Show simple item record

Cardiac Measurements of Size and Shape in Fetuses With Absent or Reversed End‐Diastolic Velocity of the Umbilical Artery and Perinatal Survival and Severe Growth Restriction Before 34 Weeks’ Gestation

dc.contributor.authorDeVore, Greggory R.
dc.contributor.authorPortella, Percy Pacora
dc.contributor.authorAndrade, Edgar Hernandez
dc.contributor.authorYeo, Lami
dc.contributor.authorRomero, Roberto
dc.date.accessioned2021-08-03T18:15:28Z
dc.date.available2022-09-03 14:15:26en
dc.date.available2021-08-03T18:15:28Z
dc.date.issued2021-08
dc.identifier.citationDeVore, Greggory R.; Portella, Percy Pacora; Andrade, Edgar Hernandez; Yeo, Lami; Romero, Roberto (2021). "Cardiac Measurements of Size and Shape in Fetuses With Absent or Reversed End‐Diastolic Velocity of the Umbilical Artery and Perinatal Survival and Severe Growth Restriction Before 34 Weeks’ Gestation." Journal of Ultrasound in Medicine 40(8): 1543-1554.
dc.identifier.issn0278-4297
dc.identifier.issn1550-9613
dc.identifier.urihttps://hdl.handle.net/2027.42/168477
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherabsent umbilical artery diastolic flow
dc.subject.otherfetal echocardiography
dc.subject.otherfetal growth restriction
dc.subject.otherglobal sphericity index
dc.subject.otherperinatal death
dc.subject.otherspeckle tracking
dc.subject.othercardiomegaly
dc.subject.otherfetal death
dc.titleCardiac Measurements of Size and Shape in Fetuses With Absent or Reversed End‐Diastolic Velocity of the Umbilical Artery and Perinatal Survival and Severe Growth Restriction Before 34 Weeks’ Gestation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168477/1/jum15532.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168477/2/jum15532_am.pdf
dc.identifier.doi10.1002/jum.15532
dc.identifier.sourceJournal of Ultrasound in Medicine
dc.identifier.citedreferenceKrishnan A, Pike JI, McCarter R, et al. Predictive models for normal fetal cardiac structures. J Am Soc Echocardiogr 2016; 29: 1197 – 1206.
dc.identifier.citedreferenceDeVore GR, Siassi B, Platt LD. Fetal echocardiography, IV: M‐mode assessment of ventricular size and contractility during the second and third trimesters of pregnancy in the normal fetus. Am J Obstet Gynecol 1984; 150: 981 – 988.
dc.identifier.citedreferenceTan J, Silverman NH, Hoffman JI, Villegas M, Schmidt KG. Cardiac dimensions determined by cross‐sectional echocardiography in the normal human fetus from 18 weeks to term. Am J Cardiol 1992; 70: 1459 – 1467.
dc.identifier.citedreferenceShapiro I, Degani S, Leibovitz Z, Ohel G, Tal Y, Abinader EG. Fetal cardiac measurements derived by transvaginal and transabdominal cross‐sectional echocardiography from 14 weeks of gestation to term. Ultrasound Obstet Gynecol 1998; 12: 404 – 418.
dc.identifier.citedreferenceFirpo C, Hoffman JI, Silverman NH. Evaluation of fetal heart dimensions from 12 weeks to term. Am J Cardiol 2001; 87: 594 – 600.
dc.identifier.citedreferenceSchneider C, McCrindle BW, Carvalho JS, Hornberger LK, McCarthy KP, Daubeney PE. Development of z scores for fetal cardiac dimensions from echocardiography. Ultrasound Obstet Gynecol 2005; 26: 599 – 605.
dc.identifier.citedreferenceLee W, Riggs T, Amula V, et al. Fetal echocardiography: z score reference ranges for a large patient population. Ultrasound Obstet Gynecol 2010; 35: 28 – 34.
dc.identifier.citedreferenceLuewan S, Yanase Y, Tongprasert F, Srisupundit K, Tongsong T. Fetal cardiac dimensions at 14–40 weeks of gestation obtained using cardio‐STIC‐M. Ultrasound Obstet Gynecol 2011; 37: 416 – 422.
dc.identifier.citedreferenceGagnon C, Bigras JL, Fouron JC, Dallaire F. Reference values and z scores for pulsed‐wave Doppler and M‐mode measurements in fetal echocardiography. J Am Soc Echocardiogr 2016; 29: 448 – 460.e9.
dc.identifier.citedreferenceDeVore GR. Examination of the fetal heart in the fetus with intrauterine growth retardation using M‐mode echocardiography. Semin Perinatol 1988; 12: 66 – 79.
dc.identifier.citedreferenceLi X, Zhou Q, Huang H, Tian X, Peng Q. Response to “ z ‐score reference ranges for normal fetal heart sizes throughout pregnancy derived from fetal echocardiography. ”. Prenat Diagn 2016; 36: 386.
dc.identifier.citedreferenceGu X, He Y, Zhang Y, et al. Fetal echocardiography: reference values for the Chinese population. J Perinat Med 2017; 45: 171 – 179.
dc.identifier.citedreferenceIzumo M, Lancellotti P, Suzuki K, et al. Three‐dimensional echocardiographic assessments of exercise‐induced changes in left ventricular shape and dyssynchrony in patients with dynamic functional mitral regurgitation. Eur J Echocardiogr 2009; 10: 961 – 967.
dc.identifier.citedreferenceGomez‐Doblas JJ, Schor J, et al. Left ventricular geometry and operative mortality in patients undergoing mitral valve replacement. Clin Cardiol 2001; 24: 717 – 722.
dc.identifier.citedreferenceSabbah HN, Kono T, Stein PD, Mancini GB, Goldstein S. Left ventricular shape changes during the course of evolving heart failure. Am J Physiol 1992; 263: H266 – H270.
dc.identifier.citedreferenceDouglas PS, Morrow R, Ioli A, Reichek N. Left ventricular shape, afterload and survival in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 1989; 13: 311 – 315.
dc.identifier.citedreferencePerez‐Cruz M, Cruz‐Lemini M, Fernandez MT, et al. Fetal cardiac function in late‐onset intrauterine growth restriction vs small‐for‐gestational age, as defined by estimated fetal weight, cerebroplacental ratio and uterine artery Doppler. Ultrasound Obstet Gynecol 2015; 46: 465 – 471.
dc.identifier.citedreferenceChanning A, Szwast A, Natarajan S, Degenhardt K, Tian Z, Rychik J. Maternal hyperoxygenation improves left heart filling in fetuses with atrial septal aneurysm causing impediment to left ventricular inflow. Ultrasound Obstet Gynecol 2015; 45: 664 – 669.
dc.identifier.citedreferenceCruz‐Lemini M, Crispi F, Valenzuela‐Alcaraz B, et al. Fetal cardiovascular remodelling persists at 6 months of life in infants with intrauterine growth restriction. Ultrasound Obstet Gynecol 2016; 48: 349 – 356.
dc.identifier.citedreferenceShaddy RE. PD. Chronic cardiac failure: physiology and treatment. In: Anderson RH, Baker EJ, McCartney FJ, et al. (eds). Pediatric Cardiology. Philadelphia, PA: Churchill Livingston/Elsevier; 2002.
dc.identifier.citedreferenceDeVore GR, Zaretsky M, Gumina DL, Hobbins JC. Right and left ventricular 24‐segment sphericity index is abnormal in small‐for‐gestational‐age fetuses. Ultrasound Obstet Gynecol 2018; 52: 243 – 249.
dc.identifier.citedreferenceGabbay‐Benziv R, Turan OM, Harman C, Turan S. Nomograms for fetal cardiac ventricular width and right‐to‐left ventricular ratio. J Ultrasound Med 2015; 34: 2049 – 2055.
dc.identifier.citedreferenceVeille JC, Hanson R, Sivakoff M, Hoen H, Ben‐Ami M. Fetal cardiac size in normal, intrauterine growth retarded, and diabetic pregnancies. Am J Perinatol 1993; 10: 275 – 279.
dc.identifier.citedreferenceMahieu‐Caputo D, Salomon LJ, Le Bidois J, et al. Fetal hypertension: an insight into the pathogenesis of the twin‐twin transfusion syndrome. Prenat Diagn 2003; 23: 640 – 645.
dc.identifier.citedreferenceKondo Y, Hidaka N, Yumoto Y, Fukushima K, Tsukimori K, Wake N. Cardiac hypertrophy of one fetus and selective growth restriction of the other fetus in a monochorionic twin pregnancy. J Obstet Gynaecol Res 2010; 36: 401 – 404.
dc.identifier.citedreferenceLeipala JA, Boldt T, Turpeinen U, Vuolteenaho O, Fellman V. Cardiac hypertrophy and altered hemodynamic adaptation in growth‐restricted preterm infants. Pediatr Res 2003; 53: 989 – 993.
dc.identifier.citedreferenceSepulveda‐Martinez A, Garcia‐Otero L, Soveral I, et al. Comparison of 2D versus M‐mode echocardiography for assessing fetal myocardial wall thickness. J Matern Fetal Neonatal Med 2019; 32: 2319 – 2327.
dc.identifier.citedreferenceCaradeux J, Martinez‐Portilla RJ, Basuki TR, Kiserud T, Figueras F. Risk of fetal death in growth‐restricted fetuses with umbilical and/or ductus venosus absent or reversed end‐diastolic velocities before 34 weeks of gestation: a systematic review and meta‐analysis. Am J Obstet Gynecol 2018; 218: S774 – S782.e21.
dc.identifier.citedreferenceRodriguez‐Guerineau L, Perez‐Cruz M, Gomez Roig MD, et al. Cardiovascular adaptation to extrauterine life after intrauterine growth restriction. Cardiol Young 2018; 28: 284 – 291.
dc.identifier.citedreferenceSehgal A, Allison BJ, Gwini SM, Miller SL, Polglase GR. Cardiac morphology and function in preterm growth restricted infants: relevance for clinical sequelae. J Pediatr 2017; 188: 128 – 134.e2.
dc.identifier.citedreferenceArnott C, Skilton MR, Ruohonen S, et al. Subtle increases in heart size persist into adulthood in growth restricted babies: the Cardiovascular Risk in Young Finns Study. Open Heart 2015; 2: e000265.
dc.identifier.citedreferenceRodriguez‐López M, Cruz‐Lemini M, Valenzuela‐Alcaraz B, et al. Descriptive analysis of different phenotypes of cardiac remodeling in fetal growth restriction. Ultrasound Obstet Gynecol 2017; 50: 207 – 214.
dc.identifier.citedreferenceCrispi F, Bijnens B, Figueras F, et al. Fetal growth restriction results in remodeled and less efficient hearts in children. Circulation 2010; 121: 2427 – 2436.
dc.identifier.citedreferenceCruz‐Lemini M, Crispi F, Valenzuela‐Alcaraz B, et al. A fetal cardiovascular score to predict infant hypertension and arterial remodeling in intrauterine growth restriction. Am J Obstet Gynecol 2014; 210: 552.e1 – 552.e2.
dc.identifier.citedreferenceDeVore GR, Cuneo B, Klas B, Satou G, Sklansky M. Comprehensive evaluation of fetal cardiac ventricular widths and ratios using a 24‐segment speckle tracking technique. J Ultrasound Med 2019; 38: 1039 – 1047.
dc.identifier.citedreferenceDeVore GR, Klas B, Satou G, Sklansky M. Evaluation of the right and left ventricles: an integrated approach measuring the area, length, and width of the chambers in normal fetuses. Prenat Diagn 2017; 37: 1203 – 1212.
dc.identifier.citedreferenceDeVore GR, Klas B, Satou G, Sklansky M. 24‐segment sphericity index: a new technique to evaluate fetal cardiac diastolic shape. Ultrasound Obstet Gynecol 2018; 51: 650 – 658.
dc.identifier.citedreferenceDeVore GR, Satou G, Sklansky M. Abnormal fetal findings associated with a global sphericity index of the 4‐chamber view below the fifth centile. J Ultrasound Med 2017; 36: 2309 – 2318.
dc.identifier.citedreferenceDeVore GR, Satou G, Sklansky M. Area of the fetal heart’s four‐chamber view: a practical screening tool to improve detection of cardiac abnormalities in a low‐risk population. Prenat Diagn 2017; 37: 151 – 155.
dc.identifier.citedreferenceHobbins JC, Gumina DL, Zaretsky M, Driver C, Wilcox A, DeVore GR. Size and shape of the four‐chamber view of the fetal heart in fetuses with an estimated fetal weight less than the tenth centile. Am J Obstet Gynecol 2019; 221: 495.e1 – 495.e9.
dc.identifier.citedreferenceGordijn SJ, Beune IM, Thilaganathan B, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol 2016; 48: 333 – 339.
dc.identifier.citedreferenceHadlock FP, Harrist RB, Martinez‐Poyer J. In utero analysis of fetal growth: a sonographic weight standard. Radiology 1991; 181: 129 – 133.
dc.identifier.citedreferenceDeVore GR, Tabsh K, Polanco B, Satou G, Sklansky M. Fetal heart size: a comparison between the point‐to‐point trace and automated ellipse methods between 20 and 40 weeks’ gestation. J Ultrasound Med 2016; 35: 2543 – 2562.
dc.identifier.citedreferenceDeVore GR, Klas B, Satou G, Sklansky M. Longitudinal annular systolic displacement compared to global strain in normal fetal hearts and those with cardiac abnormalities. J Ultrasound Med 2018; 37: 1159 – 1171.
dc.identifier.citedreferenceDeVore GR, Klas B, Satou G, Sklansky M. Twenty‐four segment transverse ventricular fractional shortening: a new technique to evaluate fetal cardiac function. J Ultrasound Med 2018; 37: 1129 – 1141.
dc.identifier.citedreferenceDeVore GR, Klas B, Satou G, Sklansky M. Quantitative evaluation of the fetal right and left ventricular fractional area change using speckle‐tracking technology. Ultrasound Obstet Gynecol 2019; 53: 219 – 228.
dc.identifier.citedreferenceDeVore GR, Klas B, Satou G, Sklansky M. Evaluation of fetal left ventricular size and function using speckle‐tracking and the Simpson rule. J Ultrasound Med 2019; 38: 1209 – 1221.
dc.identifier.citedreferenceDeVore GR, Berthold K, Satou G, Sklansky M. Speckle tracking of the basal lateral and septal wall annular plane systolic excursion of the right and left ventricles of the fetal heart. J Ultrasound Med 2019; 38: 1309 – 1318.
dc.identifier.citedreferenceAltman DG, Chitty LS. Design and analysis of studies to derive charts of fetal size. Ultrasound Obstet Gynecol 1993; 3: 378 – 384.
dc.identifier.citedreferenceDeVore GR. Computing the z score and centiles for cross‐sectional analysis: a practical approach. J Ultrasound Med 2017; 36: 459 – 473.
dc.identifier.citedreferenceDeVore GR, Polanco B, Satou G, Sklansky M. Two‐dimensional speckle tracking of the fetal heart: a practical step‐by‐step approach for the fetal sonologist. J Ultrasound Med 2016; 35: 1765 – 1781.
dc.identifier.citedreferenceGarcia‐Otero L, Gómez O, Rodriguez‐López M, et al. Nomograms of fetal cardiac dimensions at 18–41 weeks of gestation. Fetal Diagn Ther 2020; 47: 387 – 398.
dc.identifier.citedreferenceAllan LD, Joseph MC, Boyd EG, Campbell S, Tynan M. M‐mode echocardiography in the developing human fetus. Br Heart J 1982; 47: 573 – 583.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.