Show simple item record

Surface Evaluation of Resilient CAD/CAM ceramics after Contouring and Polishing

dc.contributor.authorSiddanna, Geetha Duddanahalli
dc.contributor.authorValcanaia, Andre J.
dc.contributor.authorFierro, Pilar Herrera
dc.contributor.authorNeiva, Gisele F.
dc.contributor.authorFasbinder, Dennis J.
dc.date.accessioned2021-08-03T18:15:00Z
dc.date.available2022-08-03 14:14:56en
dc.date.available2021-08-03T18:15:00Z
dc.date.issued2021-07
dc.identifier.citationSiddanna, Geetha Duddanahalli; Valcanaia, Andre J.; Fierro, Pilar Herrera; Neiva, Gisele F.; Fasbinder, Dennis J. (2021). "Surface Evaluation of Resilient CAD/CAM ceramics after Contouring and Polishing." Journal of Esthetic and Restorative Dentistry 33(5): 750-763.
dc.identifier.issn1496-4155
dc.identifier.issn1708-8240
dc.identifier.urihttps://hdl.handle.net/2027.42/168463
dc.description.abstractObjectiveThis in‐vitro study measured the differences in surface roughness for computer assisted design/computer assisted manufacturing (CAD/CAM) resilient ceramic and CAD/CAM composite materials.Materials and MethodsThe materials included Lava Ultimate (3 M), Cerasmart (GC America), Vita Enamic (Vita Zahnfabrik), and Brilliant Crios (Coltene). One calibrated operator polished each material with three polishing sytems: spiral polishers (Diacomp FeatherLite/Brasseler), rubbercup polishers (Enhance/DentsplyCaulk), and brush‐paste (Diashine/VH Technologies). Surface roughness was assessed using a confocal laser microscope (Lext OLS4000/Olympus).ResultsA two‐way ANOVA revealed statistically significant differences in mean surface roughness values (Sa) among materials and polishers. Tukey multiple comparisons showed that mean Sa values for Lava Ultimate, Enamic, Cerasmart and Brilliant Crios polished with brush‐paste as well as Lava Ultimate and Cerasmart values polished with spiral polishers were not significantly different from each other.ConclusionsThe finished surfaces were significantly smoother than milled surfaces for all materials. The brush‐paste polishing technique created the lowest surface roughness values for all CAD/CAM materials and values were comparable to what was achieved by spiral polishers for Lava Ultimate and Cerasmart. Rubber polishers did not provide a clinically smooth surface for CAD/CAM resilient ceramic/composite materials.Clinical significanceThe results of the study indicate that polishing creates smooth surfaces for CAD/CAM resilient ceramic and CAD/CAM composite restorations.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherhybrid ceramics
dc.subject.otherresin composite CAD/CAM
dc.subject.otherchair‐side CAD/CAM
dc.subject.otherpolishing
dc.subject.otherresilient ceramics
dc.subject.otherCAD/CAM
dc.titleSurface Evaluation of Resilient CAD/CAM ceramics after Contouring and Polishing
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168463/1/jerd12735_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168463/2/jerd12735.pdf
dc.identifier.doi10.1111/jerd.12735
dc.identifier.sourceJournal of Esthetic and Restorative Dentistry
dc.identifier.citedreferenceGlavina D, Skrinjaric I, Mahovic S, Majstorovic M. Surface quality of Cerec CAD/CAM ceramic veneers treated with four different polishing systems. Eur J Paediatr Dent. 2004; 5 ( 1 ): 30 ‐ 34.
dc.identifier.citedreferenceBollenl CML, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater. 1997; 13 ( 4 ): 258 ‐ 269.
dc.identifier.citedreferenceQueiroz JRC, Fissmer SF, Koga‐Ito CY, et al. Effect of diamond‐like carbon thin film coated acrylic resin on Candida albicans biofilm formation. J Prosthodont. 2013; 22 ( 6 ): 451 ‐ 455.
dc.identifier.citedreferenceYılmaz C, Korkmaz T, Demirköprülü H, Ergün G, Özkan Y. Color stability of glazed and polished dental porcelains. J Prosthodont. 2008; 17 ( 1 ): 20 ‐ 24.
dc.identifier.citedreferencede Jager N, Feilzer AJ, Davidson CL. The influence of surface roughness on porcelain strength. Dent Mater. 2000; 16 ( 6 ): 381 ‐ 388.
dc.identifier.citedreferenceAhmad R, Morgano SM, Wu BM, Giordano RA. An evaluation of the effects of handpiece speed, abrasive characteristics, and polishing load on the flexural strength of polished ceramics. J Prosthet Dent. 2005; 94 ( 5 ): 421 ‐ 429.
dc.identifier.citedreferenceJagger DC, Harrison A. An in vitro investigation into the wear effects of unglazed, glazed, and polished porcelain on human enamel. J Prosthet Dent. 1994; 72 ( 3 ): 320 ‐ 323.
dc.identifier.citedreferenceSulik WD, Plekavich EJ. Surface finishing of dental porcelain. J Prosthet Dent. 1981; 46 ( 2 ): 217 ‐ 221.
dc.identifier.citedreferenceAl‐Wahadni AM, Martin DM. An in vitro investigation into the wear effects of glazed, unglazed and refinished dental porcelain on an opposing material. J Oral Rehabil. 1999; 26 ( 6 ): 538 ‐ 546.
dc.identifier.citedreferenceOliveira Junior O, Buso L, Hiroshi Fujiy F, et al. Influence of polishing procedures on the surface roughness of dental ceramics made by different techniques. Gen Dent. 2013; 61: e4 ‐ e8.
dc.identifier.citedreferenceKaizer MR, de Oliveira‐Ogliari A, Cenci MS, Opdam NJM, Moraes RR. Do nanofill or submicron composites show improved smoothness and gloss? A systematic review of in vitro studies. Dent Mater. 2014; 30 ( 4 ): e41 ‐ e78.
dc.identifier.citedreferenceAl‐Shammery HAO, Bubb NL, Youngson CC, Fasbinder DJ, Wood DJ. The use of confocal microscopy to assess surface roughness of two milled CAD–CAM ceramics following two polishing techniques. Dent Mater. 2007; 23 ( 6 ): 736 ‐ 741.
dc.identifier.citedreferenceFlury S, Lussi A, Zimmerli B. Performance of different polishing techniques for direct CAD/CAM ceramic restorations. Oper Dent. 2010; 35 ( 4 ): 470 ‐ 481.
dc.identifier.citedreferenceHulterström AK, Bergman M. Polishing systems for dental ceramics. Acta Odontol Scand. 1993; 51 ( 4 ): 229 ‐ 234.
dc.identifier.citedreferenceAl‐Nawas B, Grötz KA, Götz H, et al. Validation of three‐dimensional surface characterising methods: scanning electron microscopy and confocal laser scanning microscopy. Scanning. 2006; 23 ( 4 ): 227 ‐ 231.
dc.identifier.citedreferenceWhitehead SA, Shearer AC, Watts DC, Wilson NHF. Comparison of methods for measuring surface roughness of ceramic. J Oral Rehabil. 1995; 22 ( 6 ): 421 ‐ 427.
dc.identifier.citedreferenceEtxeberria M, Escuin T, Vinas M, Ascaso C. Useful surface parameters for biomaterial discrimination. Scanning. 2015; 37 ( 6 ): 429 ‐ 437.
dc.identifier.citedreferenceKou W, Molin M, Sjögren G. Surface roughness of five different dental ceramic core materials after grinding and polishing. J Oral Rehabil. 2006; 33 ( 2 ): 117 ‐ 124.
dc.identifier.citedreferenceScurria MS, Powers JM. Surface roughness of two polished ceramic materials. J Prosthet Dent. 1994; 71 ( 2 ): 174 ‐ 177.
dc.identifier.citedreferenceMatzinger M, Hahnel S, Preis V, Rosentritt M. Polishing effects and wear performance of chairside CAD/CAM materials. Clin Oral Investig. 2019; 23 ( 2 ): 725 ‐ 737.
dc.identifier.citedreferenceWright MD, Masri R, Driscoll CF, Romberg E, Thompson GA, Runyan DA. Comparison of three systems for the polishing of an ultra‐low fusing dental porcelain. J Prosthet Dent. 2004; 92 ( 5 ): 486 ‐ 490.
dc.identifier.citedreferenceGoldstein RE. Finishing of composites and laminates. Dent Clin N Am. 1989; 33 ( 2 ): 305 ‐ 318.
dc.identifier.citedreferenceHaywood VB, Heymann HO, Kusy RP, Whitley JQ, Andreaus SB. Polishing porcelain veneers: an SEM and specular reflectance analysis. Dent Mater. 1988; 4 ( 3 ): 116 ‐ 121.
dc.identifier.citedreferenceRyba TM, Dunn WJ, Murchison DF. Surface roughness of various packable composites. Oper Dent. 2002; 27 ( 3 ): 243 ‐ 247.
dc.identifier.citedreferenceJefferies SR, Barkmeier WW, Gwinnett AJ. Three composite finishing systems: a multisite in vitro evaluation. J Esthet Dent. 1992; 4 ( 6 ): 181 ‐ 185.
dc.identifier.citedreferenceSasahara RMC, Ribeiro FC, Cesar PF, Yoshimura HN. Influence of the finishing technique on surface roughness of dental porcelains with different microstructures. Oper Dent. 2006; 31 ( 5 ): 577 ‐ 583.
dc.identifier.citedreferenceIncesu E, Yanikoglu N. Evaluation of the effect of different polishing systems on the surface roughness of dental ceramics. J Prosthet Dent. 2019; 124 ( 1 ): 100 – 109.
dc.identifier.citedreferenceFerracane JL, Broome JC, Hilton TJ. A contemporary approach. Fundamentals of Operative Dentistry. Hanover Park, IL: Quintessence Publishing Co.Inc.; 2013.
dc.identifier.citedreferenceManhart J, Kunzelmann K‐H, Chen HY, Hickel R. Mechanical properties of new composite restorative materials. J Biomed Mater Res. 2000; 53 ( 4 ): 353 ‐ 361.
dc.identifier.citedreferenceWatanabe T, Miyazaki M, Takamizawa T, Kurokawa H, Rikuta A, Ando S. Influence of polishing duration on surface roughness of resin composites. J Oral Sci. 2005; 47 ( 1 ): 21 ‐ 25.
dc.identifier.citedreferenceJefferies SR. Abrasive finishing and polishing in restorative dentistry: a state‐of‐the‐art review. Dent Clin N Am. 2007; 51 ( 2 ): 379 ‐ 397.
dc.identifier.citedreferenceKawai K, Urano M, Ebisu S. Effect of surface roughness of porcelain on adhesion of bacteria and their synthesizing glucans. J Prosthet Dent. 2000; 83 ( 6 ): 664 ‐ 667.
dc.identifier.citedreferenceBarnfather KDP, Brunton PA. Restoration of the upper dental arch using lava™ all‐ceramic crown and bridgework. Br Dent J. 2007; 202 ( 12 ): 731 ‐ 735.
dc.identifier.citedreferenceSannino G, Germano F, Arcuri L, Bigelli E, Arcuri C, Barlattani A. CEREC CAD/CAM Chairside system. Oral Implantol. 2015; 7 ( 3 ): 57 ‐ 70.
dc.identifier.citedreferenceFasbinder DJ. Materials for chairside CAD/CAM restorations. Compend Contin Educ Dent Jamesburg NJ 1995. 2010; 31 ( 9 ): 702 ‐ 704.
dc.identifier.citedreferenceLawson NC, Janyavula S, Syklawer S, McLaren EA, Burgess JO. Wear of enamel opposing zirconia and lithium disilicate after adjustment, polishing and glazing. J Dent. 2014; 42 ( 12 ): 1586 ‐ 1591.
dc.identifier.citedreferenceColdea A, Swain MV, Thiel N. Mechanical properties of polymer‐infiltrated‐ceramic‐network materials. Dent Mater. 2013; 29 ( 4 ): 419 ‐ 426.
dc.identifier.citedreferenceTsitrou EA, Northeast SE, van Noort R. Brittleness index of machinable dental materials and its relation to the marginal chipping factor. J Dent. 2007; 35 ( 12 ): 897 ‐ 902.
dc.identifier.citedreferenceFasbinder DJ, Neiva GF. Surface evaluation of polishing techniques for new resilient CAD/CAM restorative materials. J Esthet Restor Dent. 2016; 28 ( 1 ): 56 ‐ 66.
dc.identifier.citedreferenceLebon N, Tapie L, Vennat E, Mawussi B. Influence of CAD/CAM tool and material on tool wear and roughness of dental prostheses after milling. J Prosthet Dent. 2015; 114 ( 2 ): 236 ‐ 247.
dc.identifier.citedreferenceYara A, Ogura H, Shinya A, et al. Durability of diamond burs for the fabrication of ceramic crowns using dental CAD/CAM. Dent Mater J. 2005; 24 ( 1 ): 134 ‐ 139.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.