Show simple item record

Diagnostic mesothelioma biomarkers in effusion cytology

dc.contributor.authorEccher, Albino
dc.contributor.authorGirolami, Ilaria
dc.contributor.authorLucenteforte, Ersilia
dc.contributor.authorTroncone, Giancarlo
dc.contributor.authorScarpa, Aldo
dc.contributor.authorPantanowitz, Liron
dc.date.accessioned2021-08-03T18:15:30Z
dc.date.available2022-08-03 14:15:28en
dc.date.available2021-08-03T18:15:30Z
dc.date.issued2021-07
dc.identifier.citationEccher, Albino; Girolami, Ilaria; Lucenteforte, Ersilia; Troncone, Giancarlo; Scarpa, Aldo; Pantanowitz, Liron (2021). "Diagnostic mesothelioma biomarkers in effusion cytology." Cancer Cytopathology (7): 506-516.
dc.identifier.issn1934-662X
dc.identifier.issn1934-6638
dc.identifier.urihttps://hdl.handle.net/2027.42/168478
dc.publisherWiley Periodicals, Inc.
dc.subject.othermesothelium
dc.subject.otherbiomarker
dc.subject.othercytology
dc.subject.otherimmunohistochemistry
dc.subject.othermesothelioma
dc.subject.otherpleural effusion
dc.titleDiagnostic mesothelioma biomarkers in effusion cytology
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelOncology and Hematology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168478/1/cncy22398.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168478/2/cncy22398_am.pdf
dc.identifier.doi10.1002/cncy.22398
dc.identifier.sourceCancer Cytopathology
dc.identifier.citedreferenceHwang HC, Sheffield BS, Rodriguez S, et al. Utility of BAP1 immunohistochemistry and p16 (CDKN2A) FISH in the diagnosis of malignant mesothelioma in effusion cytology specimens. Am J Surg Pathol. 2016; 40: 120 ‐ 126.doi: 10.1097/PAS.0000000000000529
dc.identifier.citedreferenceChiosea S, Krasinskas A, Cagle PT, Mitchell KA, Zander DS, Dacic S. Diagnostic importance of 9p21 homozygous deletion in malignant mesotheliomas. Mod Pathol. 2008; 21: 742 ‐ 747.doi: 10.1038/modpathol.2008.45
dc.identifier.citedreferenceIllei PB, Ladanyi M, Rusch VW, Zakowski MF. The use of CDKN2A deletion as a diagnostic marker for malignant mesothelioma in body cavity effusions. Cancer. 2003; 99: 51 ‐ 56.doi: 10.1002/cncr.10923
dc.identifier.citedreferenceHiroshima K, Wu D, Hasegawa M, et al. Cytologic differential diagnosis of malignant mesothelioma and reactive mesothelial cells with FISH analysis of p16. Diagn Cytopathol. 2016; 44: 591 ‐ 598.doi: 10.1002/dc.23490
dc.identifier.citedreferenceWu D, Hiroshima K, Yusa T, et al. Usefulness of p16/CDKN2A fluorescence in situ hybridization and BAP1 immunohistochemistry for the diagnosis of biphasic mesothelioma. Ann Diagn Pathol. 2017; 26: 31 ‐ 37.doi: 10.1016/j.anndiagpath.2016.10.010
dc.identifier.citedreferenceWu D, Hiroshima K, Matsumoto S, et al. Diagnostic usefulness of p16/CDKN2A FISH in distinguishing between sarcomatoid mesothelioma and fibrous pleuritis. Am J Clin Pathol. 2013; 139: 39 ‐ 46.doi: 10.1309/AJCPT94JVWIHBKRD
dc.identifier.citedreferenceWan C, Shen Y‐C, Liu M‐Q, et al. Diagnostic value of fluorescence in situ hybridization assay in malignant mesothelioma: a meta‐analysis. Asian Pacific J Cancer Prev. 2012; 13: 4745 ‐ 4749.doi: 10.7314/APJCP.2012.13.9.4745
dc.identifier.citedreferenceMatsumoto S, Hamasaki M, Kinoshita Y, Kamei T, Kawahara K, Nabeshima K. Morphological difference between pleural mesothelioma cells in effusion smears with either BAP1 loss or 9p21 homozygous deletion and reactive mesothelial cells without the gene alterations. Pathol Int. 2019; 69: 637 ‐ 645.doi: 10.1111/pin.12862
dc.identifier.citedreferenceKinoshita Y, Hamasaki M, Matsumoto S, et al. Genomic‐based ancillary assays offer improved diagnostic yield of effusion cytology with potential challenges in malignant pleural mesothelioma. Pathol Int. 2020; 70: 671 ‐ 679.doi: 10.1111/pin.12973
dc.identifier.citedreferenceKulduk G, Ekinci Ö, Toker G, et al. The importance of FISH signal cut‐off values for 9p21 deletion in malignant pleural mesothelioma: is it underestimated? Pathol Res Pract. 2019; 215: 152377. doi: 10.1016/j.prp.2019.03.006
dc.identifier.citedreferenceDacic S, Kothmaier H, Land S, et al. Prognostic significance of p16/cdkn2a loss in pleural malignant mesotheliomas. Virchows Arch. 2008; 453: 627 ‐ 635.doi: 10.1007/s00428‐008‐0689‐3
dc.identifier.citedreferenceBerg KB, Churg AM, Cheung S, Dacic S. Usefulness of methylthioadenosine phosphorylase and BRCA‐associated protein 1 immunohistochemistry in the diagnosis of malignant mesothelioma in effusion cytology specimens. Cancer Cytopathol. 2020; 128: 126 ‐ 132.doi: 10.1002/cncy.22221
dc.identifier.citedreferenceHiroshima K, Wu D, Hamakawa S, et al. HEG1, BAP1, and MTAP are useful in cytologic diagnosis of malignant mesothelioma with effusion. Diagn Cytopathol. Published online May 22, 2020. doi: 10.1002/dc.24475
dc.identifier.citedreferenceHamasaki M, Kinoshita Y, Yoshimura M, et al. Cytoplasmic MTAP expression loss detected by immunohistochemistry correlates with 9p21 homozygous deletion detected by FISH in pleural effusion cytology of mesothelioma. Histopathology. 2019; 75: 153 ‐ 155.doi: 10.1111/his.13872
dc.identifier.citedreferenceKinoshita Y, Hamasaki M, Yoshimura M, et al. A combination of MTAP and BAP1 immunohistochemistry is effective for distinguishing sarcomatoid mesothelioma from fibrous pleuritis. Lung Cancer. 2018; 125: 198 ‐ 204.doi: 10.1016/j.lungcan.2018.09.019
dc.identifier.citedreferenceLo Russo G, Tessari A, Capece M, et al. MicroRNAs for the diagnosis and management of malignant pleural mesothelioma: a literature review. Front Oncol. 2018; 8: 650. doi: 10.3389/fonc.2018.00650
dc.identifier.citedreferenceMartínez‐Rivera V, Negrete‐García MC, Ávila‐Moreno F, Ortiz‐Quintero B. Secreted and tissue miRNAs as diagnosis biomarkers of malignant pleural mesothelioma. Int J Mol Sci. 2018; 19. doi: 10.3390/ijms19020595
dc.identifier.citedreferenceBirnie KA, Prêle CM, Thompson PJ, Badrian B, Mutsaers SE. Targeting microRNA to improve diagnostic and therapeutic approaches for malignant mesothelioma. Oncotarget. 2017; 8: 78193 ‐ 78207.doi: 10.18632/oncotarget.20409
dc.identifier.citedreferenceCappellesso R, Nicolè L, Caroccia B, et al. Young investigator challenge: microRNA‐21/microRNA‐126 profiling as a novel tool for the diagnosis of malignant mesothelioma in pleural effusion cytology. Cancer Cytopathol. 2016; 124: 28 ‐ 37.doi: 10.1002/cncy.21646
dc.identifier.citedreferenceCappellesso R, Galasso M, Nicolè L, Dabrilli P, Volinia S, Fassina A. miR‐130A as a diagnostic marker to differentiate malignant mesothelioma from lung adenocarcinoma in pleural effusion cytology. Cancer Cytopathol. 2017; 125: 635 ‐ 643.doi: 10.1002/cncy.21869
dc.identifier.citedreferenceBirnie KA, Prêle CM, Musk AW (Bill), et al. MicroRNA signatures in malignant pleural mesothelioma effusions. Dis Markers. 2019; 2019: 1 ‐ 9.doi: 10.1155/2019/8628612
dc.identifier.citedreferenceMicolucci L, Akhtar MM, Olivieri F, Rippo MR, Procopio AD. Diagnostic value of microRNAs in asbestos exposure and malignant mesothelioma: systematic review and qualitative meta‐analysis. Oncotarget. 2016; 7: 58606 ‐ 58637.doi: 10.18632/oncotarget.9686
dc.identifier.citedreferenceNicolè L, Cappello F, Cappellesso R, VandenBussche CJ, Fassina A. MicroRNA profiling in serous cavity specimens: diagnostic challenges and new opportunities. Cancer Cytopathol. 2019; 127: 493 ‐ 500.doi: 10.1002/cncy.22143
dc.identifier.citedreferenceRossi ED, Bizzarro T, Martini M, et al. The evaluation of miRNAs on thyroid FNAC: the promising role of miR‐375 in follicular neoplasms. Endocrine. 2016; 54: 723 ‐ 732.doi: 10.1007/s12020‐016‐0866‐0
dc.identifier.citedreferenceBenjamin H, Schnitzer‐Perlman T, Shtabsky A, et al. Analytical validity of a microRNA‐based assay for diagnosing indeterminate thyroid FNA smears from routinely prepared cytology slides. Cancer Cytopathol. 2016; 124: 711 ‐ 721.doi: 10.1002/cncy.21731
dc.identifier.citedreferenceTanca A, Pisanu S, Biosa G, et al. Application of 2D‐DIGE to formalin‐fixed diseased tissue samples from hospital repositories: results from four case studies. Proteomics Clin Appl. 2013; 7: 252 ‐ 263.doi: 10.1002/prca.201200054
dc.identifier.citedreferenceRobinson BW, Musk AW, Lake RA. Malignant mesothelioma. Lancet. 2005; 366: 397 ‐ 408.doi: 10.1016/S0140‐6736(05)67025‐0
dc.identifier.citedreferenceCheung M, Talarchek J, Schindeler K, et al. Further evidence for germline BAP1 mutations predisposing to melanoma and malignant mesothelioma. Cancer Genet. 2013; 206: 206 ‐ 210.doi: 10.1016/j.cancergen.2013.05.018
dc.identifier.citedreferenceCadby G, Mukherjee S, Musk AW (Bill), et al. A genome‐wide association study for malignant mesothelioma risk. Lung Cancer. 2013; 82: 1 ‐ 8.doi: 10.1016/j.lungcan.2013.04.018
dc.identifier.citedreferenceScherpereel A, Opitz I, Berghmans T, et al. ERS/ESTS/EACTS/ESTRO guidelines for the management of malignant pleural mesothelioma. Eur Respir J. 2020; 55. doi: 10.1183/13993003.00953‐2019
dc.identifier.citedreferenceWoolhouse I, Bishop L, Darlison L, et al. British Thoracic Society Guideline for the investigation and management of malignant pleural mesothelioma. Thorax. 2018; 73 ( suppl 1 ): i1 ‐ i30.doi: 10.1136/thoraxjnl‐2017‐211321
dc.identifier.citedreferenceHenderson DW, Reid G, Kao SC, van Zandwijk N, Klebe S. Challenges and controversies in the diagnosis of mesothelioma: part 1. Cytology‐only diagnosis, biopsies, immunohistochemistry, discrimination between mesothelioma and reactive mesothelial hyperplasia, and biomarkers. J Clin Pathol. 2013; 66: 847 ‐ 853.doi: 10.1136/jclinpath‐2012‐201303
dc.identifier.citedreferenceHusain AN, Colby T, Ordonez N, et al. Guidelines for pathologic diagnosis of malignant mesothelioma: 2012 update of the consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med. 2013; 137: 647 ‐ 667.doi: 10.5858/arpa.2012‐0214‐OA
dc.identifier.citedreferenceChurg A, Nabeshima K, Ali G, Bruno R, Fernandez‐Cuesta L, Galateau‐Salle F. Highlights of the 14th international mesothelioma interest group meeting: pathologic separation of benign from malignant mesothelial proliferations and histologic/molecular analysis of malignant mesothelioma subtypes. Lung Cancer. 2018; 124: 95 ‐ 101.doi: 10.1016/j.lungcan.2018.07.041
dc.identifier.citedreferenceGrant MJ, Booth A. A typology of reviews: an analysis of 14 review types and associated methodologies. Heal Inf Libr J. 2009; 26: 91 ‐ 108.doi: 10.1111/j.1471‐1842.2009.00848.x
dc.identifier.citedreferenceRooper LM, Ali SZ, Olson MT. A minimum fluid volume of 75 mL is needed to ensure adequacy in a pleural effusion: a retrospective analysis of 2540 cases. Cancer Cytopathol. 2014; 122: 657 ‐ 665.doi: 10.1002/cncy.21452
dc.identifier.citedreferencePorcel JM. Diagnosis and characterization of malignant effusions through pleural fluid cytological examination. Curr Opin Pulm Med. 2019; 25: 362 ‐ 368.doi: 10.1097/MCP.0000000000000593
dc.identifier.citedreferenceSiddiqui MT. Serous cavity fluids: momentum, molecules, markers… and more! Cancer Cytopathol. 2020; 128: 381 ‐ 383.doi: 10.1002/cncy.22255
dc.identifier.citedreferenceSiddiqui MT, Schmitt F, Churg A. Proceedings of the American Society of Cytopathology companion session at the 2019 United States and Canadian Academy of Pathology Annual meeting, part 2: effusion cytology with focus on theranostics and diagnosis of malignant mesothelioma. J Am Soc Cytopathol. 2019; 8: 352 ‐ 361.doi: 10.1016/j.jasc.2019.07.005
dc.identifier.citedreferenceMonaco S, Mehrad M, Dacic S. Recent advances in the diagnosis of malignant mesothelioma. Adv Anat Pathol. 2018; 25: 24 ‐ 30.doi: 10.1097/PAP.0000000000000180
dc.identifier.citedreferenceNottegar A, Tabbò F, Luchini C, et al. Pulmonary adenocarcinoma with enteric differentiation. Appl Immunohistochem Mol Morphol. Published online October 2016: 1. doi: 10.1097/PAI.0000000000000440
dc.identifier.citedreferenceHusain AN, Colby TV, Ordóñez NG, et al. Guidelines for pathologic diagnosis of malignant mesothelioma: 2017 update of the consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med. 2018; 142: 89 ‐ 108.doi: 10.5858/arpa.2017‐0124‐RA
dc.identifier.citedreferenceChapel DB, Schulte JJ, Husain AN, Krausz T. Application of immunohistochemistry in diagnosis and management of malignant mesothelioma. Transl Lung Cancer Res. 2020; 9 ( suppl 1 ): S3 ‐ S27.doi: 10.21037/tlcr.2019.11.29
dc.identifier.citedreferenceTsuji S, Washimi K, Kageyama T, et al. HEG1 is a novel mucin‐like membrane protein that serves as a diagnostic and therapeutic target for malignant mesothelioma. Sci Rep. 2017; 7: 45768. doi: 10.1038/srep45768
dc.identifier.citedreferenceVojtek M, Walsh MD, Papadimos DJ, Shield PW. Claudin‐4 immunohistochemistry is a useful pan‐carcinoma marker for serous effusion specimens. Cytopathology. 2019; 30: 614 ‐ 619.doi: 10.1111/cyt.12765
dc.identifier.citedreferenceOda T, Ogata S, Kawaguchi S, et al. Immunocytochemical utility of claudin‐4 versus those of Ber‐EP4 and MOC‐31 in effusion cytology. Diagn Cytopathol. 2016; 44: 499 ‐ 504.doi: 10.1002/dc.23476
dc.identifier.citedreferenceJo VY, Cibas ES, Pinkus GS. Claudin‐4 immunohistochemistry is highly effective in distinguishing adenocarcinoma from malignant mesothelioma in effusion cytology. Cancer Cytopathol. 2014; 122: 299 ‐ 306.doi: 10.1002/cncy.21392
dc.identifier.citedreferenceChaouche‐Mazouni S, Scherpereel A, Zaamoum R, et al. Claudin 3, 4, and 15 expression in solid tumors of lung adenocarcinoma versus malignant pleural mesothelioma. Ann Diagn Pathol. 2015; 19: 193 ‐ 197.doi: 10.1016/j.anndiagpath.2015.03.007
dc.identifier.citedreferenceFacchetti F, Lonardi S, Gentili F, et al. Claudin 4 identifies a wide spectrum of epithelial neoplasms and represents a very useful marker for carcinoma versus mesothelioma diagnosis in pleural and peritoneal biopsies and effusions. Virchows Arch. 2007; 451: 669 ‐ 680.doi: 10.1007/s00428‐007‐0448‐x
dc.identifier.citedreferenceBruno R, Alì G, Fontanini G. Molecular markers and new diagnostic methods to differentiate malignant from benign mesothelial pleural proliferations: a literature review. J Thorac Dis. 2018; 10 ( suppl 2 ): S342 ‐ S352.doi: 10.21037/jtd.2017.10.88
dc.identifier.citedreferenceCreaney J, Sneddon S, Dick IM, et al. Comparison of the diagnostic accuracy of the MSLN gene products, mesothelin and megakaryocyte potentiating factor, as biomarkers for mesothelioma in pleural effusions and serum. Dis Markers. 2013; 35: 119 ‐ 127.doi: 10.1155/2013/874212
dc.identifier.citedreferenceCreaney J, Dick IM, Meniawy TM, et al. Comparison of fibulin‐3 and mesothelin as markers in malignant mesothelioma. Thorax. 2014; 69: 895 ‐ 902.doi: 10.1136/thoraxjnl‐2014‐205205
dc.identifier.citedreferenceCui A, Jin X‐G, Zhai K, Tong Z‐H, Shi H‐Z. Diagnostic values of soluble mesothelin‐related peptides for malignant pleural mesothelioma: updated meta‐analysis. BMJ Open. 2014; 4: e004145. doi: 10.1136/bmjopen‐2013‐004145
dc.identifier.citedreferenceGao R, Wang F, Wang Z, et al. Diagnostic value of soluble mesothelin‐related peptides in pleural effusion for malignant pleural mesothelioma: an updated meta‐analysis. Medicine (Baltimore). 2019; 98: e14979. doi: 10.1097/MD.0000000000014979
dc.identifier.citedreferencePei D, Li Y, Liu X, et al. Diagnostic and prognostic utilities of humoral fibulin‐3 in malignant pleural mesothelioma: evidence from a meta‐analysis. Oncotarget. 2017; 8: 13030 ‐ 13038.doi: 10.18632/oncotarget.14712
dc.identifier.citedreferenceOhashi R, Tajima K, Takahashi F, et al. Osteopontin modulates malignant pleural mesothelioma cell functions in vitro. Anticancer Res. 2009; 29: 2205 ‐ 2214.
dc.identifier.citedreferenceRen R, Yin P, Zhang Y, et al. Diagnostic value of fibulin‐3 for malignant pleural mesothelioma: a systematic review and meta‐analysis. Oncotarget. 2016; 7: 84851 ‐ 84859.doi: 10.18632/oncotarget.12707
dc.identifier.citedreferenceLin H, Shen Y‐C, Long H‐Y, et al. Performance of osteopontin in the diagnosis of malignant pleural mesothelioma: a meta‐analysis. Int J Clin Exp Med. 2014; 7: 1289 ‐ 1296.
dc.identifier.citedreferencePinto D, Schmitt F. Current applications of molecular testing on body cavity fluids. Diagn Cytopathol. 2020; 48: 840 ‐ 851.doi: 10.1002/dc.24410
dc.identifier.citedreferenceKuwata T, Yoneda K, Mori M, et al. Detection of circulating tumor cells (CTCs) in malignant pleural mesothelioma (MPM) with the “universal” CTC‐chip and an anti‐podoplanin antibody NZ‐1.2. Cells. 2020; 9: 888. doi: 10.3390/cells9040888
dc.identifier.citedreferenceChurg A, Sheffield BS, Galateau‐Salle F. New markers for separating benign from malignant mesothelial proliferations: are we there yet? Arch Pathol Lab Med. 2016; 140: 318 ‐ 321.doi: 10.5858/arpa.2015‐0240‐SA
dc.identifier.citedreferenceZhong S‐C, Ao X‐J, Yu S‐H. Diagnostic value of GLUT‐1 in distinguishing malignant mesothelioma from reactive mesothelial cells: a meta‐analysis. Biomarkers. 2020; 25: 157 ‐ 163.doi: 10.1080/1354750X.2020.1714735
dc.identifier.citedreferenceIkeda K, Tate G, Suzuki T, Kitamura T, Mitsuya T. IMP3/L523S, a novel immunocytochemical marker that distinguishes benign and malignant cells: the expression profiles of IMP3/L523S in effusion cytology. Hum Pathol. 2010; 41: 745 ‐ 750.doi: 10.1016/j.humpath.2009.04.030
dc.identifier.citedreferenceHanley KZ, Facik MS, Bourne PA, et al. Utility of anti‐L523S antibody in the diagnosis of benign and malignant serous effusions. Cancer. 2008; 114: 49 ‐ 56.doi: 10.1002/cncr.23254
dc.identifier.citedreferenceKuperman M, Florence RR, Pantanowitz L, Visintainer PF, Cibas ES, Otis CN. Distinguishing benign from malignant mesothelial cells in effusions by Glut‐1, EMA, and Desmin expression: an evidence‐based approach. Diagn Cytopathol. 2013; 41: 131 ‐ 140.doi: 10.1002/dc.21800
dc.identifier.citedreferenceYu H, Pak H, Hammond‐Martel I, et al. Tumor suppressor and deubiquitinase BAP1 promotes DNA double‐strand break repair. Proc Natl Acad Sci. 2014; 111: 285 ‐ 290.doi: 10.1073/pnas.1309085110
dc.identifier.citedreferenceIsmail IH, Davidson R, Gagné J‐P, Xu ZZ, Poirier GG, Hendzel MJ. Germline mutations in BAP1 impair its function in DNA double‐strand break repair. Cancer Res. 2014; 74: 4282 ‐ 4294.doi: 10.1158/0008‐5472.CAN‐13‐3109
dc.identifier.citedreferenceRighi L, Duregon E, Vatrano S, et al. BRCA1‐associated protein 1 (BAP1) immunohistochemical expression as a diagnostic tool in malignant pleural mesothelioma classification: a large retrospective study. J Thorac Oncol. 2016; 11: 2006 ‐ 2017.doi: 10.1016/j.jtho.2016.06.020
dc.identifier.citedreferenceChurg A, Naso JR. The separation of benign and malignant mesothelial proliferations: new markers and how to use them. Am J Surg Pathol. 2020; 44:: e100 ‐ e112.doi: 10.1097/PAS.0000000000001565
dc.identifier.citedreferenceWang L‐M, Shi Z‐W, Wang J‐L, et al. Diagnostic accuracy of BRCA1‐associated protein 1 in malignant mesothelioma: a meta‐analysis. Oncotarget. 2017; 8: 68863 ‐ 68872.doi: 10.18632/oncotarget.20317
dc.identifier.citedreferenceMlika M, Zorgati M, BenKhelil M, Mezni F El. About the diagnostic value of BAP‐1 antibody in malignant pleural mesothelioma: a meta‐analysis. J Immunoass Immunochem. 2019; 40: 269 ‐ 282.doi: 10.1080/15321819.2019.1574814
dc.identifier.citedreferenceCozzi I, Oprescu FA, Rullo E, Ascoli V. Loss of BRCA1‐associated protein 1 (BAP1) expression is useful in diagnostic cytopathology of malignant mesothelioma in effusions. Diagn Cytopathol. 2018; 46: 9 ‐ 14.doi: 10.1002/dc.23837
dc.identifier.citedreferenceBruno R, Alì G, Poma AM, et al. Differential diagnosis of malignant pleural mesothelioma on cytology. J Mol Diagnostics. 2020; 22: 457 ‐ 466.doi: 10.1016/j.jmoldx.2019.12.009
dc.identifier.citedreferenceChevrier M, Monaco SE, Jerome JA, Galateau‐Salle F, Churg A, Dacic S. Testing for BAP1 loss and CDKN2A/p16 homozygous deletion improves the accurate diagnosis of mesothelial proliferations in effusion cytology. Cancer Cytopathol. 2020; 128: 939 ‐ 947.doi: 10.1002/cncy.22326
dc.identifier.citedreferenceWalts AE, Hiroshima K, McGregor SM, Wu D, Husain AN, Marchevsky AM. BAP1 immunostain and CDKN2A (p16) FISH analysis: clinical applicability for the diagnosis of malignant mesothelioma in effusions. Diagn Cytopathol. 2016; 44: 599 ‐ 606.doi: 10.1002/dc.23491
dc.identifier.citedreferenceLaFave LM, Béguelin W, Koche R, et al. Loss of BAP1 function leads to EZH2‐dependent transformation. Nat Med. 2015; 21: 1344 ‐ 1349.doi: 10.1038/nm.3947
dc.identifier.citedreferenceYoshimura M, Kinoshita Y, Hamasaki M, et al. Highly expressed EZH2 in combination with BAP1 and MTAP loss, as detected by immunohistochemistry, is useful for differentiating malignant pleural mesothelioma from reactive mesothelial hyperplasia. Lung Cancer. 2019; 130: 187 ‐ 193.doi: 10.1016/j.lungcan.2019.02.004
dc.identifier.citedreferenceShinozaki‐Ushiku A, Ushiku T, Morita S, Anraku M, Nakajima J, Fukayama M. Diagnostic utility of BAP1 and EZH2 expression in malignant mesothelioma. Histopathology. 2017; 70: 722 ‐ 733.doi: 10.1111/his.13123
dc.identifier.citedreferenceYoshimura M, Hamasaki M, Kinoshita Y, et al. Utility of highly expressed EZH2 in pleural effusion cytology for the diagnosis of mesothelioma. Pathol Int. 2020; 70: 831 ‐ 833.doi: 10.1111/pin.12990
dc.identifier.citedreferenceJiang H, Gupta R, Somma J. EZH2, a unique marker of malignancy in effusion cytology. Diagn Cytopathol. 2014; 42: 111 ‐ 116.doi: 10.1002/dc.22999
dc.identifier.citedreferenceSadullahoglu C, Nart D, Veral A. The importance of EZH2 and MOC‐31 expression in the differential diagnosis of benign and malignant effusions. Diagn Cytopathol. 2017; 45: 118 ‐ 124.doi: 10.1002/dc.23653
dc.identifier.citedreferenceAng PP, Tan GC, Karim N, Wong YP. Diagnostic value of the EZH2 immunomarker in malignant effusion cytology. Acta Cytol. 2020; 64: 248 ‐ 255.doi: 10.1159/000501406
dc.identifier.citedreferenceChapel DB, Husain AN, Krausz T. Immunohistochemical evaluation of nuclear 5‐hydroxymethylcytosine (5‐hmC) accurately distinguishes malignant pleural mesothelioma from benign mesothelial proliferations. Mod Pathol. 2019; 32: 376 ‐ 386.doi: 10.1038/s41379‐018‐0159‐7
dc.identifier.citedreferenceLouw A, Badiei A, Creaney J, Chai MS, Lee YCG. Advances in pathological diagnosis of mesothelioma: what pulmonologists should know. Curr Opin Pulm Med. 2019; 25: 354 ‐ 361.doi: 10.1097/MCP.0000000000000578
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.