Show simple item record

Pyrolysis kinetics and activation thermodynamic parameters of exhausted coffee residue and coffee husk using thermogravimetric analysis

dc.contributor.authorMukherjee, Alivia
dc.contributor.authorOkolie, Jude A.
dc.contributor.authorTyagi, Ramani
dc.contributor.authorDalai, Ajay K.
dc.contributor.authorNiu, Catherine
dc.date.accessioned2021-08-03T18:16:26Z
dc.date.available2022-09-03 14:16:24en
dc.date.available2021-08-03T18:16:26Z
dc.date.issued2021-08
dc.identifier.citationMukherjee, Alivia; Okolie, Jude A.; Tyagi, Ramani; Dalai, Ajay K.; Niu, Catherine (2021). "Pyrolysis kinetics and activation thermodynamic parameters of exhausted coffee residue and coffee husk using thermogravimetric analysis." The Canadian Journal of Chemical Engineering 99(8): 1683-1695.
dc.identifier.issn0008-4034
dc.identifier.issn1939-019X
dc.identifier.urihttps://hdl.handle.net/2027.42/168498
dc.description.abstractExhausted coffee residue (ECR) and coffee husk (CH) are potential feedstock for energy production through thermochemical and biochemical conversion processes. Kinetic study of ECR and CH is essential for the design and optimization of different thermochemical conversion processes. In this study, four different iso‐conversional methods were employed in the estimation of the activation energy (EA) and pre‐exponential factor (A). The methods used includes Flynn‐Wall‐Ozawa (FWO), Kissinger‐Akahira‐Sunose (KAS), Kissinger’s method, and the Friedman method. Data from the thermogravimetric/derivative thermogravimetric analysis (TGA/DTG) at varying heating rates of 5‐20°C/min in an inert environment were used in this study. It was observed that the heating rate influences the pyrolysis parameters such as peak temperature, maximum degradation rate and initial decomposition temperature. The activation energy for ECR using the FWO method was in the range of 62.3‐102.4 kJ · mol−1. Likewise, the KAS and Friedman methods yielded activation energy between 51.3‐93.3 kJ · mol−1 and 10.6‐122.7 kJ · mol−1, respectively. In addition, the activation energy calculated for CH using FWO, KAS, and Friedman methods were shown to range from 39.1‐140.6 kJ · mol−1, 27.7‐131.6 kJ · mol−1, and 24.9‐111.2 kJ · mol−1, respectively.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othercoffee husk
dc.subject.otherpyrolysis
dc.subject.otherkinetics
dc.subject.otherexhausted coffee residues
dc.subject.otherthermogravimetry
dc.titlePyrolysis kinetics and activation thermodynamic parameters of exhausted coffee residue and coffee husk using thermogravimetric analysis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168498/1/cjce24037.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168498/2/cjce24037_am.pdf
dc.identifier.doi10.1002/cjce.24037
dc.identifier.sourceThe Canadian Journal of Chemical Engineering
dc.identifier.citedreferenceJ. A. Okolie, R. Rana, S. Nanda, A. K. Dalai, J. A. Kozinski, Sustainable Energy Fuels. 2019, 3, 578.
dc.identifier.citedreferenceR. K. Mishra, K. Mohanty, Bioresource Technol. 2018, 251, 63.
dc.identifier.citedreferenceM. Hu, Z. Chen, S. Wang, D. Guo, C. Ma, Y. Zhou, J. Chen, M. Laghari, S. Fazal, B. Xiao, B. Zhang, S. Ma, Energ. Convers. Manage. 2016, 118, 1.
dc.identifier.citedreferenceS. A. El‐Sayed, M. E. Mostafa, Energ. Convers. Manage. 2014, 85, 165.
dc.identifier.citedreferenceM. S. Ahmad, M. A. Mehmood, O. S. Al Ayed, G. Ye, H. Luo, M. Ibrahim, U. Rashid, I. Arbi Nehdi, G. Qadir, Bioresource Technol. 2017, 224, 708.
dc.identifier.citedreferenceA. Ashraf, H. Sattar, S. Munir, Fuel 2019, 235, 504.
dc.identifier.citedreferenceV. Dhyani, T. Bhaskar, in Waste Biorefinery (Eds: T. Bhaskar, A. Pandey, S. V. Mohan, D.‐J. Lee, S. K. Khanal ), Elsevier, San Diego, CA 2018, p. 39.
dc.identifier.citedreferenceE. Biagini, F. Barontini, L. Tognotti, Can. J. Chem. Eng. 2017, 95, 913.
dc.identifier.citedreferenceStandard Method for Volatile Matter in the Analysis Sample of Coal and Coke, ASTM D3175‐11, ASTM International, West Conshohocken, PA 2011. https://doi.org//10.1520/D3175-11.
dc.identifier.citedreferenceASTM, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA 2004, p. 3.
dc.identifier.citedreferenceStandard Test Method for Moisture Analysis of Particulate Wood Fuels, ASTM E871‐82, ASTM International, West Conshohocken, PA 2006. https://doi.org//10.1520/E0871-82R06.
dc.identifier.citedreferenceA. Friedl, E. Padouvas, H. Rotter, K. Varmuza, Anal. Chim. Acta 2005, 544, 191.
dc.identifier.citedreferenceC. Karunakaran, P. Vijayan, J. Stobbs, R. K. Bamrah, G. Arganosa, T. D. Warkentin, Food Chem. 2020, 309, 125585.
dc.identifier.citedreferenceR. Kaur, P. Gera, M. K. Jha, T. Bhaskar, Bioresource Technol. 2018, 250, 422.
dc.identifier.citedreferenceJ. A. Okolie, S. Nanda, A. K. Dalai, J. A. Kozinski, Energ. Convers. Manage. 2020, 208, 112545.
dc.identifier.citedreferenceB. Biswas, N. Pandey, Y. Bisht, R. Singh, J. Kumar, T. Bhaskar, Bioresource Technol. 2017, 237, 57.
dc.identifier.citedreferenceD. Mallick, M. K. Poddar, P. Mahanta, V. S. Moholkar, Bioresource Technol. 2018, 261, 294.
dc.identifier.citedreferenceR. Soysa, Y. S. Choi, S. J. Kim, S. K. Choi, Int. J. Hydrogen Energ. 2016, 41, 16436.
dc.identifier.citedreferenceA. Kumar, S. V. P. Mylapilli, S. N. Reddy, Bioresource Technol. 2019, 285, 121318.
dc.identifier.citedreferenceE. M. Suuberg, I. Milosavljevic, V. Oja, Symp. (Int.) Combust. 1996, 26, 1515.
dc.identifier.citedreferenceZ. Ma, D. Chen, J. Gu, B. Bao, Q. Zhang, Energ. Convers. Manage. 2015, 89, 251.
dc.identifier.citedreferenceL. T. Vlaev, V. G. Georgieva, S. D. Genieva, J. Therm. Anal. Calorim. 2007, 88, 805.
dc.identifier.citedreferenceS. Vyazovkin, N. Sbirrazzuoli, Macromol. Rapid Commun. 2006, 27, 1515.
dc.identifier.citedreferenceS. Vyazovkin, C. A. Wight, Thermochim. Acta 1999, 340–341, 53.
dc.identifier.citedreferenceS. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez‐Maqueda, C. Popescu, N. Sbirrazzuoli, Thermochim. Acta 2011, 520, 1.
dc.identifier.citedreferenceA. Aboulkas, K. El harfi, A. El Bouadili, Energ. Convers. Manage. 2010, 51, 1363.
dc.identifier.citedreferenceJ. Cai, D. Xu, Z. Dong, X. Yu, Y. Yang, S. W. Banks, A. V. Bridgwater, Renew. Sust. Energ. Rev. 2018, 82, 2705.
dc.identifier.citedreferenceS. Ceylan, Y. Topçu, Bioresource Technol. 2014, 156, 182.
dc.identifier.citedreferenceJ. Sheng, D. Ji, F. Yu, L. Cui, Q. Zeng, N. Ai, J. Ji, IERI Procedia 2014, 8, 30.
dc.identifier.citedreferenceG. Cruz, P. M. Crnkovic, J. Therm. Anal. Calorim. 2016, 123, 1003.
dc.identifier.citedreferenceC. Gai, Y. Dong, T. Zhang, Bioresource Technol. 2013, 127, 298.
dc.identifier.citedreferenceV. Aristizábal‐Marulanda, Y. Chacón‐Perez, C. A. Cardona Alzate, in Handbook of Coffee Processing by‐Products: Sustainable Applications (Ed: C. Galanakis ), Elsevier Inc., San Diego, CA 2017, p. 63.
dc.identifier.citedreferenceS. I. Mussatto, E. M. S. Machado, S. Martins, J. A. Teixeira, Food Bioprocess Tech. 2011, 4, 661.
dc.identifier.citedreferenceB. Janissen, T. Huynh, Resour. Conserv. Recycl. 2018, 128, 110.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.