https://doi.org/10.1007/s10750‐019‐04143‐7
dc.identifier.citedreferenceHite, J. L., Penczykowski, R. M., Shocket, M. S., Griebel, K. A., Strauss, A. T., Duffy, M. A., Cáceres, C. E., & Hall, S. R. ( 2017 ). Allocation, not male resistance, increases male frequency during epidemics: A case study in facultatively sexual hosts. Ecology, 98, 2773 – 2783. https://doi.org/10.1002/ecy.1976
dc.identifier.citedreferenceJaenike, J. ( 1978 ). An hypothesis to account for the maintenance of sex within populations. Evolutionary Theory, 3, 191 – 194.
dc.identifier.citedreferenceJohnson, P. T. J., Ives, A. R., Lathrop, R. C., & Carpenter, S. R. ( 2009 ). Long‐term disease dynamics in lakes: Causes and consequences of chytrid infections in Daphnia populations. Ecology, 90, 132 – 144.
dc.identifier.citedreferenceKerfoot, W. C., Levitan, C., & DeMott, W. R. ( 1988 ). Daphnia ‐phytoplankton interactions: Density‐dependent shifts in resource quality. Ecology, 69, 1806 – 1825. https://doi.org/10.2307/1941159
dc.identifier.citedreferenceKing, K. C., Auld, S., Wilson, P. J., James, J., & Little, T. J. ( 2013 ). The bacterial parasite Pasteuria ramosa is not killed if it fails to infect: Implications for coevolution. Ecology and Evolution, 3, 197 – 203.
dc.identifier.citedreferenceKing, K. C., Delph, L. F., Jokela, J., & Lively, C. M. ( 2009 ). The geographic mosaic of sex and the Red Queen. Current Biology, 19, 1438 – 1441. https://doi.org/10.1016/j.cub.2009.06.062
dc.identifier.citedreferenceKitchell, J. A., & Kitchell, J. F. ( 1980 ). Size‐selective predation, light transmission, and oxygen stratification – Evidence from the recent sediments of manipulated lakes. Limnology and Oceanography, 25, 389 – 402.
dc.identifier.citedreferenceKokko, H. ( 2020 ). When synchrony makes the best of both worlds even better: How well do we really understand facultative sex? American Naturalist, 195, 380 – 392. https://doi.org/10.1086/706812
dc.identifier.citedreferenceKondrashov, A. S. ( 1984 ). Deleterious mutations as an evolutionary factor. 1. The advantage of recombination. Genetical Research, 44, 199 – 217. https://doi.org/10.1017/S0016672300026392
dc.identifier.citedreferenceLarsson, P. ( 1991 ). Intraspecific variability in response to stimuli for male and ephippia formation in Daphnia pulex. Hydrobiologia, 225, 281 – 290. https://doi.org/10.1007/BF00028406
dc.identifier.citedreferenceLittle, T. J., O’Connor, B., Colegrave, N., Watt, K., & Read, A. F. ( 2003 ). Maternal transfer of strain‐specific immunity in an invertebrate. Current Biology, 13, 489 – 492. https://doi.org/10.1016/S0960‐9822(03)00163‐5
dc.identifier.citedreferenceLively, C. M. ( 1987 ). Evidence from a New Zealand snail for the maintenance of sex by parasitism. Nature, 328, 519 – 521. https://doi.org/10.1038/328519a0
dc.identifier.citedreferenceLively, C. M. ( 2010 ). A review of Red Queen models for the persistence of obligate sexual reproduction. Journal of Heredity, 101 ( Suppl 1 ), S13 – S20. https://doi.org/10.1093/jhered/esq010
dc.identifier.citedreferenceLively, C. M., & Dybdahl, M. F. ( 2000 ). Parasite adaptation to locally common host genotypes. Nature, 405, 679 – 681. https://doi.org/10.1038/35015069
dc.identifier.citedreferenceLively, C. M., & Morran, L. T. ( 2014 ). The ecology of sexual reproduction. Journal of Evolutionary Biology, 27, 1292 – 1303. https://doi.org/10.1111/jeb.12354
dc.identifier.citedreferenceLu, Y., Ocaña‐Pallarès, E., López‐Escardó, D., Dennis, S. R., Monaghan, M. T., Ruiz‐Trillo, I., Spaak, P., & Wolinska, J. ( 2020 ). Revisiting the phylogenetic position of Caullerya mesnili (Ichthyosporea), a common Daphnia parasite, based on 22 protein‐coding genes. Molecular Phylogenetics and Evolution, 151, 106891.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.