Show simple item record

A nuclear phylogenomic study of the angiosperm order Myrtales, exploring the potential and limitations of the universal Angiosperms353 probe set

dc.contributor.authorMaurin, Olivier
dc.contributor.authorAnest, Artemis
dc.contributor.authorBellot, Sidonie
dc.contributor.authorBiffin, Edward
dc.contributor.authorBrewer, Grace
dc.contributor.authorCharles‐dominique, Tristan
dc.contributor.authorCowan, Robyn S.
dc.contributor.authorDodsworth, Steven
dc.contributor.authorEpitawalage, Niroshini
dc.contributor.authorGallego, Berta
dc.contributor.authorGiaretta, Augusto
dc.contributor.authorGoldenberg, Renato
dc.contributor.authorGonçalves, Deise J.p.
dc.contributor.authorGraham, Shirley
dc.contributor.authorHoch, Peter
dc.contributor.authorMazine, Fiorella
dc.contributor.authorLow, Yee Wen
dc.contributor.authorMcGinnie, Catherine
dc.contributor.authorMichelangeli, Fabián A.
dc.contributor.authorMorris, Sarah
dc.contributor.authorPenneys, Darin S.
dc.contributor.authorPérez Escobar, Oscar Alejandro
dc.contributor.authorPillon, Yohan
dc.contributor.authorPokorny, Lisa
dc.contributor.authorShimizu, Gustavo
dc.contributor.authorStaggemeier, Vanessa G.
dc.contributor.authorThornhill, Andrew H.
dc.contributor.authorTomlinson, Kyle W.
dc.contributor.authorTurner, Ian M.
dc.contributor.authorVasconcelos, Thais
dc.contributor.authorWilson, Peter G.
dc.contributor.authorZuntini, Alexandre R.
dc.contributor.authorBaker, William J.
dc.contributor.authorForest, Félix
dc.contributor.authorLucas, Eve
dc.date.accessioned2021-08-03T18:16:56Z
dc.date.available2022-08-03 14:16:52en
dc.date.available2021-08-03T18:16:56Z
dc.date.issued2021-07
dc.identifier.citationMaurin, Olivier; Anest, Artemis; Bellot, Sidonie; Biffin, Edward; Brewer, Grace; Charles‐dominique, Tristan ; Cowan, Robyn S.; Dodsworth, Steven; Epitawalage, Niroshini; Gallego, Berta; Giaretta, Augusto; Goldenberg, Renato; Gonçalves, Deise J.p. ; Graham, Shirley; Hoch, Peter; Mazine, Fiorella; Low, Yee Wen; McGinnie, Catherine; Michelangeli, Fabián A. ; Morris, Sarah; Penneys, Darin S.; Pérez Escobar, Oscar Alejandro ; Pillon, Yohan; Pokorny, Lisa; Shimizu, Gustavo; Staggemeier, Vanessa G.; Thornhill, Andrew H.; Tomlinson, Kyle W.; Turner, Ian M.; Vasconcelos, Thais; Wilson, Peter G.; Zuntini, Alexandre R.; Baker, William J.; Forest, Félix ; Lucas, Eve (2021). "A nuclear phylogenomic study of the angiosperm order Myrtales, exploring the potential and limitations of the universal Angiosperms353 probe set." American Journal of Botany (7): 1087-1111.
dc.identifier.issn0002-9122
dc.identifier.issn1537-2197
dc.identifier.urihttps://hdl.handle.net/2027.42/168510
dc.publisherWiley Periodicals, Inc.
dc.publisherR. Oldenbourg
dc.subject.otherAlzateaceae
dc.subject.otherCombretaceae
dc.subject.otherCrypteroniaceae
dc.subject.otherLythraceae
dc.subject.otherMelastomataceae
dc.subject.otherMyrtaceae
dc.subject.otherOnagraceae
dc.subject.otherPenaeaceae
dc.subject.otherphylogenomics
dc.subject.otherVochysiaceae
dc.titleA nuclear phylogenomic study of the angiosperm order Myrtales, exploring the potential and limitations of the universal Angiosperms353 probe set
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbsecondlevelBotany
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168510/1/ajb21699-sup-0009-AppendixS9.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168510/2/ajb21699-sup-0004-AppendixS4.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168510/3/ajb21699_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168510/4/ajb21699-sup-0008-AppendixS8.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168510/5/ajb21699-sup-0002-AppendixS2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168510/6/ajb21699-sup-0007-AppendixS7.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168510/7/ajb21699.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168510/8/ajb21699-sup-0011-AppendixS11.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168510/9/ajb21699-sup-0003-AppendixS3.pdf
dc.identifier.doi10.1002/ajb2.1699
dc.identifier.sourceAmerican Journal of Botany
dc.identifier.citedreferenceRenner, S. S., G. Clausing, and K. Meyer. 2001. Historical biogeography of Melastomataceae: the roles of Tertiary migration and long- distance dispersal. American Journal of Botany 88: 1290 - 1300.
dc.identifier.citedreferenceRaven, P. H. 1964. The generic subdivision of Onagraceae, tribe Onagreae. Brittonia 276 - 288.
dc.identifier.citedreferenceReginato, M., and F. A. Michelangeli. 2016. Untangling the phylogeny of Leandra sensu str. (Melastomataceae, Miconieae). Molecular Phylogenetics and Evolution 96: 17 - 32.
dc.identifier.citedreferenceReginato, M., K. M. Neubig, L. C. Majure, and F. A. Michelangeli. 2016. The first complete plastid genomes of Melastomataceae are highly structurally conserved. PeerJ 4: e2715.
dc.identifier.citedreferenceReginato, M., T. N. C. Vasconcelos, R. Kriebel, and A. O. Simoes. 2020. Is dispersal mode a driver of diversification and geographical distribution in the tropical plant family Melastomataceae. Molecular Phylogenetics and Evolution 148: 106815.
dc.identifier.citedreferenceRenner, S. S. 1993. Phylogeny and classification of the Melastomataceae and Memecylaceae. Nordic Journal of Botany 13: 519 - 540.
dc.identifier.citedreferenceRevell, L. J. 2012. Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217 - 223.
dc.identifier.citedreferenceRocha, M. J. R., J. A. N. Batista, P. J. F. Guimaraes, and F. A. Michelangeli. 2016. Phylogenetic relationships in the Marcetia alliance (Melastomeae, Melastomataceae) and implications for generic circumscription. Botanical Journal of the Linnean Society 181: 585 - 609.
dc.identifier.citedreferenceRocha, M. J. R., P. J. Guimarães, F. A. Michelangeli, and J. A. Nogueira Batista. 2018. Taxonomy of Marcetieae: A new Neotropical tribe of Melastomataceae. International Journal of Plant Sciences 179: 50 - 74.
dc.identifier.citedreferenceRutschmann, F., T. Eriksson, K. Abu Salim, and E. Conti. 2007. Assessing calibration uncertainty in molecular dating: the assignment of fossils to alternative calibration points. Systematic Biology 56: 591 - 608.
dc.identifier.citedreferenceRutschmann, F., T. Eriksson, J. Schönenberger, and E. Conti. 2004. Did Crypteroniaceae really disperse out of India? Molecular dating evidence from rbcL, ndhF, and rpl16 intron sequences. International Journal of Plant Sciences 165: S69 - S83.
dc.identifier.citedreferenceRye, B. L., P. G. Wilson, M. M. Heslewood, A. J. Perkins, and K. R. Thiele. 2020. A new subtribal classification of Myrtaceae tribe Chamelaucieae. Australian Systematic Botany 33: 191 - 206.
dc.identifier.citedreferenceSalywon, A. 2003. A monograph of Mosiera (Myrtaceae). Ph.D. dissertation, Department of Plant Biology, Arizona State University, Tempe, AZ, U.S.A.
dc.identifier.citedreferenceSayyari, E., and S. Mirarab. 2018. Testing for polytomies in phylogenetic species trees using quartet frequencies. Genes 9: 132.
dc.identifier.citedreferenceSchönenberger, J., and E. Conti. 2003. Molecular phylogeny and floral evolution of Penaeaceae, Oliniaceae, Rhynchocalycaceae, and Alzateaceae (Myrtales). American Journal of Botany 90: 293 - 309.
dc.identifier.citedreferenceSchuster, T. M., S. D. Setaro, J. F. G. Tibbits, E. L. Batty, R. M. Fowler, T. G. B. McLay, et al. 2018. Chloroplast variation is incongruent with classification of the Australian bloodwood eucalypts (genus Corymbia, family Myrtaceae). PLoS ONE 13: e0195034.
dc.identifier.citedreferenceShah, T., J. V. Schneider, G. Zizka, O. Maurin, W. Baker, F. Forest, G. E. Brewer, et al. 2021. Joining forces in Ochnaceae phylogenomics: a tale of two targeted sequencing probe kits. American Journal of Botany 108: 1201 - 1216.
dc.identifier.citedreferenceShimizu, G. H., and D. J. P. Gonçalves. 2017. Flora das cangas da Serra dos Carajás, Pará, Brasil: Vochysiaceae. Rodriguésia 68: 1159 - 1164.
dc.identifier.citedreferenceSimão, F. A., R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov. 2015. BUSCO: assessing genome assembly and annotation completeness with single- copy orthologs. Bioinformatics 31: 3210 - 3212.
dc.identifier.citedreferenceSlater, G. S., and E. Birney. 2005. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6: 31.
dc.identifier.citedreferenceSmith, S. A., N. Walker- Hale, J. F. Walker, and J. W. Brown. 2020. Phylogenetic conflicts, combinability, and deep phylogenomics in plants. Systematic Biology 69: 579 - 592.
dc.identifier.citedreferenceSoto Gomez, M., L. Pokorny, M. B. Kantar, F. Forest, I. L. Leitch, B. Gravendeel, P. Wilkin, et al. 2019. A customized nuclear target enrichment approach for developing a phylogenomic baseline for Dioscorea yams (Dioscoreaceae). Applications in Plant Sciences 7: e11254.
dc.identifier.citedreferenceStamatakis, A. 2014. RAxML version 8: A tool for phylogenetic analysis and post- analysis of large phylogenies. Bioinformatics 30: 1312 - 1313.
dc.identifier.citedreferenceStone, R. 2006. Phylogeny of major lineages in Melastomataceae, subfamily Olisbeoideae: utility of nuclear glyceraldehyde 3- phosphate dehydrogenase ( GapC ) gene sequences. Systematic Botany 31: 107 - 121.
dc.identifier.citedreferenceStone, R. D. 2014. The species- rich, paleotropical genus Memecylon (Melastomataceae): molecular phylogenetics and revised infrageneric classification of the African species. Taxon 63: 539 - 561.
dc.identifier.citedreferenceStull, G. W., P. S. Soltis, D. E. Soltis, M. A. Gitzendanner, and S. A. Smith. 2020. Nuclear phylogenomic analyses of asterids conflict with plastome trees and support novel relationships among major lineages. American Journal of Botany 107: 790 - 805.
dc.identifier.citedreferenceSun, M., R. Naaem, J.- X. Su, Z.- Y. Cao, J. G. Burleigh, P. S. Soltis, D. E. Soltis, and Z.- D. Chen. 2016. Phylogeny of the Rosidae: A dense taxon sampling analysis. Journal of Systematics and Evolution 54: 363 - 391.
dc.identifier.citedreferenceSusko, E., and A. J. Roger. 2021. Long branch attraction biases in phylogenetics. Systematic Biology 70: 838 - 843.
dc.identifier.citedreferenceSytsma, K. J., A. Litt, M. L. Zjhra, J. C. Pires, M. Nepokroeff, E. Conti, J. Walker, and P. G. Wilson. 2004. Clades, clocks, and continents: historical and biogeographical analysis of Myrtaceae, Vochysiaceae, and relatives in the Southern Hemisphere. International Journal of Plant Sciences 165: S85 - S105.
dc.identifier.citedreferenceTan, F., S. Shi, Y. Zhong, X. Gong, and Y. Wang. 2002. Phylogenetic relationships of Combretoideae (Combretaceae) inferred from plastid, nuclear gene and spacer sequences. Journal of Plant Research 115: 475 - 481.
dc.identifier.citedreferenceThornhill, A. H., M. Crisp, C. Külheim, L. Carsten, N. Kristy, L. Nelson, D. Yeates, and J. Miller. 2019. A dated molecular perspective of eucalypt taxonomy, evolution and diversification. Australian Systematic Botany 32: 29 - 48.
dc.identifier.citedreferenceThornhill, A. H., S. Y. W. Ho, C. Külheim, and M. D. Crisp. 2015. Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Molecular Phylogenetics and Evolution 93: 29 - 43.
dc.identifier.citedreferenceTobe, H., S. A. Graham, and P. H. Raven. 1998. Floral morphology and evolution in Lythraceae sensu lato. In S. J. Owens, and P. J. Rudall [ eds.], Reproductive biology in systematics conservation and economic botany, 329 - 344. Royal Botanic Gardens, Kew, UK.
dc.identifier.citedreferenceTobe, H., and P. H. Raven. 1983. An embryological analysis of Myrtales: its definition and characteristics. Annals of the Missouri Botanical Garden 70: 71 - 94.
dc.identifier.citedreferenceTobe, H., and P. H. Raven. 1984a. The embryology and relationships of Alzatea Ruiz & Pav. (Alzateaceae, Myrtales). Annals of the Missouri Botanical Garden 71: 844 - 852.
dc.identifier.citedreferenceTobe, H., and P. H. Raven. 1984b. The embryology and relationships of Penaeaceae (Myrtales). Plant Systematics and Evolution 146: 181 - 195.
dc.identifier.citedreferenceTobe, H., and P. H. Raven. 1984c. The embryology and relationships of Rhynchocalyx Oliv. (Rhynchocalycaceae). Annals of the Missouri Botanical Garden 7: 836 - 843.
dc.identifier.citedreferenceTobe, H., and P. H. Raven. 1987. The embryology and relationships of Dactylocladus (Crypteroniaceae) and a discussion of the family. Botanical Gazette 148: 103 - 111.
dc.identifier.citedreferenceVan Beusekom- Osinga, R. J., and C. F. van Beusekom. 1975. Delimitation and subdivision of the Crypteroniaceae (Myrtales). Blumea 22: 255 - 266.
dc.identifier.citedreferencevan der Merwe, M. M., A. E. van Wyk, and A. M. Botha. 2005. Molecular phylogenetic analysis of Eugenia L. (Myrtaceae), with emphasis on southern African taxa. Plant Systematics and Evolution 251: 21 - 34.
dc.identifier.citedreferenceVasconcelos, T. N., C. E. Proença, B. Ahmad, D. S. Aguilar, R. Aguilar, B. S. Amorim, K. Campbell, et al. 2017. Myrteae phylogeny, calibration, biogeography and diversification patterns: increased understanding in the most species rich tribe of Myrtaceae. Molecular Phylogenetics and Evolution 109: 113 - 137.
dc.identifier.citedreferenceVeranso- Libalah, M. C., G. Kadereit, R. D. Stone, and T. L. P. Couvreur. 2018. Multiple shifts to open habitats in Melastomateae (Melastomataceae) congruent with the increase of African Neogene climatic aridity. Journal of Biogeography 45: 1420 - 1431.
dc.identifier.citedreferenceVeranso- Libalah, M. C., R. D. Stone, A. G. N. Fongod, T. L. P. Couvreur, and G. Kadereit. 2017. Phylogeny and systematics of African Melastomateae (Melastomataceae). Taxon 66: 584 - 614.
dc.identifier.citedreferenceVeranso- Libalah, M. C., R. D. Stone, and G. Kadereit. 2020. Towards a complete phylogeny of African Melastomateae: Systematics of Dissotis and allies (Melastomataceae). Taxon 69: 946 - 991.
dc.identifier.citedreferenceWagner, W. L., and P. C. Hoch. 2009. Nomenclatural corrections in Onagraceae. Novon: A Journal for Botanical Nomenclature 19: 130 - 132.
dc.identifier.citedreferenceWagner, W. L., P. C. Hoch, and P. H. Raven. 2007. Revised classification of the Onagraceae. Systematic Botany Monographs 83: 1 - 240.
dc.identifier.citedreferenceWang, L. G., T. T. Y. Lam, S. Xu, Z. Dai, L. Zhou, T. Feng, P. Guo, C. W. Dunn, et al. 2020. treeio: an R package for phylogenetic tree input and output with richly annotated and associated data. Molecular Biology and Evolution 37: 599 - 603.
dc.identifier.citedreferenceWang, X. Q., W. W. Song, and J. J. Xiao. 2021. Phylogeny of Myrtales and related groups based on chloroplast genome. Guihaia Plants 41: 68 - 80.
dc.identifier.citedreferenceWebb, D. A. 1967. Generic limits in European Lythraceae. Feddes Repertorium 74: 1 - 13.
dc.identifier.citedreferenceWeitemier, K., S. Straub, R. C. Cronn, and M. Fishbein. 2014. Hyb- Seq: Combining target enrichment and genome skimming for plant phylogenomics. Applications in Plant Sciences 2: 1400042.
dc.identifier.citedreferenceWhite, C. T. 1942. Contributions to the Queensland Flora 7. Proceedings of the Royal Society of Queensland 53: 219.
dc.identifier.citedreferenceWilson, P. G. 2010. Myrtaceae. In K. Kubitzki [ed.], The families and genera of vascular plants, vol. X, Flowering plants. Eudicots, 212 - 271. Springer, Berlin, Germany.
dc.identifier.citedreferenceWilson, P. G., M. M. O- Brien, M. M. Heslewood, and C. J. Quinn. 2005. Relationships within Myrtaceae sensu lato based on a mat K phylogeny. Plant Systematics and Evolution 251: 3 - 19.
dc.identifier.citedreferenceWilson, P. G., and J. T. Waterhouse. 1982. A review of the genus Tristania R. Br. (Myrtaceae): a heterogeneous assemblage of five genera. Australian Journal of Botany 30: 413 - 446.
dc.identifier.citedreferenceWurdack, K. J., and F. A. Michelangeli. 2019. Systematics and relationships of Tryssophyton (Melastomataceae), with a second species from the Pakaraima Mountains of Guyana. Phytokeys 136: 1 - 21.
dc.identifier.citedreferenceYu, G. 2019. ggimage: Use Image in ’ggplot2’. R package version 0.2.1. Website: https://github.com/GuangchuangYu/ggimage.
dc.identifier.citedreferenceYu, G., D. K. Smith, H. Zhu, Y. Guan, and T. T. Y. Lam. 2017. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution 8: 28 - 36.
dc.identifier.citedreferenceZhang, X. F., J. B. Landis, H. X. Wang, Z. X. Zhu, and H. F. Wang. 2021. Comparative analysis of chloroplast genome structure and molecular dating in Myrtales. BMC Plant Biology 21: 1 - 19.
dc.identifier.citedreferenceZhou, Q., C.- W. Lin, W. L. Ng, J. Dai, T. Denda, R. Zhou, and Y. Liu. 2019. Analyses of plastome sequences improve phylogenetic resolution and provide new insight into the evolutionary history of Asian Sonerileae/Dissochaeteae. Frontiers in Plant Science 10: 1477.
dc.identifier.citedreferenceZich, F. A., B. P. M. Hyland, T. Whiffin, and R. A. Kerrigan. 2018. Australian tropical rainforest plants, ed. 7. Website: http://www.anbg.gov.au/cpbr/cd- keys/RFK7/key/RFK7/Media/Html/index_rfk.htm/ [accessed 1 October 2020].
dc.identifier.citedreferenceZuntini, A. R., L. P. Frankel, L. Pokorny, F. Forest, and W. J. Baker. 2021. A comprehensive phylogenomic study of the monocot order Commelinales with a new classification of Commelinaceae. American Journal of Botany 108: 1066 - 1086.
dc.identifier.citedreferencevan Vliet, G. J. C. M. 1981. Wood anatomy of the palaeotropical Melastomataceae. Blumea 27: 395 - 462.
dc.identifier.citedreferencevan Vliet, G. J. C. M., J. Keok- Noorman, and B. J. H. ter Welle. 1981. Wood anatomy, classification and phylogeny of the Melastomataceae. Blumea 27: 463 - 473.
dc.identifier.citedreferenceVasconcelos, T. N., C. G. Prenner, and E. J. Lucas. 2019. A systematic overview of the floral diversity in Myrteae (Myrtaceae). Systematic Botany 44: 570 - 591.
dc.identifier.citedreferenceAntonelli, A., J. J. Clarkson, K. Kainulainen, O. Maurin, G. E. Brewer, A. P. Davis, N. Epitawalage, et al. 2021. Settling a family feud: a high- level phylogenomic framework for the Gentianales based on 353 nuclear genes and partial plastomes. American Journal of Botany 108: 1143 - 1165.
dc.identifier.citedreferenceAPG III. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105 - 121.
dc.identifier.citedreferenceAPG IV. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1 - 20.
dc.identifier.citedreferenceBacci, L. F., F. A. Michelangeli, and R. Goldenberg. 2019. Revisiting the classification of Melastomataceae: implications for habit and fruit evolution. Botanical Journal of the Linnean Society 190: 1 - 24.
dc.identifier.citedreferenceBaker, W. J., P. Bailey, B. Barber, A. Barker, S. Bellot, D. Bishop, L. R. Botigué, et al. 2021. A comprehensive phylogenomic platform for exploring the angiosperm tree of life. Systematic Biology syab035. https://doi.org/10.1093/sysbio/syab035.
dc.identifier.citedreferenceBankevich, A., S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M. Lesin, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single- cell sequencing. Journal of Computational Biology 19: 455 - 477.
dc.identifier.citedreferenceBaum, D. A., K. J. Sytsma, and P. C. Hoch. 1994. The phylogeny of Epilobium (Onagraceae) based on nuclear ribosomal DNA sequences. Systematic Botany 19: 363 - 388.
dc.identifier.citedreferenceBean, A. R. 1995. A revision of Syncarpia Ten. (Myrtaceae). Austrobaileya 4: 337 - 344.
dc.identifier.citedreferenceBerg, O. 1859. Myrtaceae. In C. F. P. von Martius [ed.], Flora brasiliensis, vol. 14, 1 - 655. R. Oldenbourg, Munich, Germany.
dc.identifier.citedreferenceBerger, B. A., R. Kriebel, D. Spalink, and K. J. Sytsma. 2016. Divergence times, historical biogeography, and shifts in speciation rates of Myrtales. Molecular Phylogenetics and Evolution 95: 116 - 136.
dc.identifier.citedreferenceBiffin, E., E. J. Lucas, L. A. Craven, I. Ribeiro da Costa, M. G. Harrington, and M. D. Crisp. 2010. Evolution of exceptional species richness among lineages of fleshy- fruited Myrtaceae. Annals of Botany 106: 79 - 93.
dc.identifier.citedreferenceBochorny, T., F. A. Michelangeli, F. Almeda, and R. Goldenberg. 2019. Phylogenetics, morphology and circumscription of Cambessedesieae: a new Neotropical tribe of Melastomataceae. Botanical Journal of the Linnean Society 190: 281 - 302.
dc.identifier.citedreferenceBolger, A. M., M. Lohse, and B. Usadel. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114 - 2120.
dc.identifier.citedreferenceBoon, G. C., M. Jordaan, and A. E. van Wick. 2020. A new species of Combretum sect. Ciliatipetala (Combretaceae) from South Africa. Phytotaxa 434: 1 - 12.
dc.identifier.citedreferenceBorowiec, M. L. 2016. AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ 4: e1660.
dc.identifier.citedreferenceBuerki, S., M. W. Callmander, P. Acevedo- Rodriguez, P. P. Lowry, J. Munzinger, P. Bailey, O. Maurin, et al. 2021. An updated infra- familial classification of Sapindaceae based on targeted enrichment data. American Journal of Botany 108: 1234 - 1251.
dc.identifier.citedreferenceCamacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T. L. Madden. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10: 421.
dc.identifier.citedreferenceCámara- Leret, R., D. G. Frodin, F. Adema, C. Anderson, M. S. Appelhans, G. Argent, S. A. Guerrero, et al. 2020. New Guinea has the world- s richest island flora. Nature 584: 579 - 583.
dc.identifier.citedreferenceChernomor, O., A. von Haeseler, and B. Q. Minh. 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65: 997 - 1008.
dc.identifier.citedreferenceClarkson, J. J., A. R. Zuntini, O. Maurin, S. R. Downie, G. M. Plunkett, A. A. Nicolas, J. F. Smith, et al. 2021. A higher- level nuclear phylogenomic study of the carrot family (Apiaceae). American Journal of Botany 108: 1252 - 1269.
dc.identifier.citedreferenceClausing, G., K. Meyer, and S. S. Renner. 2000. Correlations among fruit traits and evolution of different fruits within Melastomataceae. Botanical Journal of the Linnean Society 133: 203 - 226.
dc.identifier.citedreferenceClausing, G., and S. S. Renner. 2001. Molecular phylogenetics of Melastomataceae and Memecylaceae: implications for character evolution. American Journal of Botany 88: 486 - 498.
dc.identifier.citedreferenceCogniaux, C. A. 1891. Mélastomacées [Melastomaceae]. In A. De Candolle and C. De Candolle [ eds.], Monographiae phanerogamarum, vol. 7. G. Masson, Paris, France.
dc.identifier.citedreferenceMorley, T. 1976. Memecyleae (Melastomataceae). Flora Neotropica 15: 1 - 295.
dc.identifier.citedreferenceConti, E., T. Eriksson, J. Schönenberger, K. J. Sytsma, and D. A. Baum. 2002. Early tertiary out- of- India dispersal of Crypteroniaceae: evidence from phylogeny and molecular dating. Evolution 56: 1931 - 1942.
dc.identifier.citedreferenceConti, E., A. Litt, and K. J. Sytsma. 1996. Circumscription of Myrtales and their relationships to other rosids: evidence From rbcL sequence data. American Journal of Botany 83: 221 - 233.
dc.identifier.citedreferenceConti, E., A. Litt, P. G. Wilson, S. A. Graham, B. G. Briggs, L. A. S. Johnson, and K. J. Sytsma. 1997. Interfamilial relationships in Myrtales: molecular phylogeny and patterns of morphological evolution. Systematic Botany 22: 629 - 647.
dc.identifier.citedreferenceConti, E., K. J. Sytsma, A. Litt, and S. A. Graham. 1994. Phylogenetic relationships of controversial families of Myrtales: evidence from rbcL sequence data. American Journal of Botany 81 ( Supplement 6 ): 149 - 150.
dc.identifier.citedreferenceCraven, L. A. 1990. One new species each in Acmena and Eucalyptopsis and a new name in Lindsayomyrtus (all Myrtaceae). Australian Systematic Botany 3: 727 - 732.
dc.identifier.citedreferenceCraven, L. A., and E. Biffin. 2010. An infrageneric classification of Syzygium (Myrtaceae). Blumea 55: 94 - 99.
dc.identifier.citedreferenceDegnan, J. H., and N. A. Rosenberg. 2006. Discordance of species trees with their most likely gene trees. PLoS Genetics 2: e68.
dc.identifier.citedreferencede la Estrella, M., S. Buerki, T. Vasconcelos, E. J. Lucas, and F. Forest. 2019. The role of Antarctica in biogeographical reconstruction: a point of view. International Journal of Plant Sciences 180: 63 - 71.
dc.identifier.citedreferenceDoyle, J. J., and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin 19: 11 - 15.
dc.identifier.citedreferenceDupuis, J. R., Y. Pillon, T. Sakishima, C. E. Gemmill, S. Chamala, W. B. Barbazuk, S. M. Geib, and E. A. Stacy. 2019. Targeted amplicon sequencing of 40 nuclear genes supports a single introduction and rapid radiation of Hawaiian Metrosideros (Myrtaceae). Plant Systematics and Evolution 305: 961 - 974.
dc.identifier.citedreferenceFlickinger, J. A., B. Jestrow, R. Oviedo Prieto, E. Santiago- Valentín, J. Sustache- Sustache, F. Jiménez- Rodríguez, K. C. S. E. Campbell, and J. Francisco- Ortega. 2020. A phylogenetic survey of Myrtaceae in the Greater Antilles with nomenclatural changes for some endemic species. Taxon 69: 448 - 480.
dc.identifier.citedreferenceFlora do Brasil, 2020. Vochysiaceae. In Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. Website: http://floradobrasil.jbrj.gov.br/reflora/listaBrasil/ConsultaPublicaUC/ConsultaPublicaUC.do#CondicaoTaxonCP [accessed 24 January 2020].
dc.identifier.citedreferenceFreyman, W. A., and S. Höhna. 2019. Stochastic character mapping of state- dependent diversification reveals the tempo of evolutionary decline in self- compatible Onagraceae lineages. Systematic Biology 68: 505 - 519.
dc.identifier.citedreferenceFrodin, D. 2004. History and concepts of big plant genera. Taxon 53: 753 - 776.
dc.identifier.citedreferenceGere, J., K. Yessoufou, B. H. Daru, L. Mankga, O. Maurin, and M. van der Bank. 2013. Incorporating trnH- psbA to the core DNA barcodes improves significantly species discrimination within southern African Combretaceae. ZooKeys 365: 129 - 147.
dc.identifier.citedreferenceGere, J., K. Yessoufou, B. H. Daru, O. Maurin, and M. van der Bank. 2015. African continent a likely origin of family Combretaceae (Myrtales). A biogeographical view. Annual Research and Review in Biology 8: 1 - 20.
dc.identifier.citedreferenceGoldenberg, R., F. Almeda, K. Sosa, R. C. Ribeiro, and F. A. Michelangeli. 2015. Rupestrea: A new brazilian genus of Melastomataceae, with anomalous seeds and dry indehiscent fruits. Systematic Botany 40: 561 - 571.
dc.identifier.citedreferenceGoldenberg, R., C. N. de Fraga, A. P. Fontana, A. N. Nicolas, and F. A. Michelangeli. 2012. Taxonomy and phylogeny of Merianthera (Melastomataceae). Taxon 61: 1040 - 1056.
dc.identifier.citedreferenceGoldenberg, R., D. S. Penneys, F. Almeda, W. S. Judd, and F. A. Michelangeli. 2008. Phylogeny of Miconia (Melastomataceae): initial insights into broad patterns of diversification in a megadiverse neotropical genus. International Journal of Plant Sciences 169: 963 - 979.
dc.identifier.citedreferenceGonçalves, D. J. P., G. H. Shimizu, E. M. Ortiz, R. K. Jansen, and B. B. Simpson. 2020. Historical biogeography of Vochysiaceae reveals an unexpected perspective of plant evolution in the Neotropics. American Journal of Botany 107: 1004 - 1020.
dc.identifier.citedreferenceGonçalves, D. J. P., B. B. Simpson, E. M. Ortiz, G. H. Shimizu, and R. K. Jansen. 2019. Incongruence between gene trees and species trees and phylogenetic signal variation in plastid genes. Molecular Phylogenetics and Evolution 138: 219 - 232.
dc.identifier.citedreferenceGovaerts, R., M. Sobral, P. Ashton, F. Barrie, B. K. Holst, L. R. Landrum, K. Matsumoto, et al. 2020. World checklist of Myrtaceae [online]. Facilitated by the Royal Botanic Gardens, Kew. Website www.kew.org/wcsp [accessed 1 October 2020].
dc.identifier.citedreferenceGraham, S. A. 2010. Revision of the Caribbean genus Ginoria (Lythraceae), including Haitia from Hispaniola I. Annals of the Missouri Botanical Garden 97: 34 - 90.
dc.identifier.citedreferenceGraham, S. A., M. Diazgranados, and J. Barber. 2011. Relationships among the confounding genera Ammannia, Hionanthera, Nesaea and Rotala (Lythraceae). Botanical Journal of the Linnean Society 166: 1 - 19.
dc.identifier.citedreferenceGraham, S. A., and A. Graham. 2014. Ovary, fruit, and seed morphology of the Lythraceae. International Journal of Plant Sciences 175: 202 - 240.
dc.identifier.citedreferenceGraham, S. A., J. Hall, K. Sytsma, and S. H. Shi. 2005. Phylogenetic analysis of the Lythraceae based on four gene regions and morphology. International Journal of Plant Sciences 166: 995 - 1017.
dc.identifier.citedreferenceGu, C., L. Ma, Z. Wu, K. Chen, and Y. Wang. 2019. Comparative analyses of chloroplast genomes from 22 Lythraceae species: inferences for phylogenetic relationships and genome evolution within Myrtales. BMC Plant Biology 19: 281.
dc.identifier.citedreferenceHale, H., E. M. Gardner, J. Viruel, L. Pokorny, and M. G. Johnson. 2020. Strategies for reducing per- sample costs in target capture sequencing for phylogenomics and population genomics in plants. Applications in Plant Sciences 8: e11337.
dc.identifier.citedreferenceHeywood, V. H., R. K. Brummitt, A. Culham, and O. Seberg. 2007. Flowering plant families of the world. Firefly Books, Richmond Hill, ON, Canada.
dc.identifier.citedreferenceHollister, J. D., S. Greiner, M. T. Johnson, and S. I. Wright. 2019. Hybridization and a loss of sex shape genome- wide diversity and the origin of species in the evening primroses ( Oenothera, Onagraceae). New Phytologist 224: 1372 - 1380.
dc.identifier.citedreferenceInglis, P. W., and T. B. Cavalcanti. 2018. A molecular phylogeny of the genus Diplusodon (Lythraceae), endemic to the campos rupestres and cerrados of South America. Taxon 67: 66 - 82.
dc.identifier.citedreferenceJohnson, L. A. S., and B. G. Briggs. 1984. Myrtales and Myrtaceae- A phylogenetic analysis. Annals of the Missouri Botanical Garden 71: 700 - 756.
dc.identifier.citedreferenceJohnson, M. G., E. M. Gardner, Y. Liu, R. Medina, B. Goffinet, A. J. Shaw, N. J. Zerega, and N. J. Wickett. 2016. HybPiper: extracting coding sequence and introns for phylogenetics from high- throughput sequencing reads using target enrichment. Applications Plant Science 4: apps.1600016.
dc.identifier.citedreferenceJohnson, M. G., L. Pokorny, S. Dodsworth, L. R. Botigué, R. S. Cowan, A. Devault, W. L. Eiserhardt, et al. 2019. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k - medoids clustering. Systematic Biology 68: 594 - 606.
dc.identifier.citedreferenceJombart, T., M. Kendall, J. Almagro- Garcia, and C. Colijn. 2017. Treespace: Statistical exploration of landscapes of phylogenetic trees. Molecular Ecology Resources 17: 1385 - 1392.
dc.identifier.citedreferenceJunier, T., and E. M. Zdobnov. 2010. The Newick utilities: high- throughput phylogenetic tree processing in the UNIX shell. Bioinformatics 26: 1669 - 1670.
dc.identifier.citedreferenceKadono, Y., and E. L. Schneider. 1986. Floral biology of Trapa natans var. japonica. Botanical Magazine, Tokyo 99: 435 - 439.
dc.identifier.citedreferenceKatoh, K., and D. M. Standley. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772 - 780.
dc.identifier.citedreferenceKawasaki, M. L. 2007. Vochysiaceae. In K. Kubitzki [ed.], The families and genera of vascular plants, vol. IX, 480 - 487. Springer, Berlin, Germany.
dc.identifier.citedreferenceKendall, M., and C. Colijn. 2016. Mapping phylogenetic trees to reveal distinct patterns of evolution. Molecular Biology and Evolution 33: 2735 - 2743.
dc.identifier.citedreferenceKoehne, E. 1903. Lythraceae. In A. Engler [ed.], Das Pflanzenreich, vol. IV, 1 - 326. Wilhelm Engelmann, Leipzig, Germany.
dc.identifier.citedreferenceKriebel, R., M. Khabbazian, and K. J. Sytsma. 2017. A continuous morphological approach to study the evolution of pollen in a phylogenetic context: an example with the order Myrtales. PLoS One 12: e0187228.
dc.identifier.citedreferenceKück, P., and K. Meusemann. 2010. FASconCAT: Convenient handling of data matrices. Molecular Phylogenetics and Evolution 56: 1115 - 1118.
dc.identifier.citedreferenceLevin, R. A., W. L. Wagner, P. C. Hoch, W. J. Hahn, A. Rodriguez, D. A. Baum, L. Katinas, et al. 2004. Paraphyly in tribe Onagreae: insights into phylogenetic relationships of Onagraceae based on nuclear and chloroplast sequence data. Systematic Botany 29: 147 - 164.
dc.identifier.citedreferenceLevin, R. A., W. L. Wagner, P. C. Hoch, M. Nepokroeff, J. C. Pires, E. A. Zimmer, and K. J. Sytsma. 2003. Family- level relationships of Onagraceae based on chloroplast rbcL and ndhF data. American Journal of Botany 90: 107 - 115.
dc.identifier.citedreferenceLi, H., and R. Durbin. 2010. Fast and accurate long- read alignment with Burrows- Wheeler transform. Bioinformatics 26: 589 - 595.
dc.identifier.citedreferenceLi, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, et al. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078 - 2079.
dc.identifier.citedreferenceLi, H.- T., T.- S. Yi, L.- M. Gao, P.- F. Ma, T. Zhang, J.- H. Yang, M. A. Gitzendanner, et al. 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants 5: 461 - 470.
dc.identifier.citedreferenceLinnaeus, C. 1753. Species plantarum, ed. 2, vol. 1. L. Salvius, Stockholm, Sweden.
dc.identifier.citedreferenceLinkem, C. W., V. N. Minin, and A. D. Leaché. 2016. Detecting the anomaly zone in species trees and evidence for a misleading signal in higher- level skink phylogeny (Squamata: Scincidae). Systematic Biology 65: 465 - 477.
dc.identifier.citedreferenceLitt, A. 1999. Floral morphology and phylogeny of Vochysiaceae. Ph.D. dissertation. City University of New York, NY, NY, USA.
dc.identifier.citedreferenceLitt, A., and D. Stevenson. 2003. Floral development and morphology of Vochysiaceae. I. The structure of the gynoecium. American Journal of Botany 90: 1533 - 1547.
dc.identifier.citedreferenceLiu, L., C. Anderson, D. Pearl, and S. V. Edwards. 2019. Modern phylogenomics: building phylogenetic trees using the multispecies coalescent model. In M. Anisimova [ed.], Evolutionary genomics, 2nd ed., 211 - 239. Humana, NY, NY, USA.
dc.identifier.citedreferenceLucas, E. J., B. S. Amorim, D. F. Lima, A. R. Lima- Lourenço, E. M. Nic Lughadha, C. E. B. Proença, P. O. Rosa, et al. 2018. A new infra- generic classification of the species- rich Neotropical genus Myrcia s.l. Kew Bulletin 73: 9.
dc.identifier.citedreferenceLucas, E. J., and M. O. Bünger. 2015. Myrtaceae in the Atlantic forest: their role as a - model- group. Biodiversity and Conservation 24: 2165 - 2180.
dc.identifier.citedreferenceLucas, E. J., B. Holst, M. Sobral, F. Mazine, E. M. Nic Lughadha, C. Proença, I. da Costa, and T. Vasconcelos. 2019. A new subtribal classification of tribe Myrteae (Myrtaceae). Systematic Botany 44: 560 - 569.
dc.identifier.citedreferenceMai, U., and S. Mirarab. 2018. TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees. BMC Genomics 19: 272.
dc.identifier.citedreferenceMancera, J. P. 2017. Morphological phylogenetic analysis of the Astronieae (Melastomataceae). Ph.D. dissertation, San Francisco State University, San Francisco, CA, USA.
dc.identifier.citedreferenceMarcano- Berti, L. 2005. Vochysiaceae. In P. E. Berry, B. K. Holst, and K. Yatskievych [ eds.], Flora of the Venezuelan Guayana, vol. 9, 500 - 524. Rutaceae - Zygophyllaceae. Missouri Botanical Garden Press, St. Louis, MO, USA.
dc.identifier.citedreferenceMartin, C. V., D. Little, R. Goldenberg, and F. A. Michelangeli. 2008. A phylogenetic evaluation of Leandra (Miconieae, Melastomataceae): a polyphyletic genus where the seeds tell the story, not the petals. Cladistics 24: 317 - 327.
dc.identifier.citedreferenceMaurin, O., M. W. Chase, M. Jordaan, and M. van der Bank. 2010. Combretaceae inferred from nuclear and plastid DNA sequence data: implications for generic classification. Botanical Journal of the Linnean Society 162: 453 - 476.
dc.identifier.citedreferenceMaurin, O., G. Gere, M. van der Bank, and J. S. Boatwright. 2017. The inclusion of Anogeissus, Buchenavia and Pteleopsis in Terminalia (Combretaceae: Terminaliinae). Botanical Journal of the Linnean Society 184: 312 - 325.
dc.identifier.citedreferenceMaurin, O., I. M. Turner, J. S. Boatwright, and M. J. M. Christenhusz. 2020. New combinations in Combretaceae subtribe Combretinae from Africa and Asia. Phytotaxa 451: 231 - 237.
dc.identifier.citedreferenceMaurin, O., A. E. Van Wyk, M. Jordaan, and M. van der Bank. 2011. A new species of Combretum section Ciliatipetala (Combretaceae) from southern Africa, with a key to the regional members of the section. South African Journal of Botany 77: 105 - 111.
dc.identifier.citedreferenceMaxwell, J. F. 1981. A revision of the genus Pternandra (Melastomataceae). Garden Bulletin Singapore 34: 1 - 90.
dc.identifier.citedreferenceMazerolle, M. J. 2019. AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package version 2.2- 2. Website: https://cran.rproject.org/package=AICcmodavg/.
dc.identifier.citedreferenceMazine, F. F., V. Castro Souza, M. Sobral, F. Forest, and E. Lucas. 2014. A preliminary phylogenetic analysis of Eugenia (Myrtaceae: Myrteae), with a focus on Neotropical species. Kew Bulletin 69: 9497.
dc.identifier.citedreferenceMazine, F. F., J. E. Q. Faria, A. Giaretta, T. Vasconcelos, F. Forest, and E. J. Lucas. 2018. Phylogeny and biogeography of the hyper- diverse genus Eugenia (Myrtaceae: Myrteae), with emphasis on E. sect. Umbellatae, the most unmanageable clade. Taxon 67: 752 - 769.
dc.identifier.citedreferenceMcLay, T. G. B., J. L. Birch, B. F. Gunn, W. Ning, J. A. Tate, L. Nauheimer, E. M. Joyce, et al. 2021. New targets acquired: improving locus recovery from the Angiosperms353 probe set. Applications in Plant Sciences 9: e11420.
dc.identifier.citedreferenceMichelangeli, F. A., P. J. F. Guimaraes, D. S. Penneys, F. Almeda, and R. Kriebel. 2013. Phylogenetic relationships and distribution of New World Melastomeae (Melastomataceae). Botanical Journal of the Linnean Society 171: 38 - 60.
dc.identifier.citedreferenceMichelangeli, F. A., A. Nicolas, M. E. Morales- Puentes, and H. David. 2011. Phylogenetic relationships of Allomaieta, Alloneuron, Cyphostyla, and Wurdastom (Melastomataceae) and the resurrection of the Tribe Cyphostyleae. International Journal of Plant Sciences 172: 1165 - 1178.
dc.identifier.citedreferenceMichelangeli, F. A., D. S. Penneys, J. Giza, D. Soltis, M. H. Hils, and J. D. Skean Jr. 2004. A preliminary phylogeny of the tribe Miconieae (Melastomataceae) based on nrITS sequence data and its implications on inflorescence position. Taxon 53: 279 - 290.
dc.identifier.citedreferenceMichelangeli, F. A., C. Ulloa Ulloa, and K. Sosa. 2014. Quipuanthus, a new genus and species of Melastomataceae from the foothills of the Andes in Ecuador and Peru. Systematic Botany 39: 533 - 540.
dc.identifier.citedreferenceMiller, A. 2020. Leaps: regression subset selection. R package version 3.1. Website: https://CRAN.R- project.org/package=leaps.
dc.identifier.citedreferenceMinh, B. Q., H. A. Schmidt, O. Chernomor, D. Schrempf, M. D. Woodhams, A. von Haeseler, and R. Lanfear. 2020. IQ- TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37: 1530 - 1534.
dc.identifier.citedreferenceMirarab, S. 2019. Species tree estimation using ASTRAL: practical considerations. arXiv. Website: https://arxiv.org/abs/1904.03826v2 [Preprint].
dc.identifier.citedreferenceMirarab, S., and T. Warnow. 2015. ASTRAL- II: Coalescent- based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31: 44 - 52.
dc.identifier.citedreferenceMurphy, B., F. Forest, T. Barraclough, J. Rosindell, S. Bellot, R. Cowan, and M. Golos, et al. 2020. A phylogenomic analysis of Nepenthes (Nepenthaceae). Molecular Phylogenetics and Evolution 144: 106668.
dc.identifier.citedreferenceNaser- Khdour, S., B. Q. Minh, W. Zhang, E. A. Stone, and R. Lanfear. 2019. The prevalence and impact of model violations in phylogenetic analysis. Genome Biology and Evolution 11: 3341 - 3352.
dc.identifier.citedreferenceOliveira, P. E., P. E. Gibbs, and A. A. Barbosa. 2004. Moth pollination of woody species in the Cerrados of Central Brazil: a case of so much owed to so few? Plant Systematics and Evolution 245: 41 - 54.
dc.identifier.citedreferenceParadis, E., and K. Schliep. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526 - 528.
dc.identifier.citedreferencePenneys, D. S., F. Almeda, F. A. Michelangeli, R. Goldenberg, A. B. Martins, and P. W. Fritsch. 2020. Lithobieae and Eriocnemeae: two new neotropical tribes of Melastomataceae. Phytotaxa 453: 157 - 178.
dc.identifier.citedreferencePenneys, D. S., and W. S. Judd. 2013. Combined molecular and morphological phylogenetic analyses of the Blakeeae (Melastomataceae). International Journal of Plant Sciences 174: 802 - 817.
dc.identifier.citedreferencePenneys, D. S., F. A. Michelangeli, W. S. Judd, and F. Almeda. 2010. Henriettieae: a new Neotropical tribe of berry- fruited Melastomataceae. Systematic Botany 35: 783 - 800.
dc.identifier.citedreferencePillon, Y., H. C. F. Hopkins, O. Maurin, N. Epitawalage, J. Bradford, Z. S. Rogers, W. J. Baker, and F. Forest. 2021. Phylogenomics and biogeography of Cunoniaceae (Oxalidales) with complete generic sampling and taxonomic realignments. American Journal of Botany 108: 1181 - 1200.
dc.identifier.citedreferencePlaziat, J.- C., C. Cavagnetto, J.- C. Koeniguer, and F. Baltzer. 2001. History and biogeography of the mangrove ecosystem, based on a critical, reassessment of the paleontological. Wetlands Ecology and Management 9: 161 - 179.
dc.identifier.citedreferencePOWO. 2020. Plants of the world online. Facilitated by the Royal Botanic Gardens, Kew. Website: http://www.plantsoftheworldonline.org/ [accessed 15 October 2020].
dc.identifier.citedreferenceProença, C. E., E. M. Nic Lughadha, E. J. Lucas, and E. Woodgyer. 2006. Algrizea (Myrteae, Myrtaceae): a new genus from the Highlands of Brazil. Systematic Botany 31: 320 - 326.
dc.identifier.citedreferenceR Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Website: https://www.R- project.org/.
dc.identifier.citedreferenceRStudio Team. 2020. RStudio: integrated development for R. RStudio, PBC, Boston, MA, USA. Website: http://www.rstudio.com/.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.