Show simple item record

The toughest animals of the Earth versus global warming: Effects of long‐term experimental warming on tardigrade community structure of a temperate deciduous forest

dc.contributor.authorVecchi, Matteo
dc.contributor.authorKossi Adakpo, Laurent
dc.contributor.authorDunn, Robert R.
dc.contributor.authorNichols, Lauren M.
dc.contributor.authorPenick, Clint A.
dc.contributor.authorSanders, Nathan J.
dc.contributor.authorRebecchi, Lorena
dc.contributor.authorGuidetti, Roberto
dc.date.accessioned2021-08-03T18:15:10Z
dc.date.available2022-08-03 14:15:09en
dc.date.available2021-08-03T18:15:10Z
dc.date.issued2021-07
dc.identifier.citationVecchi, Matteo; Kossi Adakpo, Laurent; Dunn, Robert R.; Nichols, Lauren M.; Penick, Clint A.; Sanders, Nathan J.; Rebecchi, Lorena; Guidetti, Roberto (2021). "The toughest animals of the Earth versus global warming: Effects of long‐term experimental warming on tardigrade community structure of a temperate deciduous forest." Ecology and Evolution (14): 9856-9863.
dc.identifier.issn2045-7758
dc.identifier.issn2045-7758
dc.identifier.urihttps://hdl.handle.net/2027.42/168469
dc.description.abstractUnderstanding how different taxa respond to global warming is essential for predicting future changes and elaborating strategies to buffer them. Tardigrades are well known for their ability to survive environmental stressors, such as drying and freezing, by undergoing cryptobiosis and rapidly recovering their metabolic function after stressors cease. Determining the extent to which animals that undergo cryptobiosis are affected by environmental warming will help to understand the real magnitude climate change will have on these organisms. Here, we report on the responses of tardigrades within a five‐year‐long, field‐based artificial warming experiment, which consisted of 12 open‐top chambers heated to simulate the projected effects of global warming (ranging from 0 to 5.5°C above ambient temperature) in a temperate deciduous forest of North Carolina (USA). To elucidate the effects of warming on the tardigrade community inhabiting the soil litter, three community diversity indices (abundance, species richness, and Shannon diversity) and the abundance of the three most abundant species (Diphascon pingue, Adropion scoticum, and Mesobiotus sp.) were determined. Their relationships with air temperature, soil moisture, and the interaction between air temperature and soil moisture were tested using Bayesian generalized linear mixed models. Despite observed negative effects of warming on other ground invertebrates in previous studies at this site, long‐term warming did not affect the abundance, richness, or diversity of tardigrades in this experiment. These results are in line with previous experimental studies, indicating that tardigrades may not be directly affected by ongoing global warming, possibly due to their thermotolerance and cryptobiotic abilities to avoid negative effects of stressful temperatures, and the buffering effect on temperature of the soil litter substrate.Tardigrades are well known for their ability to survive harsh environmental conditions; however, it is not known if they have the potential to survive global warming. We tested the ability of leaf litter tardigrades to resist future warming through a long‐term experimental warming approach. We failed to find any significant effect of warming on leaf litter tardigrades community, suggesting their potential to resist global warming.
dc.publisherAcademic Publishers
dc.publisherWiley Periodicals, Inc.
dc.subject.otherTardigrades
dc.subject.otherclimate change
dc.subject.otherexperimental
dc.subject.otherglobal warming
dc.subject.otherwater bears
dc.titleThe toughest animals of the Earth versus global warming: Effects of long‐term experimental warming on tardigrade community structure of a temperate deciduous forest
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168469/1/ece37816.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168469/2/ece37816_am.pdf
dc.identifier.doi10.1002/ece3.7816
dc.identifier.sourceEcology and Evolution
dc.identifier.citedreferencePelini, S. L., Diamond, S. E., Nichols, L. M., Stuble, K. L., Ellison, A. M., Sanders, N. J., Dunn, R. R., & Gotelli, N. J. ( 2014 ). Geographic differences in effects of experimental warming on ant species diversity and community composition. Ecosphere, 5 ( 10 ), 1 – 12. https://doi.org/10.1890/ES14‐00143.1
dc.identifier.citedreferenceHiltpold, I., Johnson, S. N., Bayon, R. C. L., & Nielsen, U. N. ( 2017 ). Climate change in the underworld: Impacts for soil‐dwelling invertebrates. In S. N. Johnson & T. H. Jones (Eds.), Global climate change and terrestrial invertebrates (pp. 201 – 228 ). John Wiley & Sons Ltd.
dc.identifier.citedreferenceHohberg, K. ( 2006 ). Tardigrade species composition in young soils and some aspects on life history of Macrobiotus richtersi J. Murray, 1911. Pedobiologia, 50, 267 – 274. https://doi.org/10.1016/j.pedobi.2006.02.004
dc.identifier.citedreferenceIPCC ( 2013 ). Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. IPCC.
dc.identifier.citedreferenceKnox, M. A., Andriuzzi, W. S., Buelow, H. N., Takacs‐Vesbach, C., Adams, B. J., & Wall, D. H. ( 2017 ). Decoupled responses of soil bacteria and their invertebrate consumer to warming, but not freeze–thaw cycles, in the Antarctic Dry Valleys. Ecology Letters, 20 ( 10 ), 1242 – 1249. https://doi.org/10.1111/ele.12819
dc.identifier.citedreferenceLeetham, J. W., McNary, T. J., Dodd, J. L., & Lauenroth, W. K. ( 1982 ). Response of soil nematodes, rotifers and tardigrades to three levels of season‐long sulfur dioxide exposures. Water, Air, and Soil Pollution, 17 ( 4 ), 343 – 356. https://doi.org/10.1007/BF00460102
dc.identifier.citedreferenceLi, X., & Wang, L. ( 2005 ). Effect of thermal acclimation on preferred temperature, avoidance temperature and lethal thermal maximum of Macrobiotus harmsworthi Murray (Tardigrada, Macrobiotidae). Journal of Thermal Biology, 30 ( 6 ), 443 – 448. https://doi.org/10.1016/j.jtherbio.2005.05.003
dc.identifier.citedreferenceMaclean, I. M., Suggitt, A. J., Wilson, R. J., Duffy, J. P., & Bennie, J. J. ( 2017 ). Fine‐scale climate change: modelling spatial variation in biologically meaningful rates of warming. Global Change Biology, 23 ( 1 ), 256 – 268.
dc.identifier.citedreferenceMakowski, D., Ben‐Shachar, M. S., Chen, S. H., & Lüdecke, D. ( 2019 ). Indices of effect existence and significance in the Bayesian framework. Frontiers in Psychology, 10, 2767. https://doi.org/10.3389/fpsyg.2019.02767
dc.identifier.citedreferenceMeyer, H. A. ( 2006 ). Small‐scale spatial distribution variability in terrestrial tardigrade populations. Hydrobiologia, 558 ( 1 ), 133 – 139. https://doi.org/10.1007/s10750‐005‐1412‐x
dc.identifier.citedreferenceNeves, R. C., Hvidepil, L. K., Sørensen‐Hygum, T. L., Stuart, R. M., & Møbjerg, N. ( 2020 ). Thermotolerance experiments on active and desiccated states of Ramazzottius varieornatus emphasize that tardigrades are sensitive to high temperatures. Scientific Reports, 10 ( 1 ), 1 – 12. https://doi.org/10.1038/s41598‐019‐56965‐z
dc.identifier.citedreferenceNewsham, K. K., Hall, R. J., & Maslen, N. R. ( 2020 ). Experimental warming of bryophytes increases the population density of the nematode Plectus belgicae in maritime Antarctica. Antarctic Science, 33, 1 – 9.
dc.identifier.citedreferenceOksanen, J., Guillaume, F. B., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Henry, M. H., Eduard, S. S., & Wagner, H. ( 2018 ). vegan: Community Ecology Package. R package version 2.5‐3. https://CRAN.R‐project.org/package=vegan
dc.identifier.citedreferencePelini, S. L., Bowles, F. P., Ellison, A. M., Gotelli, N. J., Sanders, N. J., & Dunn, R. R. ( 2011 ). Heating up the forest: Open‐top chamber warming manipulation of arthropod communities at Harvard and Duke Forests. Methods in Ecology and Evolution, 2 ( 5 ), 534 – 540. https://doi.org/10.1111/j.2041‐210X.2011.00100.x
dc.identifier.citedreferencePenick, C. A., Diamond, S. E., Sanders, N. J., & Dunn, R. R. ( 2017 ). Beyond thermal limits: Comprehensive metrics of performance identify key axes of thermal adaptation in ants. Functional Ecology, 31 ( 5 ), 1091 – 1100. https://doi.org/10.1111/1365‐2435.12818
dc.identifier.citedreferencePrather, H. M., Casanova‐Katny, A., Clements, A. F., Chmielewski, M. W., Balkan, M. A., Shortlidge, E. E., Rosenstiel, T. N., & Eppley, S. M. ( 2019 ). Species‐specific effects of passive warming in an Antarctic moss system. Royal Society Open Science, 6 ( 11 ), 190744. https://doi.org/10.1098/rsos.190744
dc.identifier.citedreferenceRamazzotti, G., & Maucci, W. ( 1983 ). Il Phylum Tardigrada. Terza edizione riveduta e corretta. Memorie dell´Istituto Italiano di Idrobiologia Dott. Marco Marchi, 41, 1 – 1012.
dc.identifier.citedreferenceRebecchi, L., Altiero, T., & Guidetti, R. ( 2007 ). Anhydrobiosis: The extreme limit of desiccation tolerance. ISJ‐Invertebrate Survival Journal, 4, 65 – 81.
dc.identifier.citedreferenceRebecchi, L., Boschini, D., Cesari, M., Lencioni, V., Bertolani, R., & Guidetti, R. ( 2009 ). Stress response of a boreo‐alpine species of tardigrade, Borealibius zetlandicus (Eutardigrada, Hypsibiidae). Journal of Experimental Biology, 212, 4033 – 4039. https://doi.org/10.1242/jeb.033266
dc.identifier.citedreferenceRebecchi, L., Cesari, M., Altiero, T., Frigieri, A., & Guidetti, R. ( 2009 ). Survival and DNA degradation in anhydrobiotic tardigrades. Journal of Experimental Biology, 212 ( 24 ), 4033 – 4039. https://doi.org/10.1242/jeb.033266
dc.identifier.citedreferenceSimmons, B. L., Wall, D. H., Adams, B. J., Ayres, E., Barrett, J. E., & Virginia, R. A. ( 2009 ). Long‐term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys. Antarctica. Soil Biology and Biochemistry, 41 ( 10 ), 2052 – 2060. https://doi.org/10.1016/j.soilbio.2009.07.009
dc.identifier.citedreferenceSohlenius, B., & Boström, S. ( 1999a ). Effects of climate change on soil factors and metazoan microfauna (nematodes, tardigrades and rotifers) in a Swedish tundra soil–a soil transplantation experiment. Applied Soil Ecology, 12 ( 2 ), 113 – 128. https://doi.org/10.1016/S0929‐1393(98)00168‐1
dc.identifier.citedreferenceSohlenius, B., & Bostrom, S. ( 1999b ). Effects of global warming on nematode diversity in a Swedish tundra soil‐a soil transplantation experiment. Nematology, 1 ( 7 ), 695 – 709. https://doi.org/10.1163/156854199508720
dc.identifier.citedreferenceSohlenius, B., Boström, S., & Jönsson, K. I. ( 2004 ). Occurrence of nematodes, tardigrades and rotifers on ice‐free areas in East Antarctica. Pedobiologia, 48 ( 4 ), 395 – 408. https://doi.org/10.1016/j.pedobi.2004.06.001
dc.identifier.citedreferenceStevnbak, K., Maraldo, K., Georgieva, S., Bjørnlund, L., Beier, C., Schmidt, I. K., & Christensen, S. ( 2012 ). Suppression of soil decomposers and promotion of long‐lived, root herbivorous nematodes by climate change. European Journal of Soil Biology, 52, 1 – 7. https://doi.org/10.1016/j.ejsobi.2012.04.001
dc.identifier.citedreferenceSu, Y. S., & Yajima, M. ( 2012 ). Package ‘R2jags’. A Package for Running jags from R.
dc.identifier.citedreferenceThakur, M. P., Reich, P. B., Fisichelli, N. A., Stefanski, A., Cesarz, S., Dobies, T., Rich, R. L., Hobbie, S. E., & Eisenhauer, N. ( 2014 ). Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate‐boreal forest ecotone. Oecologia, 175, 713 – 723. https://doi.org/10.1007/s00442‐014‐2927‐5
dc.identifier.citedreferenceTilbert, S., de Castro, F. J., Tavares, G., & Júnior, M. N. ( 2019 ). Spatial variation of meiofaunal tardigrades in a small tropical estuary (~ 6° S; Brazil). Marine and Freshwater Research, 70 ( 8 ), 1094 – 1104. https://doi.org/10.1071/MF18222
dc.identifier.citedreferenceYan, X., Wang, K., Song, L., Wang, X., & Wu, D. ( 2017 ). Daytime warming has stronger negative effects on soil nematodes than night‐time warming. Scientific Reports, 7, 44888.
dc.identifier.citedreferenceAndriuzzi, W. S., Adams, B. J., Barrett, J. E., Virginia, R. A., & Wall, D. H. ( 2018 ). Observed trends of soil fauna in the Antarctic Dry Valleys: Early signs of shifts predicted under climate change. Ecology, 99 ( 2 ), 312 – 321. https://doi.org/10.1002/ecy.2090
dc.identifier.citedreferenceBakonyi, G., & Nagy, P. ( 2000 ). Temperature‐and moisture‐induced changes in the structure of the nematode fauna of a semiarid grassland–patterns and mechanisms. Global Change Biology, 6 ( 6 ), 697 – 707. https://doi.org/10.1046/j.1365‐2486.2000.00354.x
dc.identifier.citedreferenceBingemer, J., & Hohberg, K. ( 2017 ). An illustrated identification key to the eutardigrade species (Tardigrada, Eutardigrada) presently known from European soils. Soil Organisms, 89 ( 3 ), 127 – 149.
dc.identifier.citedreferenceBlankinship, J. C., Niklaus, P. A., & Hungate, B. A. ( 2011 ). A meta‐analysis of responses of soil biota to global change. Oecologia, 165 ( 3 ), 553 – 565. https://doi.org/10.1007/s00442‐011‐1909‐0
dc.identifier.citedreferenceBriones, M. J. I., Ineson, P., & Piearce, T. G. ( 1997 ). Effects of climate change on soil fauna; responses of enchytraeids, Diptera larvae and tardigrades in a transplant experiment. Applied Soil Ecology, 6 ( 2 ), 117 – 134. https://doi.org/10.1016/S0929‐1393(97)00004‐8
dc.identifier.citedreferenceBurt, M. A., Dunn, R. R., Nichols, L. M., & Sanders, N. J. ( 2014 ). Interactions in a warmer world: Effects of experimental warming, conspecific density, and herbivory on seedling dynamics. Ecosphere, 5 ( 1 ), 1 – 12. https://doi.org/10.1890/ES13‐00198.1
dc.identifier.citedreferenceCohen, J. ( 1988 ). Statistical power analysis for the social sciences. Academic Publishers.
dc.identifier.citedreferenceConvey, P., & Wynn‐Williams, D. D. ( 2002 ). Antarctic soil nematode response to artificial climate amelioration. European Journal of Soil Biology, 38 ( 3–4 ), 255 – 259. https://doi.org/10.1016/S1164‐5563(02)01155‐X
dc.identifier.citedreferenceCopley, J. ( 1999 ). Indestructible. New Scientist, 2209, 44 – 46.
dc.identifier.citedreferenceCregger, M. A., Sanders, N. J., Dunn, R. R., & Classen, A. T. ( 2014 ). Microbial communities respond to experimental warming, but site matters. PeerJ, 2, e358. https://doi.org/10.7717/peerj.358
dc.identifier.citedreferenceDiamond, S. E., Nichols, L. M., Pelini, S. L., Penick, C. A., Barber, G. W., Cahan, S. H., Dunn, R. R., Ellison, A. M., Sanders, N. J., & Gotelli, N. J. ( 2016 ). Climatic warming destabilizes forest ant communities. Science Advances, 2 ( 10 ), e1600842. https://doi.org/10.1126/sciadv.1600842
dc.identifier.citedreferenceDiamond, S. E., Penick, C. A., Pelini, S. L., Ellison, A. M., Gotelli, N. J., Sanders, N. J., & Dunn, R. R. ( 2013 ). Using physiology to predict the responses of ants to climatic warming. Integrative & Comparative Biology, 53 ( 6 ), 965 – 974. https://doi.org/10.1093/icb/ict085
dc.identifier.citedreferenceEllison, A., & Dunn, R. ( 2017 ). Ants Under Climate Change at Harvard Forest and Duke Forest 2009‐2015. Harvard Forest Data Archive: HF113. http://harvardforest.fas.harvard.edu:8080/exist/apps/datasets/showData.html?id=hf113
dc.identifier.citedreferenceFitzgerald, J. L., Stuble, K. L., Nichols, L. M., Diamond, S. E., Wentworth, T. R., Pelini, S. L., Gotelli, N. J., Sanders, N. J., Dunn, R. R., & Penick, C. A. ( 2021 ). Abundance of spring‐and winter‐active arthropods declines with warming. Ecosphere, 12 ( 4 ), e03473. https://doi.org/10.1002/ecs2.3473
dc.identifier.citedreferenceGiovannini, I., Altiero, T., Guidetti, R., & Rebecchi, L. ( 2018 ). Will the Antarctic tardigrade Acutuncus antarcticus be able to withstand environmental stresses related to global climate change? Journal of Experimental Biology, 221 ( 4 ), jeb160622.
dc.identifier.citedreferenceGuidetti, R., Altiero, T., & Rebecchi, L. ( 2011 ). On dormancy strategies in tardigrades. Journal of Insects Physiology, 57 ( 5 ), 567 – 576. https://doi.org/10.1016/j.jinsphys.2011.03.003
dc.identifier.citedreferenceGuidetti, R., Bertolani, R., & Nelson, D. R. ( 1999 ). Ecological and Faunistic Studies on Tardigrades in leaf litter of beech forest. Zoologischer Anzeiger, 238, 215 – 223.
dc.identifier.citedreferenceGuil, N., & Sanchez‐Moreno, S. ( 2013 ). Fine‐scale patterns in micrometazoans: Tardigrade diversity, community composition and trophic dynamics in leaf litter. Systematics and Biodiversity, 11 ( 2 ), 181 – 193. https://doi.org/10.1080/14772000.2013.798370
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.