Show simple item record

Multicomponent topology optimization of functionally graded lattice structures with bulk solid interfaces

dc.contributor.authorYi, Bing
dc.contributor.authorSaitou, Kazuhiro
dc.date.accessioned2021-08-03T18:16:06Z
dc.date.available2022-09-03 14:15:59en
dc.date.available2021-08-03T18:16:06Z
dc.date.issued2021-08-30
dc.identifier.citationYi, Bing; Saitou, Kazuhiro (2021). "Multicomponent topology optimization of functionally graded lattice structures with bulk solid interfaces." International Journal for Numerical Methods in Engineering 122(16): 4219-4249.
dc.identifier.issn0029-5981
dc.identifier.issn1097-0207
dc.identifier.urihttps://hdl.handle.net/2027.42/168489
dc.description.abstractThis article presents a topology optimization method for structures consisting of multiple lattice components under a certain size, which can be manufactured with an additive manufacturing machine with a size limit and assembled via conventional joining processes, such as welding, gluing, riveting, and bolting. The proposed method can simultaneously optimize overall structural topology, partitioning to multiple components and functionally graded lattices within each component. The functionally graded lattice infill with guaranteed connectivity is realized by applying the Helmholtz PDE filter with a variable radius on the density field in the solid isotropic material with penalization (SIMP) method. The partitioning of an overall structure into multiple components is realized by applying the discrete material optimization (DMO) method, in which each material is interpreted as each component, and the size limit for each component imposed by a chosen additive manufacturing machine. A gradient‐free coating filter realizes bulk solid boundaries for each component, which provide continuous mating surfaces between adjacent components to enable the subsequent joining. The structural interfaces between the bulk solid boundaries are extracted and assigned a distinct material property, which model the joints between the adjacent components. Several numeral examples are solved for demonstration.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othermulticomponent structures
dc.subject.othertopology optimization
dc.subject.otherlattice infill
dc.subject.otherbulk solid interfaces
dc.titleMulticomponent topology optimization of functionally graded lattice structures with bulk solid interfaces
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMechanical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168489/1/nme6700_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168489/2/nme6700.pdf
dc.identifier.doi10.1002/nme.6700
dc.identifier.sourceInternational Journal for Numerical Methods in Engineering
dc.identifier.citedreferenceVermaak N, Michailidis G, Parry G, Estevez R, Allaire G, Bréchet Y. Material interface effects on the topology optimizationof multi‐phase structures using a level set method. Struct Multidiscip Optim. 2014; 50: 623 ‐ 644.
dc.identifier.citedreferenceJohanson R, Kikuchi N, Papalambros P, Topping B, Papadrakakis M. Simultaneous topology and material microstructure design. Conference on computational structures technology. 1994.
dc.identifier.citedreferenceJiang T, Chirehdast M. A systems approach to structural topology optimization: designing optimal connections. ASME J Mech Des. 1997: 119 ( 1 ): 40 ‐ 47. https://doi.org/10.1115/1.2828787.
dc.identifier.citedreferenceChickermane H, Gea HC. Design of multi‐component structural systems for optimal layout topology and joint locations. Engineering with Computers 13. 1996: 235 ‐ 243. https://doi.org/10.1007/BF01200050.
dc.identifier.citedreferenceLi Q, Steven GP, Xie YM. Evolutionary structural optimization for connection topology design of multi‐component systems. Eng Comput. 2001; 18 ( 3/4 ): 460 ‐ 479.
dc.identifier.citedreferencePollini N, Amir O. Mixed projection‐and density‐based topology optimization with applications to structural assemblies. Struct Multidiscip Optim. 2020; 61: 687 ‐ 710.
dc.identifier.citedreferenceLyu N, Saitou K. Topology optimization of multicomponent beam structure via decomposition‐based assembly synthesis. ASME J Mech Des. 2005; 127 ( 2 ): 170 ‐ 183. https://doi.org/10.1115/1.1814671.
dc.identifier.citedreferenceYildiz AR, Saitou K. Topology synthesis of multicomponent structural assemblies in continuum domains. J Mech Des. 2011; 133 ( 1 ): 011008.
dc.identifier.citedreferenceGuirguis D, Hamza K, Aly M, Hegazi H, Saitou K. Multi‐objective topology optimization of multi‐component continuum structures via a kriging‐interpolated level set approach. Struct Multidiscip Optim. 2015; 51: 733 ‐ 748.
dc.identifier.citedreferenceZhou Y, Saitou K. Gradient‐based multi‐component topology optimization for stamped sheet metal assemblies(mto‐s). Struct Multidiscip Optim. 2018; 58: 83 ‐ 94.
dc.identifier.citedreferenceZhou Y, Nomura T, Saitou K. Multi‐component topology and material orientation design of composite structures (mto‐s). Comput Methods Appl Mech Eng. 2018; 342: 438 ‐ 457.
dc.identifier.citedreferenceCampagna F, Diaz AR. Optimization of lattice infill distribution in additive manufacturing. Paper presented at: Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; 2017; ASME, Cleveland, Ohio.
dc.identifier.citedreferenceGao J, Luo Z, Li H, Gao L. Topology optimization for multiscale design of porous composites with multi‐domain microstructures. Comput Methods Appl Mech Eng. 2019; 344: 451 ‐ 476.
dc.identifier.citedreferenceFaure A, Michailidis G, Parry G, Vermaak N, Estevez R. Design of thermoelastic multi‐material structures with graded interfaces using topology optimization. Struct Multidiscip Optim. 2017; 56: 823 ‐ 837.
dc.identifier.citedreferenceLiu P, Kang Z. Integrated topology optimization of multi‐component structures considering connecting interface behavior. Comput Methods Appl Mech Eng. 2018; 341: 851 ‐ 887.
dc.identifier.citedreferenceChu S, Xiao M, Gao L, Li H, Zhang J, Zhang X. Topology optimization of multi‐material structures with graded interfaces. Comput Methods Appl Mech Eng. 2019; 346: 1096 ‐ 1117.
dc.identifier.citedreferenceClausen A, Aage N, Sigmund O. Topology optimization of coated structures and material interface problems. Comput Methods Appl Mech Eng. 2015; 290: 524 ‐ 541.
dc.identifier.citedreferenceYoon GH, Yi B. A new coating filter of coated structure for topology optimization. Struct Multidiscip Optim. 2019; 60; 1527 ‐ 1544. https://doi.org/10.1007/s00158‐019‐02279‐7.
dc.identifier.citedreferenceLazarov BS, Sigmund O. Filters in topology optimization based on helmholtz‐type differential equations. Int J Numer Methods Eng. 2011; 86: 765 ‐ 781.
dc.identifier.citedreferenceStegmann J, Lund E. Discrete material optimization of general composite shell structures. Int J Numer Methods Eng. 2005; 62: 2009 ‐ 2027.
dc.identifier.citedreferenceSvanberg K. The method of moving asymptotes – a new method for structural optimization. Int J Numer Methods Eng. 1987; 24: 359 ‐ 373.
dc.identifier.citedreferenceKadic M, Milton GW, van Hecke M, Wegener M. 3d metamaterials. Nat Rev Phys. 2019; 1: 198 ‐ 210.
dc.identifier.citedreferenceLi L, Zhang G, Khandelwal K. Topology optimization of energy absorbing structures with maximum damage constraint. Int J Numer Methods Eng. 2017; 112: 737 ‐ 775.
dc.identifier.citedreferenceJia Z, Wang L. Instability‐triggered triply negative mechanical metamaterial. Phys Rev Appl. 2019; 12: 024040.
dc.identifier.citedreferenceClausen A, Wang F, Jensen JS, Sigmund O, Lewis JA. Topology optimized architectures with programmable Poisson’s ratio over large deformations. Adv Mater. 2015; 27: 5523 ‐ 5527.
dc.identifier.citedreferenceWang Q, Jackson JA, Ge Q, Hopkins JB, Spadaccini CM, Fang NX. Lightweight mechanical metamaterials with tunable negative thermal expansion. Phys Rev Lett. 2016; 117: 175901.
dc.identifier.citedreferenceL. Wu, B. Li, J. Zhou, Isotropic negative thermal expansion metamaterials, ACS Appl Mater Interfaces 8 ( 2016 ) 17721 – 17727. https://doi.org/10.1021/acsami.6b05717, pMID: 27333052.
dc.identifier.citedreferenceNoguchi Y, Yamada T, Izui K, Nishiwaki S. Topology optimization for hyperbolic acoustic metamaterials using a high‐frequency homogenization method. Comput Methods Appl Mech Eng. 2018; 335: 419 ‐ 471.
dc.identifier.citedreferenceCummer SA, Christensen J, Alù A. Controlling sound with acoustic metamaterials. Nat Rev Mater. 2016; 1: 16001.
dc.identifier.citedreferenceThompson MK, Moroni G, Vaneker T, et al. Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann. 2016; 65: 737 ‐ 760.
dc.identifier.citedreferenceDirrenberger J. From architectured materials to large‐scale additive manufacturing. In: Bier H, ed. Robotic Building. Springer Series in Adaptive Environments. Berlin, Germany: Springer International Publishing; 2018: 79 ‐ 96.
dc.identifier.citedreferencePham M‐S, Liu C, Todd I, Lertthanasarn J. Damage‐tolerant architected materials inspired by crystal microstructure. Nature. 2019; 565: 305 ‐ 311.
dc.identifier.citedreferenceZhou Y, Nomura T, Saitou K. Multicomponent topology optimization for additive manufacturing with build volume and cavity free constraints. J Comput Inf Sci Eng. 2018; 19: 021011 ‐ 021010.
dc.identifier.citedreferenceYi B, Zhou Y, Yoon GH, Saitou K. Topology optimization of functionally‐graded lattice structures with buckling constraints. Comput Methods Appl Mech Eng. 2019; 354: 593 ‐ 619.
dc.identifier.citedreferenceWu J, Aage N, Westermann R, Sigmund O. Infill optimization for additive manufacturing approaching bone‐like porous structures. IEEE Trans Vis Comput Graph. 2018; 24: 1127 ‐ 1140. https://doi.org/10.1109/TVCG.2017.2655523.
dc.identifier.citedreferenceYetis A, Saitou K. Decomposition‐based assembly synthesis based on structural considerations. J Mech Des. 2002; 124: 593 ‐ 601.
dc.identifier.citedreferenceLyu N, Saitou K. Decomposition‐based assembly synthesis of a three dimensional body‐in‐white model for structural stiffness. J Mech Des. 2003; 127: 34 ‐ 48.
dc.identifier.citedreferenceLyu N, Saitou K. Decomposition‐based assembly synthesis of space frame structures using joint library. J Mech Des. 2006; 128: 57 ‐ 65.
dc.identifier.citedreferenceLuo L, Baran I, Rusinkiewicz S, Matusik W. Chopper: partitioning models into 3d‐printable parts. ACM Trans Graph. 2012; 31: 129:1 ‐ 129:9.
dc.identifier.citedreferenceYao M, Chen Z, Luo L, Wang R, Wang H. Level‐set‐based partitioning and packing optimization of a printable model. ACM Trans Graph. 2015; 34: 214:1 ‐ 214:11.
dc.identifier.citedreferenceLiu H‐Y, Fu X‐M, Ye C, Chai S, Liu L. Atlas refinement with bounded packing efficiency. ACM Trans Graph. 2019; 38: 33:1 ‐ 33:13.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.