Show simple item record

Efficient Er/O Doped Silicon Photodiodes at Communication Wavelengths by Deep Cooling

dc.contributor.authorZhao, Xingyan
dc.contributor.authorLin, Kaiman
dc.contributor.authorGao, Sai
dc.contributor.authorLiu, Huayou
dc.contributor.authorHe, Jiajing
dc.contributor.authorWang, Xiaoming
dc.contributor.authorWen, Huimin
dc.contributor.authorDan, Yaping
dc.date.accessioned2021-08-03T18:15:40Z
dc.date.available2022-08-03 14:15:37en
dc.date.available2021-08-03T18:15:40Z
dc.date.issued2021-07
dc.identifier.citationZhao, Xingyan; Lin, Kaiman; Gao, Sai; Liu, Huayou; He, Jiajing; Wang, Xiaoming; Wen, Huimin; Dan, Yaping (2021). "Efficient Er/O Doped Silicon Photodiodes at Communication Wavelengths by Deep Cooling." Advanced Materials Technologies 6(7): n/a-n/a.
dc.identifier.issn2365-709X
dc.identifier.issn2365-709X
dc.identifier.urihttps://hdl.handle.net/2027.42/168483
dc.description.abstractWide band infrared photodetectors have found a wide range of applications in sensing, communication, and spectral analysis. However, the commonly used infrared photodetectors are based on Ge and III‐V semiconductors which are not complementary metal‐oxide‐semiconductor (CMOS) compatible and therefore have limited applications. There is a huge demand for silicon‐based infrared photodetectors due to its low‐cost and compatibility with CMOS processes. Nevertheless, the spectral bandwidth of Si photodetectors is limited to wavelengths below 1.1 µm. Several approaches are developed to extend Si photodetection bandwidth to communication wavelengths. Er/O doped Si is a promising approach which, however, suffers from low infrared responsivities at room temperature when the samples are treated with the standard rapid thermal annealing (RTA). In this work, a novel deep cooling process to treat Er/O doped silicon waveguide photodiodes is applied. In comparison with RTA process, the deep cooling process reduces the defect concentration in silicon by two orders of magnitude, resulting in a two‐orders‐of‐magnitude reduction in leakage current density and an enhanced photoresponsivity to 100 mA W−1 at 1510 nm. The 3dB bandwidth of the silicon waveguide photodiode reaches 30 kHz. The device performance can be further improved by optimizing the deep cooling condition and Er/O doping concentration.Er/O doped Si is a promising approach to realize infrared photodetection. However, it suffers from low infrared responsivities when treated with the standard RTA. In this work, a deep cooling process is applied to treat Er/O doped silicon waveguide photodiodes. Compared with RTA process, the deep cooling process leads to an enhanced photoresponsivity to 100 mA W‐1 at 1510 nm at room temperature.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer Science & Business Media
dc.subject.othererbium doping
dc.subject.otherdefect
dc.subject.otherdeep cooling
dc.subject.othercommunication wavelength
dc.subject.othersilicon waveguide photodetectors
dc.titleEfficient Er/O Doped Silicon Photodiodes at Communication Wavelengths by Deep Cooling
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168483/1/admt202100137.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168483/2/admt202100137-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168483/3/admt202100137_am.pdf
dc.identifier.doi10.1002/admt.202100137
dc.identifier.sourceAdvanced Materials Technologies
dc.identifier.citedreferenceS. Scalese, G. Franzò, S. Mirabella, M. Re, A. Terrasi, F. Priolo, E. Rimini, C. Spinella, A. Carnera, J. Appl. Phys. 2000, 88, 4091.
dc.identifier.citedreferenceS. Mauthe, Y. Baumgartner, M. Sousa, Q. Ding, M. D. Rossell, A. Schenk, L. Czornomaz, K. E. Moselund, Nat. Commun. 2020, 11, 4565.
dc.identifier.citedreferenceT. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, M. J. Paniccia, Opt. Express 2007, 15, 13965.
dc.identifier.citedreferenceL. Vivien, J. Osmond, J. M. Fedeli, D. Marris‐Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, S. Laval, Opt. Express 2009, 17, 6252.
dc.identifier.citedreferenceM. Casalino, G. Coppola, M. Iodice, I. Rendina, L. Sirleto, Sensors 2010, 10, 10571.
dc.identifier.citedreferenceA. Rickman, Nat. Photonics 2014, 8, 579.
dc.identifier.citedreferenceG. Masini, L. Colace, G. Assanto, Mater. Sci. Eng., B 2002, 89, 2.
dc.identifier.citedreferenceL. Pavesi, J. Phys.: Condens. Matter 2003, 15, R1169.
dc.identifier.citedreferenceR. R. Grote, B. Souhan, N. Ophir, J. B. Driscoll, K. Bergman, H. Bahkru, W. M. J. Green, R. M. Osgood, Optica 2014, 1, 264.
dc.identifier.citedreferenceY. Li, W. Zheng, F. Huang, PhotoniX 2020, 1, 15.
dc.identifier.citedreferenceS. Hu, P. Han, S. Wang, X. Mao, X. Li, L. Gao, Semicond. Sci. Technol. 2012, 27, 102002.
dc.identifier.citedreferenceJ. E. Carey, C. H. Crouch, M. Shen, E. Mazur, Opt. Lett. 2005, 30, 1773.
dc.identifier.citedreferenceT. G. Kim, J. M. Warrender, M. J. Aziz, Appl. Phys. Lett. 2006, 88, 241902.
dc.identifier.citedreferenceB. P. Bob, A. Kohno, S. Charnvanichborikarn, J. M. Warrender, I. Umezu, M. Tabbal, J. S. Williams, M. J. Aziz, J. Appl. Phys. 2010, 107, 123506.
dc.identifier.citedreferenceM. J. Smith, M.‐J. Sher, B. Franta, Y.‐T. Lin, E. Mazur, S. Gradečak, J. Appl. Phys. 2012, 112, 083518.
dc.identifier.citedreferenceJ. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, T. Buonassisi, Nat. Commun. 2014, 5,.
dc.identifier.citedreferenceK. Mallik, R. J. Falster, P. R. Wilshaw, Semicond. Sci. Technol. 2003, 18, 517.
dc.identifier.citedreferenceK. Graff, Metal Impurities in Silicon‐Device Fabrication, Vol. 24, Springer Science & Business Media, Berlin 2013.
dc.identifier.citedreferenceX. Qiu, Z. Wang, X. Hou, X. Yu, D. Yang, Photonics Research 2019, 351, 7.
dc.identifier.citedreferenceP. G. Kik, A. Polman, S. Libertino, S. Coffa, J. Lightwave Technol. 2002, 20, 862.
dc.identifier.citedreferenceN. Hamelin, P. G. Kik, J. F. Suyver, K. Kikoin, A. Polman, A. Schönecker, F. W. Saris, J. Appl. Phys. 2000, 88, 5381.
dc.identifier.citedreferenceA. J. Kenyon, S. S. Bhamber, C. W. Pitt, Mater. Sci. Eng., B 2003, 105, 230.
dc.identifier.citedreferenceH. Wen, J. He, J. Hong, S. Jin, Z. Xu, H. Zhu, J. Liu, G. Sha, F. Yue, Y. Dan, Adv. Opt. Mater. 2020, 8, 2000720.
dc.identifier.citedreferenceA. J. Kenyon, Semicond. Sci. Technol. 2005, 20, R65.
dc.identifier.citedreferenceY. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, C. Q. Wang, J. Phys.: Condens. Matter. 2008, 21, 012204.
dc.identifier.citedreferenceB. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, J. M. Poate, Appl. Phys. Lett. 1994, 64, 2842.
dc.identifier.citedreferenceM. A. Lourenco, M. M. Milosevic, A. Gorin, R. M. Gwilliam, K. P. Homewood, Sci. Rep. 2016, 5, 37501.
dc.identifier.citedreferenceF. Priolo, G. Franzò, S. Coffa, A. Carnera, Phys. Rev. B 1998, 57, 4443.
dc.identifier.citedreferenceV. P. Kuznetsov, R. A. Rubtsova, V. N. Shabanov, A. P. Kasatkin, S. V. Sedova, G. A. Maksimov, Z. F. Krasil’nik, E. V. Demidov, Phys. Solid State 2005, 47, 102.
dc.identifier.citedreferenceL. S. Grattan, B. T. Meggit, Optical Fiber Sensor Technology Chemical and Environmental Sensing Springe, Vol. 4, Springer, Berlin 1998, pp.  113 – 132.
dc.identifier.citedreferenceR. E. Kunz, K. Cottier, Anal. Bioanal. Chem. 2006, 384, 180.
dc.identifier.citedreferenceB. Wu, Y. Yu, J. Xiong, X. Zhang, Sci. Rep. 2018, 8, 8766.
dc.identifier.citedreferenceD. Liu, H. Li, X. Wang, H. Liu, P. Ni, N. Liu, L. Feng, Opt. Express 2020, 28, 15718.
dc.identifier.citedreferenceL. Chrostowski, M. Hochberg, Silicon Photonics Design: From Devices to Systems, Cambridge University Press, Cambridge 2015.
dc.identifier.citedreferenceR. Soref, B. Bennett, IEEE J. Quantum Electron. 1987, 23, 123.
dc.identifier.citedreferenceJ. Hong, H. Wen, J. He, J. Liu, Y. Dan, J. W. Tomm, F. Yue, J. Chu, C. Duan, Photonics Research, 2021, unpublished, https://doi.org/10.1364/PRJ.417090.
dc.identifier.citedreferenceM. T. Winkler, D. Recht, M.‐J. Sher, A. J. Said, E. Mazur, M. J. Aziz, Phys. Rev. Lett. 2011, 106, 178701.
dc.identifier.citedreferenceC. L. Tan, H. Mohseni, Nanophotonics 2018, 7, 169.
dc.identifier.citedreferenceA. Rogalski, Opto‐Electronics Review 2012, 20.
dc.identifier.citedreferenceA. Rogalski, Infrared Phys. Technol. 2002, 43, 187.
dc.identifier.citedreferenceX. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, W. M. J. Green, Nat. Photonics 2012, 6, 667.
dc.identifier.citedreferenceW. Zheng, L. Jia, F. Huang, iScience 2020, 23, 101145.
dc.identifier.citedreferenceW. Zheng, R. Lin, J. Ran, Z. Zhang, X. Ji, F. Huang, ACS Nano 2018, 12, 425.
dc.identifier.citedreferenceW. Zheng, F. Huang, R. Zheng, H. Wu, Adv. Mater. 2015, 27, 3921.
dc.identifier.citedreferenceS. Liao, N. N. Feng, D. Feng, P. Dong, R. Shafiiha, C. C. Kung, H. Liang, W. Qian, Y. Liu, J. Fong, J. E. Cunningham, Y. Luo, M. Asghari, Opt. Express 2011, 19, 10967.
dc.identifier.citedreferenceJ. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, H. Liu, ACS Photonics 2016, 3, 749.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.