Show simple item record

Habitat structure mediates vulnerability to climate change through its effects on thermoregulatory behavior

dc.contributor.authorNeel, Lauren K.
dc.contributor.authorLogan, Michael L.
dc.contributor.authorNicholson, Daniel J.
dc.contributor.authorMiller, Christina
dc.contributor.authorChung, Albert K.
dc.contributor.authorMaayan, Inbar
dc.contributor.authorDegon, Zach
dc.contributor.authorDuBois, Madeline
dc.contributor.authorCurlis, John David
dc.contributor.authorTaylor, Quinn
dc.contributor.authorKeegan, Kaitlin M.
dc.contributor.authorMcMillan, W. O.
dc.contributor.authorLosos, Jonathan B.
dc.contributor.authorCox, Christian L.
dc.date.accessioned2021-08-03T18:17:01Z
dc.date.available2022-08-03 14:17:00en
dc.date.available2021-08-03T18:17:01Z
dc.date.issued2021-07
dc.identifier.citationNeel, Lauren K.; Logan, Michael L.; Nicholson, Daniel J.; Miller, Christina; Chung, Albert K.; Maayan, Inbar; Degon, Zach; DuBois, Madeline; Curlis, John David; Taylor, Quinn; Keegan, Kaitlin M.; McMillan, W. O.; Losos, Jonathan B.; Cox, Christian L. (2021). "Habitat structure mediates vulnerability to climate change through its effects on thermoregulatory behavior." Biotropica (4): 1121-1133.
dc.identifier.issn0006-3606
dc.identifier.issn1744-7429
dc.identifier.urihttps://hdl.handle.net/2027.42/168512
dc.description.abstractTropical ectotherms are thought to be especially vulnerable to climate change because they are thermal specialists, having evolved in aseasonal thermal environments. However, even within the tropics, habitat structure can influence opportunities for behavioral thermoregulation. Open (and edge) habitats likely promote more effective thermoregulation due to the high spatial heterogeneity of the thermal landscape, while forests are thermally homogenous and may constrain opportunities for behavioral buffering of environmental temperatures. Nevertheless, the ways in which behavior and physiology interact at local scales to influence the response to climate change are rarely investigated. We examined the thermal ecology and physiology of two lizard species that occupy distinct environments in the tropics. The brown anole lizard (Anolis sagrei) lives along forest edges in The Bahamas, whereas the Panamanian slender anole (Anolis apletophallus) lives under the canopy of mature forests in Panama. We combined detailed estimates of environmental variation, thermoregulatory behavior, and physiology to model the vulnerability of each of these species. Our projections suggest that forest‐dwelling slender anoles will experience severely reduced locomotor performance, activity time, and energy budgets as the climate warms over the coming century. Conversely, the forest‐edge‐dwelling brown anoles may use behavioral compensation in the face of warming, maintaining population viability for many decades. Our results indicate that local habitat variation, through its effects on behavior and physiology, is a major determinant of vulnerability to climate change. When attempting to predict the impacts of climate change on a given population, broad‐scale characteristics such as latitude may have limited predictive power.Tropical species cannot be treated interchangeably when evaluating the effects of climate change; some may be vulnerable while others are resilient, even when species are closely related and have similar ecologies and natural histories. Habitat structure impacts vulnerability because it both constrains the opportunity for behavioral buffering and influences the shape of the thermal niche. Our models suggest that lowland tropical forest ectotherms may undergo severe population declines in the coming decades.
dc.publisherWiley Periodicals, Inc.
dc.publisherOxford University Press
dc.subject.otherAnolis
dc.subject.otherclimate change
dc.subject.otherthermal niche
dc.subject.otherthermal performance curve
dc.subject.otherthermoregulatory behavior
dc.titleHabitat structure mediates vulnerability to climate change through its effects on thermoregulatory behavior
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168512/1/btp12951.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168512/2/btp12951_am.pdf
dc.identifier.doi10.1111/btp.12951
dc.identifier.sourceBiotropica
dc.identifier.citedreferenceLosos, J. B., Schoener, T. W., & Spiller, D. A. ( 2004 ). Predator‐induced behaviour shifts and natural selection in field‐experimental lizard populations. Nature, 432, 505 – 508.
dc.identifier.citedreferenceKearney, M., Shine, R., & Porter, W. P. ( 2009 ). The potential for behavioral thermoregulation to buffer "cold‐blooded" animals against climate warming. Proceedings of the National Academy of Sciences of the United States of America, 106, 3835 – 3840.
dc.identifier.citedreferenceLeal, M., & Gunderson, A. R. ( 2012 ). Rapid change in the thermal tolerance of a tropical lizard. American Naturalist, 180, 815 – 822.
dc.identifier.citedreferenceLighton, J. R. ( 2008 ). Measuring metabolic rates: A manual for scientists. Oxford Unversity Press.
dc.identifier.citedreferenceLogan, M. L., & Cox, C. L. ( 2020 ). Genetic constraints, transcriptome plasticity, and the evolutionary response to climate change. Frontiers in Genetics, 11, 1088.
dc.identifier.citedreferenceLogan, M. L., Cox, R. M., & Calsbeek, R. ( 2014 ). Natural selection on thermal performance in a novel thermal environment. Proceedings of the National Academy of Sciences of the United States of America, 111, 14165 – 14169.
dc.identifier.citedreferenceLogan, M. L., Curlis, J. D., Gilbert, A. L., Miles, D. B., Chung, A. K., McGlothlin, J. W., & Cox, R. M. ( 2018 ). Thermal physiology and thermoregulatory behaviour exhibit low heritability despite genetic divergence between lizard populations. Proceedings of the Royal Society B: Biological Sciences, 285, 20180697.
dc.identifier.citedreferenceLogan, M. L., Duryea, M. C., Molnar, O. R., Kessler, B. J., & Calsbeek, R. ( 2016 ). Spatial variation in climate mediates gene flow across an island archipelago. Evolution, 70, 2395 – 2403.
dc.identifier.citedreferenceLogan, M. L., Huynh, R. K., Precious, R. A., & Calsbeek, R. G. ( 2013 ). The impact of climate change measured at relevant spatial scales: new hope for tropical lizards. Global Change Biology, 19, 3093 – 3102.
dc.identifier.citedreferenceLogan, M. L., van Berkel, J., & Clusella‐Trullas, S. ( 2019 ). The Bogert Effect and environmental heterogeneity. Oecologia, 191, 817 – 827.
dc.identifier.citedreferenceLynch, M., & Gabriel, W. ( 1987 ). Environmental tolerance. American Naturalist, 129, 283 – 303.
dc.identifier.citedreferenceLynch, M., & Walsh, B. ( 1998 ). Genetics and analysis of quantitative traits. Oxford University Press.
dc.identifier.citedreferenceMartins, F., Kruuk, L., Llewelyn, J., Moritz, C., & Phillips, B. ( 2018 ). Heritability of climate‐relevant traits in a rainforest skink. Heredity, 122, 41 – 52.
dc.identifier.citedreferenceMuñoz, M. M., & Bodensteiner, B. L. ( 2019 ). Janzen’s hypothesis meets the bogert effect: Connecting climate variation, thermoregulatory behavior, and rates of physiological evolution. Integrative Organismal Biology, 1, 1 – 12.
dc.identifier.citedreferenceNeel, L. K., Curlis, J. D., Kinsey, C. T., Cox, C. L., & McBrayer, L. D. ( 2020 ). Acclimatization in the physiological performance of an introduced ectotherm. Journal of Experimental Biology, 223, jeb201517.
dc.identifier.citedreferenceNeel, L. K., Logan, M. L., Nicholson, D. J., Miller, C., Chung, A. K., Maayan, I., Degon, Z., DuBois, M., Curlis, J. D., Taylor, Q., Keegan, K. M., McMillan, W. O., Losos, J. B., & Cox, C. ( 2021 ). Data from: Habitat structure mediates vulnerability to climate change through its effects on thermoregulatory behavior. Dryad Digital Repository, https://doi.org/10.5061/dryad.sn02v6x3q
dc.identifier.citedreferenceNeel, L. K., & McBrayer, L. D. ( 2018 ). Habitat management alters thermal opportunity. Functional Ecology, 32, 2029 – 2039.
dc.identifier.citedreferencePotter, K. A., Woods, H. A., & Pincebourde, S. ( 2013 ). Microclimatic challenges in global change biology. Global Change Biology, 19, 2932 – 2939.
dc.identifier.citedreferenceR Core Team ( 2020 ). R: a Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.Rproject.org
dc.identifier.citedreferenceSchoener, T. W. ( 1968 ). The Anolis Lizards of Bimini: Resource partitioning in a complex Fauna. Ecological Society of America, 49, 704 – 726.
dc.identifier.citedreferenceScott, N. J., Wilson, D. E., Jones, C., & Andrews, R. M. ( 1976 ). The choice of perch dimensions by lizards of the genus Anolis (Reptilia, Lacertilia, Iguanidae). Journal of Herpetology, 10, 75 – 84.
dc.identifier.citedreferenceSears, M. W., & Angilletta, M. J. ( 2015 ). Costs and benefits of thermoregulation revisited: Both the heterogeneity and spatial structure of temperature drive energetic costs. American Naturalist, 185, E94 – E102.
dc.identifier.citedreferenceSears, M. W., Angilletta, M. J., Schuler, M. S., Borchert, J., Dilliplane, K. F., Stegman, M., Rusch, T. W., & Mitchell, W. A. ( 2016 ). Configuration of the thermal landscape determines thermoregulatory performance of ectotherms. Proceedings of the National Academy of Sciences of the United States of America, 113, 10595 – 10600.
dc.identifier.citedreferenceSears, M. W., Raskin, E., & Angilletta, M. J. ( 2011 ). The world is not flat: Defining relevant thermal landscapes in the context of climate change. Integrative and Comparative Biology, 51, 666 – 675.
dc.identifier.citedreferenceSexton, O. J., Heatwole, H. F., & Meseth, E. H. ( 1963 ). Seasonal population changes in the lizard, Anolis limifrons, in Panama. The American Midland Naturalist, 69, 482 – 491.
dc.identifier.citedreferenceSinervo, B., Mendez‐de‐la‐Cruz, F., Miles, D. B., Heulin, B., Bastiaans, E., Cruz, M. V. S., Lara‐Resendiz, R., Martinez‐Mendez, N., Calderon‐Espinosa, M. L., Meza‐Lazaro, R. N., Gadsden, H., Avila, L. J., Morando, M., De la Riva, I. J., Sepulveda, P. V., Rocha, C. F. D., Ibarguengoytia, N., Puntriano, C. A., Massot, M., … Sites, J. W. ( 2010 ). Erosion of lizard diversity by climate change and altered thermal niches. Science, 328, 894 – 899.
dc.identifier.citedreferenceStapley, J. ( 2018 ). Male Anolis lizards prefer virgin females. bioRxiv.
dc.identifier.citedreferenceStapley, J., Garcia, M., & Andrews, R. M. ( 2015 ). Long‐term data reveal a population decline of the tropical lizard Anolis apletophallus, and a negative affect of El Nino years on population growth rate. PLoS One, 10, 14.
dc.identifier.citedreferenceSunday, J. M., Bates, A. E., & Dulvy, N. K. ( 2010 ). Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society B: Biological Sciences, 278, 1823 – 1830.
dc.identifier.citedreferenceSunday, J. M., Bates, A. E., Kearney, M. R., Colwell, R. K., Dulvy, N. K., Longino, J. T., & Huey, R. B. ( 2014 ). Thermal‐safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences of the United States of America, 111, 5610 – 5615.
dc.identifier.citedreferenceTalbot, J. J. ( 1979 ). Time budget, niche overlap, inter‐ and intraspecific aggression in Anolis humlis and A. limifrons from Costa Rica. Copeia, 3, 472 – 481.
dc.identifier.citedreferenceTewksbury, J. J., Huey, R. B., & Deutsch, C. A. ( 2008 ). Putting the heat on tropical animals. Science, 320, 1296 – 1297.
dc.identifier.citedreferenceUrban, M. C., Tewksbury, J. J., & Sheldon, K. S. ( 2012 ). On a collision course: Competition and dispersal differences create no‐analogue communities and cause extinctions during climate change. Proceedings of the Royal Society B: Biological Sciences, 279, 2072 – 2080.
dc.identifier.citedreferenceValdecantos, S., Martínez, V., Lobo, F., & Cruz, F. B. ( 2013 ). Thermal biology of Liolaemus lizards from the high Andes: Being efficient despite adversity. Journal of Thermal Biology, 38, 126 – 134.
dc.identifier.citedreferenceWeese, A. O. ( 1917 ). An experimental study of the reactions of the horned lizard, Phrynosoma modestum gir., a reptile of the semi‐desert The. Biological Bulletin, 32, 98 – 116.
dc.identifier.citedreferenceDillon, M. E., Wang, G., & Huey, R. B. ( 2010 ). Global metabolic impacts of recent climate warming. Nature, 467, 704 – 788.
dc.identifier.citedreferenceLogan, M. L., Fernandez, S. G., & Calsbeek, R. ( 2015 ). Abiotic constraints on the activity of tropical lizards. Functional Ecology, 29, 694 – 700.
dc.identifier.citedreferenceTokarz, R. R. ( 1998 ). Mating pattern in the lizard Anolis sagrei: Implications for mate choice and sperm competition. Herpetologica, 54, 388 – 394.
dc.identifier.citedreferenceAkaike, H. ( 1987 ). Factor‐ analysis and AIC. Psychometrika, 52, 317 – 332.
dc.identifier.citedreferenceAndrews, R. M. ( 1979 ). Reproductive effort of female Anolis limifrons (Sauria: Iguanidae). Copeia, 1979, 620 – 626.
dc.identifier.citedreferenceAndrews, R., & Rand, A. S. ( 1974 ). Reproductive effort in anoline lizards. Ecology, 55, 1317 – 1327.
dc.identifier.citedreferenceAndrews, R. M., & Sexton, O. J. ( 1981 ). Water relations of the eggs of Anolis auratus and Anolis limifrons. Ecology, 62, 556 – 562.
dc.identifier.citedreferenceAngilletta, M. J. ( 2006 ). Estimating and comparing thermal performance curves. Journal of Thermal Biology, 31, 541 – 545.
dc.identifier.citedreferenceAngilletta, M. J. ( 2009 ). Thermal adaptation. Oxford University Press.
dc.identifier.citedreferenceBakken, G. S. ( 1992 ). Measurement and application of operative and standard operative temperatures in ecology. American Zoologist, 32, 194 – 216.
dc.identifier.citedreferenceBakken, G. S., & Gates, D. M. ( 1975 ). Heat‐transfer analysis of animals: Some implications for field ecology, physiology, and evolution. In: Gates D. M., Schmerl R. B. (eds.), Perspectives of biophysical ecology (pp. 255 – 290 ). Springer Berlin Heidelberg.
dc.identifier.citedreferenceBallinger, R. E., Marion, K. R., & Sexton, O. J. ( 1970 ). Thermal ecology of the lizard, Anolis limifrons with comparative notes on three additional panamanian anoles. Ecology, 51, 246 – 254.
dc.identifier.citedreferenceBauwens, D., Garland, T., Castilla, A. M., & Vandamme, R. ( 1995 ). Evolution of sprint speed in Lacertid lizards – Morphological, physiological, and behavioral covariation. Evolution, 49, 848 – 863.
dc.identifier.citedreferenceBennett, A. F., & Johnalder, H. B. ( 1984 ). The effect of body – Temperature on the locomotory energetics of lizards. Journal of Comparative Physiology B‐Biochemical Systemic and Environmental Physiology, 155, 21 – 27.
dc.identifier.citedreferenceBonebrake, T. C., & Deutsch, C. A. ( 2012 ). Climate heterogeneity modulates impact of warming on tropical insects. Ecology, 93, 449 – 455.
dc.identifier.citedreferenceBonebrake, T. C., & Mastrandrea, M. D. ( 2010 ). Tolerance adaptation and precipitation changes complicate latitudinal patterns of climate change impacts. Proceedings of the National Academy of Sciences of the United States of America, 107, 12581 – 12586.
dc.identifier.citedreferenceBuckley, L. B., Ehrenberger, J. C., & Angilletta, M. J. ( 2015 ). Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change. Functional Ecology, 29, 1038 – 1047.
dc.identifier.citedreferenceBuckley, L. B., Hurlbert, A. H., & Jetz, W. ( 2012 ). Broad‐scale ecological implications of ectothermy and endothermy in changing environments. Global Ecology and Biogeography, 21, 873 – 885.
dc.identifier.citedreferenceBuckley, L. B., Tewksbury, J. J., & Deutsch, C. A. ( 2013 ). Can terrestrial ectotherms escape the heat of climate change by moving? Proceedings of the Royal Society B: Biological Sciences, 280. https://doi.org/10.1098/rspb.2013.1149
dc.identifier.citedreferenceCalsbeek, R., Bonneaud, C., Prabhu, S., Manoukis, N., & Smith, T. ( 2007 ). Multiple paternity and sperm storage lead to increased genetic diversity in Anolis lizards. Evolutionary Ecology Research, 9, 495 – 503.
dc.identifier.citedreferenceCamacho, A., & Rusch, T. W. ( 2017 ). Methods and pitfalls of measuring thermal preference and tolerance in lizards. Journal of Thermal Biology, 68, 63 – 72.
dc.identifier.citedreferenceCampbell‐Staton, S. C., Cheviron, Z. A., Rochette, N., Catchen, J., Losos, J. B., & Edwards, S. V. ( 2017 ). Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science, 357, 495.
dc.identifier.citedreferenceClusella‐Trullas, S., Blackburn, T. M., & Chown, S. L. ( 2011 ). Climate predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. American Naturalist, 177, 738 – 751.
dc.identifier.citedreferenceCox, C. L., Alexander, S., Casement, B., Chung, A. K., Curlis, J. D., Degon, Z., Dubois, M., Falvey, C., Graham, Z. A., Folfas, E., Koyner, M. A. G., Neel, L. K., Nicholson, D. J., Perez, D. J. P., Ortiz‐Ross, X., Rosso, A. A., Taylor, Q., Thurman, T. J., Williams, C. E., … Logan, M. L. ( 2020 ). Ectoparasite extinction in simplified lizard assemblages during experimental island invasion. Biology Letters, 16, 20200474.
dc.identifier.citedreferenceCox, C. L., Logan, M. L., Bryan, O., Kaur, D., Leung, E., McCormack, J., McGinn, J., Miller, L., Robinson, C., Salem, J., Scheid, J., Warzinski, T., & Chung, A. K. ( 2018 ). Do ring‐necked snakes choose retreat sites based upon thermal preferences? Journal of Thermal Biology, 71, 232 – 236.
dc.identifier.citedreferenceDe Frenne, P., Zellweger, F., Rodríguez‐Sánchez, F., Scheffers, B. R., Hylander, K., Luoto, M., Vellend, M., Verheyen, K., & Lenoir, J. ( 2019 ). Global buffering of temperatures under forest canopies. Nature Ecology & Evolution, 3, 744 – 749.
dc.identifier.citedreferenceDeutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. ( 2008 ). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 105, 6668 – 6672.
dc.identifier.citedreferenceFey, S. B., Vasseur, D. A., Alujević, K., Kroeker, K. J., Logan, M. L., O’Connor, M. I., Rudolf, V. H. W., DeLong, J. P., Peacor, S., Selden, R. L., Sih, A., & Clusella‐Trullas, S. ( 2019 ). Opportunities for behavioral rescue under rapid environmental change. Global Change Biology, 25, 3110 – 3120.
dc.identifier.citedreferenceGabriel, W., & Lynch, M. ( 1992 ). The selective advantage of reaction norms for environmental tolerance. Journal of Evolutionary Biology, 5, 41 – 59.
dc.identifier.citedreferenceGilbert, A. L., & Miles, D. B. ( 2017 ). Natural selection on thermal preference, critical thermal maxima and locomotor performance. Proceedings of the Royal Society B‐Biological Sciences, 284, 8.
dc.identifier.citedreferenceGrant, P. R., Grant, B. R., Huey, R. B., Johnson, M. T. J., Knoll, A. H., & Schmitt, J. ( 2017 ). Evolution caused by extreme events. Philosophical Transactions of the Royal Society B: Biological Sciences, 372 ( 1723 ), 20160146. https://doi.org/10.1098/rstb.2016.0146
dc.identifier.citedreferenceGunderson, A. R., & Leal, M. ( 2012 ). Geographic variation in vulnerability to climate warming in a tropical Caribbean lizard. Functional Ecology, 26, 783 – 793.
dc.identifier.citedreferenceGunderson, A. R., & Leal, M. ( 2016 ). A conceptual framework for understanding thermal constraints on ectotherm activity with implications for predicting responses to global change. Ecology Letters, 19, 111 – 120.
dc.identifier.citedreferenceHertz, P. E., Huey, R. B., & Stevenson, R. D. ( 1993 ). Evaluating temperature regulation by field‐active ectotherms – The fallacy of the inappropriate question. American Naturalist, 142, 796 – 818.
dc.identifier.citedreferenceHochachka, P. W., & Somero, G. N. ( 2002 ). Biochemical adaptation: Mechanism and process in physiological evolution. Oxford University Press.
dc.identifier.citedreferenceHuey, R. B. ( 1974 ). Behavioral thermoregulation in lizards: importance of associated costs. Science, 184, 1001 – 1003.
dc.identifier.citedreferenceHuey, R. B., Deutsch, C. A., Tewksbury, J. J., Vitt, L. J., Hertz, P. E., Perez, H. J. A., & Garland, T. ( 2009 ). Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society B‐Biological Sciences, 276, 1939 – 1948.
dc.identifier.citedreferenceHuey, R. B., Hertz, P. E., & Sinervo, B. ( 2003 ). Behavioral drive versus Behavioral inertia in evolution: A null model approach. American Naturalist, 161, 357 – 366.
dc.identifier.citedreferenceHuey, R. B., Kearney, M. R., Krockenberger, A., Holtum, J. A. M., Jess, M., & Williams, S. E. ( 2012 ). Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society B‐Biological Sciences, 367, 1665 – 1679.
dc.identifier.citedreferenceHuey, R. B., & Kingsolver, J. G. ( 1989 ). Evolution of thermal sensitivity of ectotherm performance. Trends in Ecology & Evolution, 4, 131 – 135.
dc.identifier.citedreferenceHuey, R. B., & Slatkin, M. ( 1976 ). Cost and benefits of lizard thermoregulation. Quarterly Review of Biology, 51, 363 – 384.
dc.identifier.citedreferenceHuey, R. B., & Stevenson, R. D. ( 1979 ). Integrating thermal physiology and ecology of ectotherms ‐ discussion of approaches. American Zoologist, 19, 357 – 366.
dc.identifier.citedreferenceIPCC ( 2018 ). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre‐industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Masson‐Delmotte V., Zhai P., Pörtner H.‐O., Roberts D., Skea J., Shukla P. R., Pirani A., Moufouma‐Okia W., Péan C., Pidcock R., Connors S., Matthews J. B. R., Chen Y., Zhou X., Gomis M. I., Lonnoy E., Maycock T., Tignor M., and Waterfield T. (eds.). In press.
dc.identifier.citedreferenceKaspari, M., Clay, N. A., Lucas, J., Yanoviak, S. P., & Kay, A. ( 2015 ). Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Global Change Biology, 21, 1092 – 1102.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.