Show simple item record

The Na/K‐ATPase α1/Src interaction regulates metabolic reserve and Western diet intolerance

dc.contributor.authorKutz, Laura C.
dc.contributor.authorCui, Xiaoyu
dc.contributor.authorXie, Jeffrey X.
dc.contributor.authorMukherji, Shreya T.
dc.contributor.authorTerrell, Kayleigh C.
dc.contributor.authorHuang, Minqi
dc.contributor.authorWang, Xiaoliang
dc.contributor.authorWang, Jiayan
dc.contributor.authorMartin, Adam J.
dc.contributor.authorPessoa, Marco T.
dc.contributor.authorCai, Liquan
dc.contributor.authorZhu, Hua
dc.contributor.authorHeiny, Judith A.
dc.contributor.authorShapiro, Joseph I.
dc.contributor.authorBlanco, Gustavo
dc.contributor.authorXie, Zijian
dc.contributor.authorPierre, Sandrine V.
dc.date.accessioned2021-08-03T18:16:21Z
dc.date.available2022-08-03 14:16:18en
dc.date.available2021-08-03T18:16:21Z
dc.date.issued2021-07
dc.identifier.citationKutz, Laura C.; Cui, Xiaoyu; Xie, Jeffrey X.; Mukherji, Shreya T.; Terrell, Kayleigh C.; Huang, Minqi; Wang, Xiaoliang; Wang, Jiayan; Martin, Adam J.; Pessoa, Marco T.; Cai, Liquan; Zhu, Hua; Heiny, Judith A.; Shapiro, Joseph I.; Blanco, Gustavo; Xie, Zijian; Pierre, Sandrine V. (2021). "The Na/K‐ATPase α1/Src interaction regulates metabolic reserve and Western diet intolerance." Acta Physiologica (3): n/a-n/a.
dc.identifier.issn1748-1708
dc.identifier.issn1748-1716
dc.identifier.urihttps://hdl.handle.net/2027.42/168496
dc.description.abstractAimHighly prevalent diseases such as insulin resistance and heart failure are characterized by reduced metabolic flexibility and reserve. We tested whether Na/K‐ATPase (NKA)‐mediated regulation of Src kinase, which requires two NKA sequences specific to the α1 isoform, is a regulator of metabolic capacity that can be targeted pharmacologically.MethodsMetabolic capacity was challenged functionally by Seahorse metabolic flux analyses and glucose deprivation in LLC‐PK1‐derived cells expressing Src binding rat NKA α1, non‐Src‐binding rat NKA α2 (the most abundant NKA isoform in the skeletal muscle), and Src binding gain‐of‐function mutant rat NKA α2. Mice with skeletal muscle‐specific ablation of NKA α1 (skα1−/−) were generated using a MyoD:Cre‐Lox approach and were subjected to treadmill testing and Western diet. C57/Bl6 mice were subjected to Western diet with or without pharmacological inhibition of NKA α1/Src modulation by treatment with pNaKtide, a cell‐permeable peptide designed by mapping one of the sites of NKA α1/Src interaction.ResultsMetabolic studies in mutant cell lines revealed that the Src binding regions of NKA α1 are required to maintain metabolic reserve and flexibility. Skα1−/− mice had decreased exercise endurance and mitochondrial Complex I dysfunction. However, skα1−/− mice were resistant to Western diet‐induced insulin resistance and glucose intolerance, a protection phenocopied by pharmacological inhibition of NKA α1‐mediated Src regulation with pNaKtide.ConclusionsThese results suggest that NKA α1/Src regulatory function may be targeted in metabolic diseases. Because Src regulatory capability by NKA α1 is exclusive to endotherms, it may link the aerobic scope hypothesis of endothermy evolution to metabolic dysfunction.
dc.publisherWiley Periodicals, Inc.
dc.subject.othermetabolic flexibility
dc.subject.otherSrc
dc.subject.otherendurance
dc.subject.otherinsulin resistance
dc.subject.otherATP1A1
dc.titleThe Na/K‐ATPase α1/Src interaction regulates metabolic reserve and Western diet intolerance
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysiology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168496/1/apha13652.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168496/2/apha13652-sup-0005-FigS5.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168496/3/apha13652-sup-0001-FigS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168496/4/apha13652_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168496/5/apha13652-sup-0002-FigS2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168496/6/apha13652-sup-0003-FigS3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168496/7/apha13652-sup-0004-FigS4.pdf
dc.identifier.doi10.1111/apha.13652
dc.identifier.sourceActa Physiologica
dc.identifier.citedreferenceNespolo RF, Solano‐Iguaran JJ, Bozinovic F. Phylogenetic analysis supports the aerobic‐capacity model for the evolution of endothermy. Am Nat. 2017; 189 ( 1 ): 13 ‐ 27.
dc.identifier.citedreferenceRadzyukevich TL, Neumann JC, Rindler TN, et al. Tissue‐specific role of the Na, K‐ATPase alpha2 isozyme in skeletal muscle. J Biol Chem. 2013; 288 ( 2 ): 1226 ‐ 1237.
dc.identifier.citedreferenceBaker JS, McCormick MC, Robergs RA. Interaction among skeletal muscle metabolic energy systems during intense exercise. J Nutri Metab. 2010; 2010: 905612.
dc.identifier.citedreferenceTian J, Li X, Liang M, et al. Changes in sodium pump expression dictate the effects of ouabain on cell growth. J Biol Chem. 2009; 284 ( 22 ): 14921 ‐ 14929.
dc.identifier.citedreferenceNascimento‐Sales M, Fredo‐da‐Costa I, Borges Mendes ACB, et al. Is the FVB/N mouse strain truly resistant to diet‐induced obesity? Physiological reports. 2017; 5 ( 9 ): e13271.
dc.identifier.citedreferenceDevarshi PP, McNabney SM, Henagan TM. Skeletal muscle nucleo‐mitochondrial crosstalk in obesity and type 2 diabetes. Int J Mol Sci. 2017; 18 ( 4 ): 831.
dc.identifier.citedreferenceRodriguez‐Cuenca S, Carobbio S, Velagapudi VR, et al. Peroxisome proliferator‐activated receptor gamma‐dependent regulation of lipolytic nodes and metabolic flexibility. Mol Cell Biol. 2012; 32 ( 8 ): 1555 ‐ 1565.
dc.identifier.citedreferenceAndrzejewski S, Klimcakova E, Johnson RM, et al. PGC‐1alpha promotes breast cancer metastasis and confers bioenergetic flexibility against metabolic drugs. Cell Metab. 2017; 26 ( 5 ): 778 ‐ 787.e775.
dc.identifier.citedreferenceSchonke M, Massart J, Zierath JR. Effects of high‐fat diet and AMP‐activated protein kinase modulation on the regulation of whole‐body lipid metabolism. J Lipid Res. 2018; 59 ( 7 ): 1276 ‐ 1282.
dc.identifier.citedreferenceZhang S, Hulver MW, McMillan RP, Cline MA, Gilbert ER. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutri Metab. 2014; 11 ( 1 ): 10.
dc.identifier.citedreferenceGoldhamer DJ, Brunk BP, Faerman A, King A, Shani M, Emerson CP Jr. Embryonic activation of the myoD gene is regulated by a highly conserved distal control element. Development (Cambridge, England). 1995; 121 ( 3 ): 637 ‐ 649.
dc.identifier.citedreferenceOtt MO, Bober E, Lyons G, Arnold H, Buckingham M. Early expression of the myogenic regulatory gene, myf‐5, in precursor cells of skeletal muscle in the mouse embryo. Development (Cambridge, England). 1991; 111 ( 4 ): 1097 ‐ 1107.
dc.identifier.citedreferenceBi P, Yue F, Sato Y, et al. Stage‐specific effects of Notch activation during skeletal myogenesis. eLife. 2016; 5: 17355.
dc.identifier.citedreferenceWang X, Cai L, Xie JX, et al. A caveolin binding motif in Na/K‐ATPase is required for stem cell differentiation and organogenesis in mammals and C.elegans. Sci Adv. 2020; 6 ( 22 ): eaaw5851. http://dx.doi.org/10.1126/sciadv.aaw5851
dc.identifier.citedreferenceXie Z, Kometiani P, Liu J, Li J, Shapiro JI, Askari A. Intracellular reactive oxygen species mediate the linkage of Na+/K+‐ATPase to hypertrophy and its marker genes in cardiac myocytes. J Biol Chem. 1999; 274 ( 27 ): 19323 ‐ 19328.
dc.identifier.citedreferenceLi H, Yin A, Cheng Z, et al. Attenuation of Na/K‐ATPase/Src/ROS amplification signal pathway with pNaktide ameliorates myocardial ischemia‐reperfusion injury. Int J Biol Macromol. 2018; 118 ( Pt A ): 1142 ‐ 1148.
dc.identifier.citedreferenceBleau C, Karelis AD, St‐Pierre DH, Lamontagne L. Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low‐grade inflammation and the development of obesity and diabetes. Diabetes/metabolism Res Rev. 2015; 31 ( 6 ): 545 ‐ 561.
dc.identifier.citedreferenceLi F, Li Y, Duan Y, Hu CA, Tang Y, Yin Y. Myokines and adipokines: Involvement in the crosstalk between skeletal muscle and adipose tissue. Cytokine Growth Factor Rev. 2017; 33: 73 ‐ 82.
dc.identifier.citedreferencevan der Velden JL, Langen RC, Kelders MC, et al. Myogenic differentiation during regrowth of atrophied skeletal muscle is associated with inactivation of GSK‐3beta. Am J Physiol Cell Physiol. 2007; 292 ( 5 ): C1636 ‐ 1644.
dc.identifier.citedreferenceFinck BN, Bernal‐Mizrachi C, Han DH, et al. A potential link between muscle peroxisome proliferator‐ activated receptor‐alpha signaling and obesity‐related diabetes. Cell Metab. 2005; 1 ( 2 ): 133 ‐ 144.
dc.identifier.citedreferenceXu H, Ren X, Lamb GD, Murphy RM. Physiological and biochemical characteristics of skeletal muscles in sedentary and active rats. J Muscle Res Cell Motil. 2018; 39 ( 1–2 ): 1 ‐ 16.
dc.identifier.citedreferenceMurphy KT, Petersen AC, Goodman C, et al. Prolonged submaximal exercise induces isoform‐specific Na+‐K+‐ATPase mRNA and protein responses in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2006; 290 ( 2 ): R414 ‐ R424.
dc.identifier.citedreferenceMohr M, Thomassen M, Girard O, Racinais S, Nybo L. Muscle variables of importance for physiological performance in competitive football. Eur J Appl Physiol. 2016; 116 ( 2 ): 251 ‐ 262.
dc.identifier.citedreferenceChen J, Feller GM, Barbato JC, et al. Cardiac performance in inbred rat genetic models of low and high running capacity. J Physiol. 2001; 535 ( Pt 2 ): 611 ‐ 617.
dc.identifier.citedreferenceKutz LC, Mukherji ST, Wang X, et al. Isoform‐specific role of Na/K‐ATPase alpha1 in skeletal muscle. Am J Physiol Endocrinol Metab. 2018.
dc.identifier.citedreferenceMoseley AE, Huddleson JP, Bohanan CS, et al. Genetic profiling reveals global changes in multiple biological pathways in the hearts of Na, K‐ATPase alpha 1 isoform haploinsufficient mice. Cell Physiol Biochem. 2005; 15 ( 1–4 ): 145 ‐ 158.
dc.identifier.citedreferenceBarker SB, Summerson WH. The colorimetric determincation of lactic acid in biological material. J Biol Chem. 1941; 138 ( 2 ): 535 ‐ 554.
dc.identifier.citedreferenceLivak KJ, Schmittgen TD. Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) Method. Methods (San Diego, Calif). 2001; 25 ( 4 ): 402 ‐ 408.
dc.identifier.citedreferenceBhatnagar S, Panguluri SK, Kumar A. Gene profiling studies in skeletal muscle by quantitative real‐time polymerase chain reaction assay. Methods Mol Biol (Clifton, NJ). 2012; 798: 311 ‐ 324.
dc.identifier.citedreferenceShannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13 ( 11 ): 2498 ‐ 2504.
dc.identifier.citedreferenceMorris JH, Apeltsin L, Newman AM, et al. clusterMaker: a multi‐algorithm clustering plugin for Cytoscape. BMC Bioinformatics. 2011; 12: 436.
dc.identifier.citedreferenceMaere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics (Oxford, England). 2005; 21 ( 16 ): 3448 ‐ 3449.
dc.identifier.citedreferenceMerico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment map: a network‐based method for gene‐set enrichment visualization and interpretation. PLoS One. 2010; 5 ( 11 ): e13984.
dc.identifier.citedreferenceWalas H, Juel C. Purinergic activation of rat skeletal muscle membranes increases V max and Na+ affinity of the Na, K‐ATPase and phosphorylates phospholemman and α1 subunits. Pflügers Archiv Eur J Physiol. 2012; 463 ( 2 ): 319 ‐ 326.
dc.identifier.citedreferenceBelliard A, Gulati GK, Duan Q, et al. Ischemia/reperfusion‐induced alterations of enzymatic and signaling functions of the rat cardiac Na+/K+‐ATPase: protection by ouabain preconditioning. Physiol Rep. 2016; 4 ( 19 ): e12991.
dc.identifier.citedreferenceBelliard A, Sottejeau Y, Duan Q, Karabin JL, Pierre SV. Modulation of cardiac Na+, K+‐ATPase cell surface abundance by simulated ischemia‐reperfusion and ouabain preconditioning. Am J Physiol Heart Circ Physiol. 2013; 304 ( 1 ): H94 ‐ H103.
dc.identifier.citedreferenceBehan WM, Cossar DW, Madden HA, McKay IC. Validation of a simple, rapid, and economical technique for distinguishing type 1 and 2 fibres in fixed and frozen skeletal muscle. J Clin Pathol. 2002; 55 ( 5 ): 375 ‐ 380.
dc.identifier.citedreferenceSodhi K, Maxwell K, Yan Y, et al. pNaKtide inhibits Na/K‐ATPase reactive oxygen species amplification and attenuates adipogenesis. Science Adv. 2015; 1 ( 9 ): e1500781.
dc.identifier.citedreferenceSodhi K, Nichols A, Mallick A, et al. The Na/K‐ATPase oxidant amplification loop regulates aging. Sci Rep. 2018; 8 ( 1 ): 9721.
dc.identifier.citedreferenceSu Z, Klein JD, Du J, et al. Chronic kidney disease induces autophagy leading to dysfunction of mitochondria in skeletal muscle. Am J Physiol Renal Physiol. 2017; 312 ( 6 ): F1128 ‐ F1140.
dc.identifier.citedreferenceGalgani JE, Moro C, Ravussin E. Metabolic flexibility and insulin resistance. Am J Physiol Endocrinol Metab. 2008; 295 ( 5 ): E1009 ‐ E1017.
dc.identifier.citedreferencePeterzan MA, Lygate CA, Neubauer S, Rider OJ. Metabolic remodeling in hypertrophied and failing myocardium: a review. Am J Physiol Heart Circ Physiol. 2017; 313 ( 3 ): H597 ‐ H616.
dc.identifier.citedreferencePoussin C, Ibberson M, Hall D, et al. Oxidative phosphorylation flexibility in the liver of mice resistant to high‐fat diet‐induced hepatic steatosis. Diabetes. 2011; 60 ( 9 ): 2216 ‐ 2224.
dc.identifier.citedreferenceKoves TR, Ussher JR, Noland RC, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008; 7 ( 1 ): 45 ‐ 56.
dc.identifier.citedreferenceOvermyer KA, Evans CR, Qi NR, et al. Maximal oxidative capacity during exercise is associated with skeletal muscle fuel selection and dynamic changes in mitochondrial protein acetylation. Cell Metab. 2015; 21 ( 3 ): 468 ‐ 478.
dc.identifier.citedreferenceGoodpaster BH, Sparks LM. Metabolic flexibility in health and disease. Cell Metab. 2017; 25 ( 5 ): 1027 ‐ 1036.
dc.identifier.citedreferenceCarson JA, Hardee JP, VanderVeen BN. The emerging role of skeletal muscle oxidative metabolism as a biological target and cellular regulator of cancer‐induced muscle wasting. Semin Cell Dev Biol. 2016; 54: 53 ‐ 67.
dc.identifier.citedreferenceCui X, Xie Z. Protein Interaction and Na/K‐ATPase‐Mediated Signal Transduction. Molecules (Basel, Switzerland). 2017; 22 ( 6 ).
dc.identifier.citedreferenceBanerjee M, Cui X, Li Z, et al. Na/K‐ATPase Y260 phosphorylation‐mediated src regulation in control of aerobic glycolysis and tumor growth. Sci Rep. 2018; 8 ( 1 ): 12322.
dc.identifier.citedreferenceSchneditz G, Elias JE, Pagano E, et al. GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump. Science signaling. 2019; 12 ( 562 ).
dc.identifier.citedreferenceYan Y, Shapiro AP, Haller S, et al. Involvement of reactive oxygen species in a feed‐forward mechanism of Na/K‐ATPase‐mediated signaling transduction. J Biol Chem. 2013; 288 ( 47 ): 34249 ‐ 34258.
dc.identifier.citedreferenceSodhi K, Srikanthan K, Goguet‐Rubio P, et al. pNaKtide attenuates steatohepatitis and atherosclerosis by blocking Na/K‐ATPase/ROS amplification in C57Bl6 and ApoE knockout mice fed a western diet. Sci Rep. 2017; 7 ( 1 ): 193.
dc.identifier.citedreferenceSrikanthan K, Shapiro JI, Sodhi K. The role of Na/K‐ATPase signaling in oxidative stress related to obesity and cardiovascular disease. Molecules (Basel, Switzerland). 2016; 21 ( 9 ): 1172.
dc.identifier.citedreferenceLiu L, Wu J, Kennedy DJ. Regulation of cardiac remodeling by cardiac Na(+)/K(+)‐ATPase isoforms. Front Physiol. 2016; 7: 382.
dc.identifier.citedreferenceZhuang L, Xu L, Wang P, et al. Na+/K+‐ATPase alpha1 subunit, a novel therapeutic target for hepatocellular carcinoma. Oncotarget. 2015; 6 ( 29 ): 28183 ‐ 28193.
dc.identifier.citedreferenceGerbi A, Maixent JM, Barbey O, et al. Alterations of Na, K‐ATPase isoenzymes in the rat diabetic neuropathy: protective effect of dietary supplementation with n‐3 fatty acids. J Neurochem. 1998; 71 ( 2 ): 732 ‐ 740.
dc.identifier.citedreferenceTepavcevic S, Milutinovic DV, Macut D, et al. Cardiac nitric oxide synthases and Na(+)/K(+)‐ATPase in the rat model of polycystic ovary syndrome induced by dihydrotestosterone. Exp Clin Endocrinol Diabetes. 2015; 123 ( 5 ): 303 ‐ 307.
dc.identifier.citedreferenceBlanco G. Na, K‐ATPase subunit heterogeneity as a mechanism for tissue‐specific ion regulation. Semin Nephrol. 2005; 25 ( 5 ): 292 ‐ 303.
dc.identifier.citedreferenceLai F, Madan N, Ye Q, et al. Identification of a mutant alpha1 Na/K‐ATPase that pumps but is defective in signal transduction. J Biol Chem. 2013; 288 ( 19 ): 13295 ‐ 13304.
dc.identifier.citedreferenceYu H, Cui X, Zhang J, et al. Heterogeneity of signal transduction by Na‐K‐ATPase alpha‐isoforms: role of Src interaction. Am J Physiol Cell Physiol. 2018; 314 ( 2 ): C202 ‐ C210.
dc.identifier.citedreferenceDiFranco M, Hakimjavadi H, Lingrel JB, Heiny JA. Na, K‐ATPase alpha2 activity in mammalian skeletal muscle T‐tubules is acutely stimulated by extracellular K+. J General Physiol. 2015; 146 ( 4 ): 281 ‐ 294.
dc.identifier.citedreferenceHolmstrom MH, Iglesias‐Gutierrez E, Zierath JR, Garcia‐Roves PM. Tissue‐specific control of mitochondrial respiration in obesity‐related insulin resistance and diabetes. Am J Physiol Endocrinol Metab. 2012; 302 ( 6 ): E731 ‐ E739.
dc.identifier.citedreferenceHonka MJ, Latva‐Rasku A, Bucci M, et al. Insulin‐stimulated glucose uptake in skeletal muscle, adipose tissue and liver: a positron emission tomography study. Eur J Endocrinol. 2018; 178 ( 5 ): 523 ‐ 531.
dc.identifier.citedreferenceNeufer PD, Carey JO, Dohm GL. Transcriptional regulation of the gene for glucose transporter GLUT4 in skeletal muscle. Effects of diabetes and fasting. J Biol Chem. 1993; 268 ( 19 ): 13824 ‐ 13829.
dc.identifier.citedreferenceZurlo F, Larson K, Bogardus C, Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Investig. 1990; 86 ( 5 ): 1423 ‐ 1427.
dc.identifier.citedreferenceLi Z, Cai T, Tian J, et al. NaKtide, a Na/K‐ATPase‐derived peptide Src inhibitor, antagonizes ouabain‐activated signal transduction in cultured cells. J Biol Chem. 2009; 284 ( 31 ): 21066 ‐ 21076.
dc.identifier.citedreferenceLiang M, Cai T, Tian J, Qu W, Xie ZJ. Functional characterization of Src‐interacting Na/K‐ATPase using RNA interference assay. J Biol Chem. 2006; 281 ( 28 ): 19709 ‐ 19719.
dc.identifier.citedreferenceLiang M, Tian J, Liu L, et al. Identification of a pool of non‐pumping Na/K‐ATPase. J Biol Chem. 2007; 282 ( 14 ): 10585 ‐ 10593.
dc.identifier.citedreferenceXie J, Ye Q, Cui X, et al. Expression of rat Na‐K‐ATPase alpha2 enables ion pumping but not ouabain‐induced signaling in alpha1‐deficient porcine renal epithelial cells. Am J Physiol Cell Physiol. 2015; 309 ( 6 ): C373 ‐ C382.
dc.identifier.citedreferenceLiu L, Li J, Liu J, et al. Involvement of Na+/K+‐ATPase in hydrogen peroxide‐induced hypertrophy in cardiac myocytes. Free Radic Biol Med. 2006; 41 ( 10 ): 1548 ‐ 1556.
dc.identifier.citedreferenceYe Q, Lai F, Banerjee M, et al. Expression of mutant alpha1 Na/K‐ATPase defective in conformational transition attenuates Src‐mediated signal transduction. J Biol Chem. 2013; 288 ( 8 ): 5803 ‐ 5814.
dc.identifier.citedreferencePirkmajer S, Chibalin AV. Na, K‐ATPase regulation in skeletal muscle. Am J Physiol Endocrinol Metab. 2016; 311 ( 1 ): E1 ‐ E31.
dc.identifier.citedreferenceHe S, Shelly DA, Moseley AE, et al. The alpha(1)‐ and alpha(2)‐isoforms of Na‐K‐ATPase play different roles in skeletal muscle contractility. Am J Physiol Regul Integr Comp Physiol. 2001; 281 ( 3 ): R917 ‐ R925.
dc.identifier.citedreferenceManoharan P, Radzyukevich TL, Hakim Javadi H, et al. Phospholemman is not required for the acute stimulation of Na(+)‐K(+)‐ATPase alpha(2)‐activity during skeletal muscle fatigue. Am J Physiol Cell Physiol. 2015; 309 ( 12 ): C813 ‐ C822.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.