Show simple item record

Relationships between highly recurrent tumor suppressor alterations in 489 leiomyosarcomas

dc.contributor.authorSchaefer, Inga‐marie
dc.contributor.authorLundberg, Meijun Z.
dc.contributor.authorDemicco, Elizabeth G.
dc.contributor.authorPrzybyl, Joanna
dc.contributor.authorMatusiak, Magdalena
dc.contributor.authorChibon, Frédéric
dc.contributor.authorIngram, Davis R.
dc.contributor.authorHornick, Jason L.
dc.contributor.authorWang, Wei‐lien
dc.contributor.authorBauer, Sebastian
dc.contributor.authorBaker, Laurence H.
dc.contributor.authorLazar, Alexander J.
dc.contributor.authorRijn, Matt
dc.contributor.authorMariño‐enríquez, Adrian
dc.contributor.authorFletcher, Jonathan A.
dc.date.accessioned2021-08-03T18:14:41Z
dc.date.available2022-09-03 14:14:40en
dc.date.available2021-08-03T18:14:41Z
dc.date.issued2021-08-01
dc.identifier.citationSchaefer, Inga‐marie ; Lundberg, Meijun Z.; Demicco, Elizabeth G.; Przybyl, Joanna; Matusiak, Magdalena; Chibon, Frédéric ; Ingram, Davis R.; Hornick, Jason L.; Wang, Wei‐lien ; Bauer, Sebastian; Baker, Laurence H.; Lazar, Alexander J.; Rijn, Matt; Mariño‐enríquez, Adrian ; Fletcher, Jonathan A. (2021). "Relationships between highly recurrent tumor suppressor alterations in 489 leiomyosarcomas." Cancer (15): 2666-2673.
dc.identifier.issn0008-543X
dc.identifier.issn1097-0142
dc.identifier.urihttps://hdl.handle.net/2027.42/168454
dc.publisherWorld Health Organization
dc.publisherWiley Periodicals, Inc.
dc.subject.otherimmunohistochemistry
dc.subject.othersoft tissue
dc.subject.otheruterine
dc.subject.otheruterus
dc.subject.otherleiomyosarcoma (LMS)
dc.subject.otherbiomarker
dc.subject.othercell cycle
dc.subject.otherDNA damage repair
dc.titleRelationships between highly recurrent tumor suppressor alterations in 489 leiomyosarcomas
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelOncology and Hematology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168454/1/cncr33542.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168454/2/cncr33542_am.pdf
dc.identifier.doi10.1002/cncr.33542
dc.identifier.sourceCancer
dc.identifier.citedreferenceRomagosa C, Simonetti S, Lopez- Vicente L, et al. p16(Ink4a) overexpression in cancer: a tumor suppressor gene associated with senescence and high- grade tumors. Oncogene. 2011; 30: 2087 - 2097.
dc.identifier.citedreferenceBohm MJ, Marienfeld R, Jager D, et al. Analysis of the CDK4/6 cell cycle pathway in leiomyosarcomas as a potential target for inhibition by palbociclib. Sarcoma. 2019; 2019: 3914232.
dc.identifier.citedreferenceOgnjanovic S, Olivier M, Bergemann TL, Hainaut P. Sarcomas in TP53 germline mutation carriers: a review of the IARC TP53 database. Cancer. 2012; 118: 1387 - 1396.
dc.identifier.citedreferenceToro JR, Travis LB, Wu HJ, Zhu K, Fletcher CD, Devesa SS. Incidence patterns of soft tissue sarcomas, regardless of primary site, in the Surveillance, Epidemiology and End Results program, 1978- 2001: an analysis of 26,758 cases. Int J Cancer. 2006; 119: 2922 - 2930.
dc.identifier.citedreferenceMastrangelo G, Coindre JM, Ducimetiere F, et al. Incidence of soft tissue sarcoma and beyond: a population- based prospective study in 3 European regions. Cancer. 2012; 118: 5339 - 5348.
dc.identifier.citedreferenceWHO Classification of Tumours Editorial Board. Soft Tissue and Bone Tumours. 5 th ed. World Health Organization; 2020. WHO Classification of Tumours, vol 3.
dc.identifier.citedreferenceWHO Classification of Tumours Editorial Board. Tumours of Female Reproductive Organs. 4 th ed. World Health Organization; 2014. WHO Classification of Tumours, vol 6.
dc.identifier.citedreferenceSeagle BL, Sobecki- Rausch J, Strohl AE, Shilpi A, Grace A, Shahabi S. Prognosis and treatment of uterine leiomyosarcoma: a National Cancer Database study. Gynecol Oncol. 2017; 145: 61 - 70.
dc.identifier.citedreferenceSchaefer IM, Fletcher CD. Diagnostically challenging spindle cell neoplasms of the retroperitoneum. Surg Pathol Clin. 2015; 8: 353 - 374.
dc.identifier.citedreferenceLusby K, Savannah KB, Demicco EG, et al. Uterine leiomyosarcoma management, outcome, and associated molecular biomarkers: a single institution’s experience. Ann Surg Oncol. 2013; 20: 2364 - 2372.
dc.identifier.citedreferenceDemicco EG, Boland GM, Brewer Savannah KJ, et al. Progressive loss of myogenic differentiation in leiomyosarcoma has prognostic value. Histopathology. 2015; 66: 627 - 638.
dc.identifier.citedreferenceGuo X, Jo VY, Mills AM, et al. Clinically relevant molecular subtypes in leiomyosarcoma. Clin Cancer Res. 2015; 21: 3501 - 3511.
dc.identifier.citedreferenceItaliano A, Lagarde P, Brulard C, et al. Genetic profiling identifies two classes of soft- tissue leiomyosarcomas with distinct clinical characteristics. Clin Cancer Res. 2013; 19: 1190 - 1196.
dc.identifier.citedreferenceLee CH, Espinosa I, Vrijaldenhoven S, et al. Prognostic significance of macrophage infiltration in leiomyosarcomas. Clin Cancer Res. 2008; 14: 1423 - 1430.
dc.identifier.citedreferenceEspinosa I, Beck AH, Lee CH, et al. Coordinate expression of colony- stimulating factor- 1 and colony- stimulating factor- 1- related proteins is associated with poor prognosis in gynecological and nongynecological leiomyosarcoma. Am J Pathol. 2009; 174: 2347 - 2356.
dc.identifier.citedreferencevan der Graaf WT, Blay JY, Chawla SP, et al. Pazopanib for metastatic soft- tissue sarcoma (PALETTE): a randomised, double- blind, placebo- controlled phase 3 trial. Lancet. 2012; 379: 1879 - 1886.
dc.identifier.citedreferenceCollins IM, Thomas DM. Novel approaches to treatment of leiomyosarcomas. Curr Oncol Rep. 2011; 13: 316 - 322.
dc.identifier.citedreferenceVan Glabbeke M, van Oosterom AT, Oosterhuis JW, et al. Prognostic factors for the outcome of chemotherapy in advanced soft tissue sarcoma: an analysis of 2185 patients treated with anthracycline- containing first- line regimens- a European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group Study. J Clin Oncol. 1999; 17: 150 - 157.
dc.identifier.citedreferenceKaravasilis V, Seddon BM, Ashley S, Al- Muderis O, Fisher C, Judson I. Significant clinical benefit of first- line palliative chemotherapy in advanced soft- tissue sarcoma: retrospective analysis and identification of prognostic factors in 488 patients. Cancer. 2008; 112: 1585 - 1591.
dc.identifier.citedreferenceDemetri GD, Chawla SP, von Mehren M, et al. Efficacy and safety of trabectedin in patients with advanced or metastatic liposarcoma or leiomyosarcoma after failure of prior anthracyclines and ifosfamide: results of a randomized phase II study of two different schedules. J Clin Oncol. 2009; 27: 4188 - 4196.
dc.identifier.citedreferenceChudasama P, Mughal SS, Sanders MA, et al. Integrative genomic and transcriptomic analysis of leiomyosarcoma. Nat Commun. 2018; 9: 144.
dc.identifier.citedreferenceCancer Genome Atlas Research Network. Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell. 2017; 171: 950 - 965.e28.
dc.identifier.citedreferencePerot G, Chibon F, Montero A, et al. Constant p53 pathway inactivation in a large series of soft tissue sarcomas with complex genetics. Am J Pathol. 2010; 177: 2080 - 2090.
dc.identifier.citedreferenceElvin JA, Gay LM, Ort R, et al. Clinical benefit in response to palbociclib treatment in refractory uterine leiomyosarcomas with a common CDKN2A alteration. Oncologist. 2017; 22: 416 - 421.
dc.identifier.citedreferenceLeitao MM Jr, Hensley ML, Barakat RR, et al. Immunohistochemical expression of estrogen and progesterone receptors and outcomes in patients with newly diagnosed uterine leiomyosarcoma. Gynecol Oncol. 2012; 124: 558 - 562.
dc.identifier.citedreferenceBrewer Savannah KJ, Demicco EG, Lusby K, et al. Dual targeting of mTOR and aurora- A kinase for the treatment of uterine leiomyosarcoma. Clin Cancer Res. 2012; 18: 4633 - 4645.
dc.identifier.citedreferenceLux ML, Rubin BP, Biase TL, et al. KIT extracellular and kinase domain mutations in gastrointestinal stromal tumors. Am J Pathol. 2000; 156: 791 - 795.
dc.identifier.citedreferenceVenkatraman L, Goepel JR, Steele K, Dobbs SP, Lyness RW, McCluggage WG. Soft tissue, pelvic, and urinary bladder leiomyosarcoma as second neoplasm following hereditary retinoblastoma. J Clin Pathol. 2003; 56: 233 - 236.
dc.identifier.citedreferenceKleinerman RA, Tucker MA, Abramson DH, Seddon JM, Tarone RE, Fraumeni JF Jr. Risk of soft tissue sarcomas by individual subtype in survivors of hereditary retinoblastoma. J Natl Cancer Inst. 2007; 99: 24 - 31.
dc.identifier.citedreferenceFrancis JH, Kleinerman RA, Seddon JM, Abramson DH. Increased risk of secondary uterine leiomyosarcoma in hereditary retinoblastoma. Gynecol Oncol. 2012; 124: 254 - 259.
dc.identifier.citedreferenceTan MH, Mester JL, Ngeow J, Rybicki LA, Orloff MS, Eng C. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012; 18: 400 - 407.
dc.identifier.citedreferenceGoldstein AM, Fraser MC, Struewing JP, et al. Increased risk of pancreatic cancer in melanoma- prone kindreds with p16 INK4 mutations. N Engl J Med. 1995; 333: 970 - 974.
dc.identifier.citedreferenceFlesken- Nikitin A, Choi KC, Eng JP, Shmidt EN, Nikitin AY. Induction of carcinogenesis by concurrent inactivation of p53 and Rb1 in the mouse ovarian surface epithelium. Cancer Res. 2003; 63: 3459 - 3463.
dc.identifier.citedreferenceZhou Z, Flesken- Nikitin A, Corney DC, et al. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res. 2006; 66: 7889 - 7898.
dc.identifier.citedreferenceNyquist MD, Corella A, Coleman I, et al. Combined TP53 and RB1 loss promotes prostate cancer resistance to a spectrum of therapeutics and confers vulnerability to replication stress. Cell Rep. 2020; 31: 107669.
dc.identifier.citedreferenceFletcher JA, Morton CC, Pavelka K, Lage JM. Chromosome aberrations in uterine smooth muscle tumors: potential diagnostic relevance of cytogenetic instability. Cancer Res. 1990; 50: 4092 - 4097.
dc.identifier.citedreferenceZhao H, Iqbal NJ, Sukrithan V, et al. Targeted inhibition of the E3 ligase SCF Skp2/Cks1 has antitumor activity in RB1- deficient human and mouse small- cell lung cancer. Cancer Res. 2020; 80: 2355 - 2367.
dc.identifier.citedreferenceOser MG, Fonseca R, Chakraborty AA, et al. Cells lacking the RB1 tumor suppressor gene are hyperdependent on aurora B kinase for survival. Cancer Discov. 2019; 9: 230 - 247.
dc.identifier.citedreferenceGong X, Du J, Parsons SH, et al. Aurora A kinase inhibition is synthetic lethal with loss of the RB1 tumor suppressor gene. Cancer Discov. 2019; 9: 248 - 263.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.