Show simple item record

Task group 284 report: magnetic resonance imaging simulation in radiotherapy: considerations for clinical implementation, optimization, and quality assurance

dc.contributor.authorGlide‐hurst, Carri K.
dc.contributor.authorPaulson, Eric S.
dc.contributor.authorMcGee, Kiaran
dc.contributor.authorTyagi, Neelam
dc.contributor.authorHu, Yanle
dc.contributor.authorBalter, James
dc.contributor.authorBayouth, John
dc.date.accessioned2021-08-03T18:14:56Z
dc.date.available2022-08-03 14:14:55en
dc.date.available2021-08-03T18:14:56Z
dc.date.issued2021-07
dc.identifier.citationGlide‐hurst, Carri K. ; Paulson, Eric S.; McGee, Kiaran; Tyagi, Neelam; Hu, Yanle; Balter, James; Bayouth, John (2021). "Task group 284 report: magnetic resonance imaging simulation in radiotherapy: considerations for clinical implementation, optimization, and quality assurance." Medical Physics (7): e636-e670.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/168462
dc.publisherSpringer Science & Business Media
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMR- SIM
dc.subject.otherradiotherapy
dc.subject.otherquality assurance
dc.subject.othermagnetic resonance simulation
dc.titleTask group 284 report: magnetic resonance imaging simulation in radiotherapy: considerations for clinical implementation, optimization, and quality assurance
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168462/1/mp14695.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168462/2/mp14695_am.pdf
dc.identifier.doi10.1002/mp.14695
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceAlsop DC. Phase insensitive preparation of single- shot RARE: application to diffusion imaging in humans. Magn Reson Med. 1997; 38: 527 - 533.
dc.identifier.citedreferenceWoolrich MW, Jbabdi S, Patenaude B, et al. Bayesian analysis of neuroimaging data in FSL. NeuroImage. 2009; 45: S173 - 186.
dc.identifier.citedreferenceJenkinson M, Beckmann CF, Behrens T, Woolrich MW, Smith SM. FSL. NeuroImage. 2012; 62: 782 - 790.
dc.identifier.citedreferenceBaldwin LN, Wachowicz K, Fallone BG. A two- step scheme for distortion rectification of magnetic resonance images. Med Phys. 2009; 36: 3917 - 3926.
dc.identifier.citedreferenceGach HM, Curcuru AN, Mutic S, Kim T. B0 field homogeneity recommendations, specifications, and measurement units for MRI in radiation therapy. Med Phys. 2020; 47: 4101 - 4114.
dc.identifier.citedreferenceHoldsworth SJ, Skare S, Newbould RD, Guzmann R, Blevins NH, Bammer R. Readout- segmented EPI for rapid high resolution diffusion imaging at 3T. Eur J Radiol. 2008; 65: 36 - 46.
dc.identifier.citedreferenceSled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging. 1998; 17: 87 - 97.
dc.identifier.citedreferencePipe JG, Farthing VG, Forbes KP. Multishot diffusion- weighted FSE using PROPELLER MRI. Magn Reson Med. 2002; 47: 42 - 52.
dc.identifier.citedreferenceMcGee KP, Stormont RS, Lindsay SA, et al. Characterization and evaluation of a flexible MRI receive coil array for radiation therapy MR treatment planning using highly decoupled RF circuits. Phys Med Biol. 2018; 63: 8NT02.
dc.identifier.citedreferenceKim J, Glide- Hurst C, Doemer A, Wen N, Movsas B, Chetty IJ. Implementation of a novel algorithm for generating synthetic CT images from magnetic resonance imaging data sets for prostate cancer radiation therapy. Int J Radiat Oncol Biol Phys. 2015; 91: 39 - 47.
dc.identifier.citedreferenceEdmund JM, Nyholm T. A review of substitute CT generation for MRI- only radiation therapy. Radiat Oncol. 2017; 12: 28.
dc.identifier.citedreferenceJohnstone E, Wyatt JJ, Henry AM, et al. A systematic review of synthetic CT generation methodologies for use in MRI- only radiotherapy. Int J Radiat Oncol Biol Phys. 2018; 100: 199 - 217.
dc.identifier.citedreferenceEmami H, Dong M, Nejad- Davarani SP, Glide- Hurst CK. Generating synthetic CTs from magnetic resonance images using generative adversarial networks. Med Phys. 2018; 45: 3627 - 3636.
dc.identifier.citedreferenceWolterink JM, Dinkla AM, Savenije MH, Seevinck PR, van den Berg CA, IÅ¡gum I. Deep MR to CT synthesis using unpaired data. Paper presented at: International Workshop on Simulation and Synthesis in Medical Imaging; 2017.
dc.identifier.citedreferenceDickie C, Parent A, Griffin AM, et al. The value of adaptive preoperative radiotherapy in management of soft tissue sarcoma. Radiother Oncol. 2017; 122: 458 - 463.
dc.identifier.citedreferenceChen S, Qin A, Zhou D, Yan D. U- net- generated synthetic CT images for magnetic resonance imaging- only prostate intensity- modulated radiation therapy treatment planning. Med Phys. 2018; 45: 5659 - 5665.
dc.identifier.citedreferenceTyagi N, Fontenla S, Zhang J, et al. Dosimetric and workflow evaluation of first commercial synthetic CT software for clinical use in pelvis. Phys Med Biol. 2017; 62: 2961 - 2975.
dc.identifier.citedreferenceSiversson C, Nordström F, Nilsson T, et al. Technical Note: MRI only prostate radiotherapy planning using the statistical decomposition algorithm. Med Phys. 2015; 42: 6090 - 6097.
dc.identifier.citedreferenceWalz- Flannigan A, Weiser J, Goode AR, et al. Summary of the AAPM task group 248 report: interoperability assessment for the commissioning of medical imaging acquisition systems. Med Phys. 2019; 46: e671 - e677.
dc.identifier.citedreferenceMcJury M, O’Neill A, Lawson M, et al. Assessing the image quality of pelvic MR images acquired with a flat couch for radiotherapy treatment planning. Br J Radiol. 2011; 84: 750 - 755.
dc.identifier.citedreferenceSun J, Pichler P, Dowling J, et al. MR simulation for prostate radiation therapy: effect of coil mounting position on image quality. Br J Radiol. 2014; 87: 20140325.
dc.identifier.citedreferenceSun J, Dowling JA, Pichler P, et al. Investigation on the performance of dedicated radiotherapy positioning devices for MR scanning for prostate planning. J Appl Clin Med Phys. 2015; 16: 4848.
dc.identifier.citedreferenceSignificant Risk and Nonsignificant Risk Medical Device Studies. In. Silver Spring, MD: U.S. Department of Health and Human Services; 2006: 15.
dc.identifier.citedreferenceInternational Electrotechnical Commission (IEC) 60601- 2- 33. Medical electrical equipment- Part 2- 33: Particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis. 2010.
dc.identifier.citedreferenceBottomley PA. Turning up the heat on MRI. J Am Coll Radiol. 2008; 5: 853 - 855.
dc.identifier.citedreferenceTadic T, Jaffray DA, Stanescu T. Harmonic analysis for the characterization and correction of geometric distortion in MRI. Med Phys. 2014; 41: 112303.
dc.identifier.citedreferenceFraass B, Doppke K, Hunt M, et al. American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: quality assurance for clinical radiotherapy treatment planning. Med Phys. 1998; 25: 1773 - 1829.
dc.identifier.citedreferenceBrock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017; 44: e43 - e76.
dc.identifier.citedreferenceOch JG, Clarke GD, Sobol WT, Rosen CW, Mun SK. Acceptance testing of magnetic resonance imaging systems: Report of AAPM Nuclear Magnetic Resonance Task Group No. 6. Med Phys. 1992; 19: 217 - 229.
dc.identifier.citedreferenceDiffusion Weighted Imaging (DWI) MR Biomarker Committee. QIBA Profile: Diffusion- Weighted Magnetic Resonance Imaging (DWI), Quantitative Imaging Biomarkers Alliance. Profile Stage: Public Comment Closed. Available from: http://qibawiki.rsna.org/images/7/7d/QIBADWIProfilev1.45_20170427_v5_accepted_linenumbers.pdf
dc.identifier.citedreferenceThe American College of Radiology. Phantom Test Guidance for Use of the Large MRI Phantom for the American College of Radiology MRI Accreditation Program, Reston, VA. ( 2018 ) Available online: https://www.acraccreditation.org/- /media/ACRAccreditation/Documents/MRI/LargePhantomGuidance.pdf
dc.identifier.citedreferencePrice R, Allison J, Clarke G, et al. American College of Radiology MRI Quality Control Manual. 2015.
dc.identifier.citedreferenceDoemer A, Chetty IJ, Glide- Hurst C, et al. Evaluating organ delineation, dose calculation and daily localization in an open- MRI simulation workflow for prostate cancer patients. Radiat Oncol. 2015; 10: 37.
dc.identifier.citedreferenceNjeh CF. Tumor delineation: the weakest link in the search for accuracy in radiotherapy. J Med Phys. 2008; 33: 136.
dc.identifier.citedreferenceKhoo VS, Joon DL. New developments in MRI for target volume delineation in radiotherapy. Br J Radiol. 2006; 79: S2 - S15.
dc.identifier.citedreferenceJenkinson M. A fast, automated, n- dimensional phase unwrapping algorithm. Magn Reson Med. 2003; 49: 193 - 197.
dc.identifier.citedreferenceDimopoulos JCA, Schard G, Berger D, et al. Systematic evaluation of MRI findings in different stages of treatment of cervical cancer: potential of MRI on delineation of target, pathoanatomic structures, and organs at risk. Int J Radiat Oncol Biol Phys. 2006; 64: 1380 - 1388.
dc.identifier.citedreferenceDebois M, Oyen R, Maes F, et al. The contribution of magnetic resonance imaging to the three- dimensional treatment planning of localized prostate cancer. Int J Radiat Oncol Biol Phys. 1999; 45: 857 - 865.
dc.identifier.citedreferenceJansen EPM, Dewit LGH, van Herk M, Bartelink H. Target volumes in radiotherapy for high- grade malignant glioma of the brain. Radiother Oncol. 2000; 56: 151 - 156.
dc.identifier.citedreferenceWhitfield GA, Kennedy SR, Djoukhadar IK, Jackson A. Imaging and target volume delineation in glioma. Clin Oncol (R Coll Radiol). 2014; 26: 364 - 376.
dc.identifier.citedreferenceHaie- Meder C, Pötter R, Van Limbergen E, et al. Recommendations from Gynaecological (GYN) GEC- ESTRO Working Group- (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005; 74: 235 - 245.
dc.identifier.citedreferencePötter R, Haie- Meder C, Limbergen EV, et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image- based treatment planning in cervix cancer brachytherapy- 3D dose volume parameters and aspects of 3D image- based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006; 78: 67 - 77.
dc.identifier.citedreferenceWeiss E, Richter S, Krauss T, et al. Conformal radiotherapy planning of cervix carcinoma: differences in the delineation of the clinical target volume: a comparison between gynaecologic and radiation oncologists. Radiother Oncol. 2003; 67: 87 - 95.
dc.identifier.citedreferenceSteenbakkers RJHM, Deurloo KEI, Nowak PJCM, Lebesque JV, van Herk M, Rasch CRN. Reduction of dose delivered to the rectum and bulb of the penis using MRI delineation for radiotherapy of the prostate. Int J Radiat Oncol Biol Phys. 2003; 57: 1269 - 1279.
dc.identifier.citedreferenceSannazzari G, Ragona R, Ruo Redda M, Giglioli F, Isolato G, Guarneri A. CT- MRI image fusion for delineation of volumes in three- dimensional conformal radiation therapy in the treatment of localized prostate cancer. Br J Radiol. 2002; 75: 603 - 607.
dc.identifier.citedreferenceKrempien RC, Schubert K, Zierhut D, et al. Open low- field magnetic resonance imaging in radiation therapy treatment planning. Int J Radiat Oncol Biol Phys. 2002; 53: 1350 - 1360.
dc.identifier.citedreferenceBuyyounouski MK, Horwitz EM, Price RA, Hanlon AL, Uzzo RG, Pollack A. Intensity- modulated radiotherapy with MRI simulation to reduce doses received by erectile tissue during prostate cancer treatment. Int J Radiat Oncol Biol Phys. 2004; 58: 743 - 749.
dc.identifier.citedreferenceMcLaughlin PW, Narayana V, Meirowitz A, et al. Vessel- sparing prostate radiotherapy: dose limitation to critical erectile vascular structures (internal pudendal artery and corpus cavernosum) defined by MRI. Int J Radiat Oncol Biol Phys. 2005; 61: 20 - 31.
dc.identifier.citedreferencePötter R, Dimopoulos J, Georg P, et al. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol. 2007; 83: 148 - 155.
dc.identifier.citedreferenceOwrangi AM, Greer PB, Glide- Hurst CK. MRI- only treatment planning: benefits and challenges. Phys Med Biol. 2018; 63: 5TR01.
dc.identifier.citedreferenceSchmidt MA, Payne GS. Radiotherapy planning using MRI. Phys Med Biol. 2015; 60: R323.
dc.identifier.citedreferenceBauman G, Haider M, Van der Heide UA, Ménard C. Boosting imaging defined dominant prostatic tumors: a systematic review. Radiother Oncol. 2013; 107: 274 - 281.
dc.identifier.citedreferenceIppolito E, Mantini G, Morganti AG, et al. Intensity- modulated radiotherapy with simultaneous integrated boost to dominant intraprostatic lesion: preliminary report on toxicity. Am J Clin Oncol. 2012; 35: 158 - 162.
dc.identifier.citedreferenceLips IM, van der Heide UA, Haustermans K, et al. Single blind randomized phase III trial to investigate the benefit of a focal lesion ablative microboost in prostate cancer (FLAME- trial): study protocol for a randomized controlled trial. Trials. 2011; 12: 255.
dc.identifier.citedreferencevan Herk M, Kooy HM. Automatic three- dimensional correlation of CT- CT, CT- MRI, and CT- SPECT using chamfer matching. Med Phys. 1994; 21: 1163 - 1178.
dc.identifier.citedreferenceUlin K, Urie MM, Cherlow JM. Results of a multi- institutional benchmark test for cranial CT/MR image registration. Int J Rad Oncol Biol Phys. 2010; 77: 1584 - 1589.
dc.identifier.citedreferenceDean CJ, Sykes JR, Cooper RA, et al. An evaluation of four CT- MRI co- registration techniques for radiotherapy treatment planning of prone rectal cancer patients. Br J Radiol. 2012; 85: 61 - 68.
dc.identifier.citedreferenceKorsager AS, Carl J, Riis OL. Comparison of manual and automatic MR- CT registration for radiotherapy of prostate cancer. J Appl Clin Med Phys. 2016; 17: 294 - 303.
dc.identifier.citedreferenceBrock KK. Results of a multi- institution deformable registration accuracy study (MIDRAS). Int J Rad Oncol Biol Phys. 2010; 76: 583 - 596.
dc.identifier.citedreferenceVan Herk M. Errors and margins in radiotherapy. Semin Radiat Oncol. 2004; 14: 52 - 64.
dc.identifier.citedreferenceAdjeiwaah M, Bylund M, Lundman JA, Karlsson CT, Jonsson JH, Nyholm T. Quantifying the effect of 3T magnetic resonance imaging residual system distortions and patient- induced susceptibility distortions on radiation therapy treatment planning for prostate cancer. Int J Radiat Oncol Biol Phys. 2018; 100: 317 - 324.
dc.identifier.citedreferenceWang H, Balter J, Cao Y. Patient- induced susceptibility effect on geometric distortion of clinical brain MRI for radiation treatment planning on a 3T scanner. Phys Med Biol. 2013; 58: 465.
dc.identifier.citedreferencePappas EP, Alshanqity M, Moutsatsos A, et al. MRI- related geometric distortions in stereotactic radiotherapy treatment planning: evaluation and dosimetric impact. Technol Cancer Res Treat. 2017; 16: 1120 - 1129.
dc.identifier.citedreferenceWalker A, Metcalfe P, Liney G, et al. MRI geometric distortion: Impact on tangential whole- breast IMRT. J Appl Clin Med Phys. 2016; 17: 7 - 19.
dc.identifier.citedreferencePrice RG, Kadbi M, Kim J, Balter J, Chetty IJ, Glide- Hurst CK. Technical Note: Characterization and correction of gradient nonlinearity induced distortion on a 1.0 T open bore MR- SIM. Med Phys. 2015; 42: 5955 - 5960.
dc.identifier.citedreferencePaulson ES, Erickson B, Schultz C, Li XA. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning. Med Phys. 2015; 42: 28 - 39.
dc.identifier.citedreferenceMetcalfe P, Liney GP, Holloway L, et al. The potential for an enhanced role for MRI in radiation- therapy treatment planning. Technol Cancer Res Treat. 2013; 12: 429 - 446.
dc.identifier.citedreferenceMah D, Steckner M, Palacio E, Mitra R, Richardson T, Hanks GE. Characteristics and quality assurance of a dedicated open 0.23 T MRI for radiation therapy simulation. Med Phys. 2002; 29: 2541 - 2547.
dc.identifier.citedreferencePrice RG, Knight RA, Hwang K, Bayram E, Nejad- Davarani SP, Glide- Hurst CK. Optimization of a novel large field of view distortion phantom for MR- only treatment planning. J Appl Clin Med Phys. 2017; 18: 51 - 61.
dc.identifier.citedreferenceFrayne R, Goodyear BG, Dickhoff P, Lauzon ML, Sevick RJ. Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Invest Radiol. 2003; 38: 385 - 402.
dc.identifier.citedreferenceRutt BK, Lee DH. The impact of field strength on image quality in MRI. J Magn Reson Imaging. 1996; 6: 57 - 62.
dc.identifier.citedreferenceWood R, Bassett K, Foerster V, Spry C, Tong L. 1.5 tesla magnetic resonance imaging scanners compared with 3.0 tesla magnetic resonance imaging scanners: systematic review of clinical effectiveness. CADTH Technol Overv. 2012; 2: e2201.
dc.identifier.citedreferenceLagendijk JJ, Raaymakers BW, Van den Berg CA, Moerland MA, Philippens ME, Van Vulpen M. MR guidance in radiotherapy. Phys Med Biol. 2014; 59: R349.
dc.identifier.citedreferenceGlide- Hurst CK, Wen N, Hearshen D, et al. Initial clinical experience with a radiation oncology dedicated open 1.0 T MR- simulation. J Appl Clin Med Phys. 2015; 16: 218 - 240.
dc.identifier.citedreferenceKanal E, Barkovich AJ, Bell C, et al. ACR guidance document on MR safe practices: 2013. J Magn Reson Imaging. 2013; 37: 501 - 530.
dc.identifier.citedreferenceGreenberg TD, Hoff MN, Gilk TB, et al. ACR guidance document on MR safe practices: Updates and critical information 2019. J Magn Reson Imaging. 2019; 51: 331 - 338.
dc.identifier.citedreferenceBronskill MJ, Carson PL, Einstein S, et al. Site planning for magnetic resonance imaging systems. AAPM Report No 20. 1986.
dc.identifier.citedreferencePerik T, Kaas J, Wittkämper F. The impact of a 1.5 T MRI linac fringe field on neighbouring linear accelerators. Phys Imaging Radiat Oncol. 2017; 4: 12 - 16.
dc.identifier.citedreferenceCheng C- W, Ferguson SG, Jordan D, et al. Impact of the high magnetic field and RF power in a superconducting cyclotron on the operation of a nearby MRI facility. Proton Ther. 2016; 2: 1 - 9.
dc.identifier.citedreferenceImplementation & Site Planning. 2019. https://www.siemens- healthineers.com/en- us/services/consultation- implementation/implementation- site- planning.
dc.identifier.citedreferenceTsai LL, Grant AK, Mortele KJ, Kung JW, Smith MP. A practical guide to MR imaging safety: what radiologists need to know. Radiographics. 2015; 35: 1722 - 1737.
dc.identifier.citedreferenceLandrigan C. Preventable deaths and injuries during magnetic resonance imaging. N Engl J Med. 2001; 345: 1000 - 1001.
dc.identifier.citedreferenceRezai AR, Phillips M, Baker KB, et al. Neurostimulation system used for deep brain stimulation (DBS): MR safety issues and implications of failing to follow safety recommendations. Invest Radiol. 2004; 39: 300 - 303.
dc.identifier.citedreferenceAmerican College of Radiology Manual on MR Safety, Version 1.0. In: 2020: 20201 - 20256.
dc.identifier.citedreferenceMcDonald RJ, Levine D, Weinreb J, et al. Gadolinium retention: a research roadmap from the 2018 NIH/ACR/RSNA workshop on gadolinium chelates. Radiology. 2018; 289: 517 - 534.
dc.identifier.citedreferenceRogosnitzky M, Branch S. Gadolinium- based contrast agent toxicity: a review of known and proposed mechanisms. Biometals. 2016; 29: 365 - 376.
dc.identifier.citedreferenceDavenport MS, Asch D, Cavallo J, Cohan R, Dillman JR, Ellis JH. ACR Manual on Contrast Media. 2020; 85 - 89. https://www.acr.org/- /media/ACR/files/clinical- resources/contrast_media.pdf
dc.identifier.citedreferenceJackson EF, Bronskill MJ, Drost DJ, et al. AAPM Report No. 100: Acceptance Testing and Quality Assurance Procedures for Magnetic Resonance Imaging Facilities. American Association of Physicists in Medicine (AAPM) Task Group Report. 2010.
dc.identifier.citedreferencePrice RR, Axel L, Morgan T, et al. Quality assurance methods and phantoms for magnetic resonance imaging: Report of AAPM nuclear magnetic resonance Task Group No. 1. Med Phys. 1990; 17: 287 - 295.
dc.identifier.citedreferencePrice RG, Knight RA, Hwang KP, Bayram E, Nejad- Davarani SP, Glide- Hurst CK. Optimization of a novel large field of view distortion phantom for MR- only treatment planning. J Appl Clin Med Phys. 2017; 18: 51 - 61.
dc.identifier.citedreferenceWang D, Strugnell W, Cowin G, Doddrell DM, Slaughter R. Geometric distortion in clinical MRI systems Part I: evaluation using a 3D phantom. Magn Reson Imaging. 2004; 22: 1211 - 1221.
dc.identifier.citedreferenceWalker A, Liney G, Metcalfe P, Holloway L. MRI distortion: considerations for MRI based radiotherapy treatment planning. Australas Phys Eng sci Med. 2014; 37: 103 - 113.
dc.identifier.citedreferenceTorfeh T, Hammoud R, Perkins G, et al. Characterization of 3D geometric distortion of magnetic resonance imaging scanners commissioned for radiation therapy planning. Magn Reson Imaging. 2016; 34: 645 - 653.
dc.identifier.citedreferenceHuang KC, Cao Y, Baharom U, Balter JM. Phantom- based characterization of distortion on a magnetic resonance imaging simulator for radiation oncology. Phys Med Biol. 2016; 61: 774 - 790.
dc.identifier.citedreferenceJovicich J, Czanner S, Greve D, et al. Reliability in multi- site structural MRI studies: effects of gradient non- linearity correction on phantom and human data. NeuroImage. 2006; 30: 436 - 443.
dc.identifier.citedreferenceTao S, Trzasko JD, Shu Y, Huston J 3rd, Bernstein MA. Integrated image reconstruction and gradient nonlinearity correction. Magn Reson Med. 2015; 74: 1019 - 1031.
dc.identifier.citedreferenceBaldwin LN, Wachowicz K, Thomas SD, Rivest R, Fallone BG. Characterization, prediction, and correction of geometric distortion in 3 T MR images. Med Phys. 2007; 34: 388 - 399.
dc.identifier.citedreferenceDoran SJ, Charles- Edwards L, Reinsberg SA, Leach MO. A complete distortion correction for MR images: I. Gradient warp correction. Phys Med Biol. 2005; 50: 1343 - 1361.
dc.identifier.citedreferencePrice RG, Kadbi M, Kim J, Balter J, Chetty IJ, Glide- Hurst CK. Characterization and correction of gradient nonlinearity induced distortion on a 1.0 T open bore MR- SIM. Med Phys. 2015; 42: 5955 - 5960.
dc.identifier.citedreferenceTao S, Trzasko JD, Gunter JL, et al. Gradient nonlinearity calibration and correction for a compact, asymmetric magnetic resonance imaging gradient system. Phys Med Biol. 2017; 62: N18 - N31.
dc.identifier.citedreferenceBelaroussi B, Milles J, Carme S, Zhu YM, Benoit- Cattin H. Intensity non- uniformity correction in MRI: existing methods and their validation. Med Image Anal. 2006; 10: 234 - 246.
dc.identifier.citedreferenceTunnicliffe EM, Graves MJ, Robson MD. Use of the noise covariance matrix in array coil quality assurance. Paper presented at: Proceedings of the ISMRM. 2011.
dc.identifier.citedreferenceStemkens B, Paulson E, Tijssen R. Nuts and bolts of 4D- MRI for radiotherapy. Phys Med Biol. 2018; 63: 21TR01.
dc.identifier.citedreferenceGlide- Hurst CK, Kim JP, To D, et al. Four dimensional magnetic resonance imaging optimization and implementation for magnetic resonance imaging simulation. Pract Radiat Oncol. 2015; 5: 433 - 442.
dc.identifier.citedreferenceLiu Y, Yin FF, Rhee D, Cai J. Accuracy of respiratory motion measurement of 4D- MRI: a comparison between cine and sequential acquisition. Med Phys. 2016; 43: 179 - 187.
dc.identifier.citedreferenceKeall PJ, Mageras GS, Balter JM, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76 a. Med Phys. 2006; 33: 3874 - 3900.
dc.identifier.citedreferenceAAPM Professional Policy 18- B. Statement on the description of involvement of medical physicists in clinical procedures. Available from: https://www.aapm.org/org/policies/details.asp?id=338&type=PP.
dc.identifier.citedreferenceMutic S, Palta JR, Butker EK, et al. Quality assurance for computed- tomography simulators and the computed- tomography- simulation process: report of the AAPM Radiation Therapy Committee Task Group No. 66. Med Phys. 2003; 30: 2762 - 2792.
dc.identifier.citedreferenceYanasak N, Clarke G, Stafford R. American Association of Physicists in Medicine (AAPM) Task Group Report 118, Parallel Imaging in MRI: technology, applications, and quality control. 2015.
dc.identifier.citedreferencePaulson ES, Erickson B, Schultz C, Allen LX. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning. Med Phys. 2015; 42: 28.
dc.identifier.citedreferenceShellock FG. Guidelines to prevent excessive heating and burns associated with MRI. http://www.appliedradiology.org/courses/3277/PayInteractive/PDF_Downloads/07_Burn_Prevention_Guidelines.pdf
dc.identifier.citedreferenceJafar MM, Reeves J, Ruthven MA, et al. Assessment of a carbon fibre MRI flatbed insert for radiotherapy treatment planning. Br J Radiol. 2016; 89: 20160108.
dc.identifier.citedreferenceOppelt A. Imaging systems for medical diagnostics: fundamentals, technical solutions and applications for systems applying ionizing radiation, nuclear magnetic resonance and ultrasound. John Wiley & Sons; 2011.
dc.identifier.citedreferenceVlaardingerbroek MT, Boer JA. Magnetic resonance imaging: theory and practice. Berlin, Germany: Springer Science & Business Media; 2013.
dc.identifier.citedreferenceLiney GP, Moerland MA. Magnetic resonance imaging acquisition techniques for radiotherapy planning. Semin Radiat Oncol. 2014; 24: 160 - 168.
dc.identifier.citedreferenceBenner T, van der Kouwe AJ, Kirsch JE, Sorensen AG. Real- time RF pulse adjustment for B0 drift correction. Magn Reson Med. 2006; 56: 204 - 209.
dc.identifier.citedreferenceGlide- Hurst C, Nejad- Davarani S, Weiss S, Zheng W, Chetty IJ, Renisch S. Per- organ assessment of subject- induced susceptibility distortion for MR- only male pelvis treatment planning. Radiat Oncol. 2018; 13: 149.
dc.identifier.citedreferenceStanescu T, Wachowicz K, Jaffray D. Characterization of tissue magnetic susceptibility- induced distortions for MRIgRT. Med Phys. 2012; 39: 7185 - 7193.
dc.identifier.citedreferenceBernstein MA, King KF, Zhou XJ. Handbook of MRI pulse sequences. Amsterdam, Netherland: Elsevier; 2004.
dc.identifier.citedreferenceWalker A, Liney G, Holloway L, Dowling J, Rivest- Henault D, Metcalfe P. Continuous table acquisition MRI for radiotherapy treatment planning: distortion assessment with a new extended 3D volumetric phantom. Med Phys. 2015; 42: 1982 - 1991.
dc.identifier.citedreferenceHargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal- induced artifacts in MRI. AJR Am J Roentgenol. 2011; 197: 547 - 555.
dc.identifier.citedreferenceCho ZH, Kim DJ, Kim YK. Total inhomogeneity correction including chemical shifts and susceptibility by view angle tilting. Med Phys. 1988; 15: 7 - 11.
dc.identifier.citedreferenceButts K, Pauly JM, Gold GE. Reduction of blurring in view angle tilting MRI. Magn Reson Med. 2005; 53: 418 - 424.
dc.identifier.citedreferenceLu W, Pauly KB, Gold GE, Pauly JM, Hargreaves BA. SEMAC: slice encoding for metal artifact correction in MRI. Magn Reson Med. 2009; 62: 66 - 76.
dc.identifier.citedreferenceEhman RL, Felmlee JP. Adaptive technique for high- definition MR imaging of moving structures. Radiology. 1989; 173: 255 - 263.
dc.identifier.citedreferenceBlock KT, Chandarana H, Milla S, et al. Towards routine clinical use of radial stack- of- stars 3D gradient- echo sequences for reducing motion sensitivity. J Korean Soc Magn Reson Med. 2014; 18: 87 - 106.
dc.identifier.citedreferenceLe Roux P. Non- CPMG Fast Spin Echo with full signal. J Magn Reson. 2002; 155: 278 - 292.
dc.identifier.citedreferenceSmith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004; 23: 208 - 219.
dc.identifier.citedreferenceGao YU, Han F, Zhou Z, et al. Distortion- free diffusion MRI using an MRI- guided Tri- Cobalt 60 radiotherapy system: sequence verification and preliminary clinical experience. Med Phys. 2017; 44: 5357 - 5366.
dc.identifier.citedreferenceSchakel T, Hoogduin JM, Terhaard CHJ, Philippens MEP. Technical Note: Diffusion- weighted MRI with minimal distortion in head- and- neck radiotherapy using a turbo spin echo acquisition method. Med Phys. 2017; 44: 4188 - 4193.
dc.identifier.citedreferenceTyagi N, Cloutier M, Zakian K, Deasy JO, Hunt M, Rimner A. Diffusion- weighted MRI of the lung at 3T evaluated using echo- planar- based and single- shot turbo spin- echo- based acquisition techniques for radiotherapy applications. J Appl Clin Med Phys. 2019; 20: 284 - 292.
dc.identifier.citedreferenceHuq MS, Fraass BA, Dunscombe PB, et al. The report of Task Group 100 of the AAPM: application of risk analysis methods to radiation therapy quality management. Med Phys. 2016; 43: 4209 - 4262.
dc.identifier.citedreferenceTeng S- H, Ho S- Y. Failure mode and effects analysis: an integrated approach for product design and process control. Int J Qual Rel Manage. 1996; 13: 8 - 26.
dc.identifier.citedreferenceKim J, Miller B, Siddiqui MS, Movsas B, Glide- Hurst C. FMEA of MR- only treatment planning in the pelvis. Adv Radiat Oncol. 2018; 4: 168 - 176.
dc.identifier.citedreferenceThornton E, Brook OR, Mendiratta- Lala M, Hallett DT, Kruskal JB. Application of failure mode and effect analysis in a radiology department. Radiographics. 2011; 31: 281 - 293.
dc.identifier.citedreferenceEggers H, Brendel B, Duijndam A, Herigault G. Dual- echo Dixon imaging with flexible choice of echo times. Magn Reson Med. 2011; 65: 96 - 107.
dc.identifier.citedreferenceWeiss S, Nejad- Davarani SP, Eggers H, Orasanu E, Renisch S, Glide- Hurst CK. A novel and rapid approach to estimate patient- specific distortions based on mDIXON MRI. Phys Med Biol. 2019; 64: 155002.
dc.identifier.citedreferenceJezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med. 1995; 34: 65 - 73.
dc.identifier.citedreferenceSchakel T, Hoogduin JM, Terhaard CH, Philippens ME. Diffusion weighted MRI in head- and- neck cancer: geometrical accuracy. Radiother Oncol. 2013; 109: 394 - 397.
dc.identifier.citedreferenceCai J, Chang Z, Wang Z, Paul Segars W, Yin F- F. Four- dimensional magnetic resonance imaging (4D- MRI) using image- based respiratory surrogate: a feasibility study. Med Phys. 2011; 38: 6384.
dc.identifier.citedreferenceRemmert G, Biederer J, Lohberger F, Fabel M, Hartmann G. Four- dimensional magnetic resonance imaging for the determination of tumour movement and its evaluation using a dynamic porcine lung phantom. Phys Med Biol. 2007; 52: N401.
dc.identifier.citedreferenceVon Siebenthal M, Szekely G, Gamper U, Boesiger P, Lomax A, Cattin P. 4D MR imaging of respiratory organ motion and its variability. Phys Med Biol. 2007; 52: 1547.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.