Show simple item record

Characterization of Transient‐Large‐Amplitude Geomagnetic Perturbation Events

dc.contributor.authorMcCuen, Brett A.
dc.contributor.authorMoldwin, Mark B.
dc.contributor.authorEngebretson, Mark
dc.date.accessioned2021-08-03T18:17:03Z
dc.date.available2022-09-03 14:17:02en
dc.date.available2021-08-03T18:17:03Z
dc.date.issued2021-08
dc.identifier.citationMcCuen, Brett A.; Moldwin, Mark B.; Engebretson, Mark (2021). "Characterization of Transient‐Large‐Amplitude Geomagnetic Perturbation Events." Geophysical Research Letters 48(15): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/168513
dc.description.abstractWe present a characterization of transient‐large‐amplitude (TLA) geomagnetic disturbances that are relevant to geomagnetically induced currents (GIC). TLA events are defined as one or more short‐timescale (<60 s) dB/dt signature with magnitude ≥6 nT/s. The TLA events occurred at six stations of the Magnetometer Array for Cusp and Cleft Studies throughout 2015. A semi‐automated dB/dt search algorithm was developed to identify 38 TLA events in the ground magnetometer data. While TLA dB/dts do not drive GICs directly, we show that second‐timescale dB/dts often occur in relation to or within larger impulsive geomagnetic disturbances. Sudden commencements are not the main driver, rather the events are more likely to occur 30 min after a substorm onset or within a nighttime magnetic perturbation event. The characteristics of TLA events suggest localized ionospheric source currents that may play a key role in generating some extreme geomagnetic impulses that can lead to GICs.Plain Language SummarySevere space weather events like geomagnetic storms and substorms cause geomagnetically induced currents (GIC) in electrically conducting material on Earth that are capable of damaging transformers and causing large‐scale power grid failure. GICs are driven by large changes of the surface geomagnetic field, dB/dt, that have timescales of minutes to tens of minutes. Magnetic field variations with shorter‐timescales (<60 s) are not capable of driving large GICs directly, but we show here that they often occur in relation to or within larger storms, substorms and magnetic pulsation events that are capable of driving substantial GICs. In this study, we characterize these transient‐large‐amplitude (TLA) geomagnetic perturbation events and examine them in the context of other space weather events.Key PointsShort‐timescale (<60 s) geomagnetic perturbation events found at six high‐latitude Magnetometer Array for Cusp and Cleft Studies stations throughout 2015 are characterizedTransient‐large‐amplitude (TLA) magnetic perturbation events often occur in close relation to or within larger geomagnetic disturbancesTLA events suggest small‐scale ionospheric currents but exact source mechanisms are still unclear
dc.publisherWiley Periodicals, Inc.
dc.subject.othersecond‐timescale dB/dt
dc.subject.othersmall‐scale ionospheric currents
dc.subject.othertransient‐large‐amplitude geomagnetic disturbances
dc.subject.otherPi 1–2 ULF waves
dc.subject.otherimpulsive geomagnetic field
dc.subject.othergeomagnetically induced currents
dc.titleCharacterization of Transient‐Large‐Amplitude Geomagnetic Perturbation Events
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168513/1/grl62719_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168513/2/2021GL094076-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168513/3/grl62719.pdf
dc.identifier.doi10.1029/2021GL094076
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceNgwira, C. M., Pulkkinen, A., McKinnell, L. A., & Cilliers, P. J. ( 2008 ). Improved modeling of geomagnetically induced currents in the South African power network. Space Weather, 6 ( 11 ), S11004. https://doi.org/10.1029/2008SW000408
dc.identifier.citedreferenceBoteler, D. H., Pirjola, R. J., & Nevanlinna, H. ( 1998 ). The effects of geomagnetic disturbances on electrical systems at the Earth’s surface. Advances in Space Research, 22 ( 1 ), 17 – 27. https://doi.org/10.1016/S0273-1177(97)01096-X
dc.identifier.citedreferenceCurto, J. J., Araki, T., & Alberca, L. F. ( 2007 ). Evolution of the concept of sudden storm commencements and their operative identification. Earth, Planets and Space, 59 ( 11 ). https://doi.org/10.1186/BF03352059
dc.identifier.citedreferenceDimmock, A. P., Rosenqvist, L., Welling, D. T., Viljanen, A., Honkonen, I., Boynton, R. J., & Yordanova, E. ( 2020 ). On the regional variability of dB/dt and Its Significance to GIC. Space Weather, 18 ( 8 ), 1 – 20. https://doi.org/10.1029/2020SW002497
dc.identifier.citedreferenceEngebretson, M. J., Pilipenko, V. A., Ahmed, L. Y., Posch, J. L., Steinmetz, E. S., Moldwin, M. B., et al. ( 2019 ). Nighttime magnetic perturbation events observed in Arctic Canada: 1. survey and statistical analysis. Journal of Geophysical Research: Space Physics, 124 ( 9 ), 7442 – 7458. https://doi.org/10.1029/2019JA026794
dc.identifier.citedreferenceEngebretson, M. J., Pilipenko, V. A., Steinmetz, E. S., & Moldwin, M. B. ( 2021 ). Nighttime magnetic perturbation events observed in Arctic Canada: 3. Occurrence and amplitude as functions of magnetic latitude, local time, and magnetic disturbance indices.
dc.identifier.citedreferenceEngebretson, M. J., Steinmetz, E. S., Posch, J. L., Pilipenko, V. A., Moldwin, M. B., Connors, M. G., et al. ( 2019 ). nighttime magnetic perturbation events observed in Arctic Canada: 2. multiple‐instrument observations. Journal of Geophysical Research: Space Physics, 124 ( 9 ), 7459 – 7476. https://doi.org/10.1029/2019JA026797
dc.identifier.citedreferenceGjerloev, J. W. ( 2012 ). The SuperMAG data processing technique. Journal of Geophysical Research: Space Physics, 117 ( A9 ), A09213. https://doi.org/10.1029/2012JA017683
dc.identifier.citedreferenceHughes, W., & Engebretson, M. ( 1997 ). MACCS: Magnetometer array for cusp and cleft studies. Satellite‐Ground Based Coordination Sourcebook. ESA SP‐1198(1), 119.
dc.identifier.citedreferenceKappenman, J. G. ( 2005 ). An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent Sun‐Earth connection events of 29‐31 October 2003 and a comparative evaluation with other contemporary storms. Space Weather, 3 ( 8 ), S08C01. https://doi.org/10.1029/2004SW000128
dc.identifier.citedreferenceKappenman, J. G. ( 2006 ). Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events‐An analysis of observational evidence including the great storm of May 1921. Advances in Space Research, 38 ( 2 ), 188 – 199. https://doi.org/10.1016/j.asr.2005.08.055
dc.identifier.citedreferenceKataoka, R., & Ngwira, C. ( 2016 ). Extreme geomagnetically induced currents. Progress in Earth and Planetary Science, 3 ( 1 ). https://doi.org/10.1186/s40645-016-0101-x
dc.identifier.citedreferenceNewell, P. T., & Gjerloev, J. W. ( 2011 ). Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices. Journal of Geophysical Research: Space Physics, 116 ( A12 ), A12232. https://doi.org/10.1029/2011JA016936
dc.identifier.citedreferenceNewell, P. T., & Gjerloev, J. W. ( 2012 ). SuperMAG‐based partial ring current indices. Journal of Geophysical Research: Space Physics, 117 ( A5 ), A05215. https://doi.org/10.1029/2012JA017586
dc.identifier.citedreferenceNguyen, N., Muller, P., & Collin, J. ( 2020 ). The Statistical Analysis of Noise in Triaxial Magnetometers and Calibration Procedure. 2019 16th Workshop on Positioning, Navigation and Communications (WPNC), 1–6. https://doi.org/10.1109/wpnc47567.2019.8970255
dc.identifier.citedreferenceNgwira, C. M., Pulkkinen, A. A., Bernabeu, E., Eichner, J., Viljanen, A., & Crowley, G. ( 2015 ). Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements. Geophysical Research Letters, 42 ( 17 ), 6916 – 6921. https://doi.org/10.1002/2015GL065061
dc.identifier.citedreferenceNgwira, C. M., Sibeck, D., Silveira, M. V., Georgiou, M., Weygand, J. M., Nishimura, Y., & Hampton, D. ( 2018 ). A study of intense local dB/dt variations during two geomagnetic storms. Space Weather, 16 ( 6 ), 676 – 693. https://doi.org/10.1029/2018SW001911
dc.identifier.citedreferenceOpgenoorth, H. J., Schilling, A., & Hamrin, M. ( 2020 ). GIC Drivers‐Characteristics of storm‐time rapid geomagnetic variations. EGU General Assembly 2020, Online, 4‐8 May 2020, EGU2020–5667. https://doi.org/10.5194/egusphere-egu2020-5667
dc.identifier.citedreferenceOyedokun, D., Heyns, M., Cilliers, P., & Gaunt, C. T. ( 2020 ). Frequency components of geomagnetically induced currents for power system modeling. 2020 International SAUPEC/RobMech/PRASA Conference, SAUPEC/RobMech/PRASA 2020. https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041021
dc.identifier.citedreferencePulkkinen, A., Bernabeu, E., Eichner, J., Viljanen, A., & Ngwira, C. ( 2015 ). Regional‐scale high‐latitude extreme geoelectric fields pertaining to geomagnetically induced currents. Earth, Planets and Space, 67 ( 1 ). https://doi.org/10.1186/s40623-015-0255-6
dc.identifier.citedreferencePulkkinen, A., Bernabeu, E., Thomson, A., Viljanen, A., Pirjola, R., Boteler, D., et al. ( 2017 ). Geomagnetically induced currents: Science, engineering, and applications readiness. Space Weather, 15 ( 7 ), 828 – 856. https://doi.org/10.1002/2016SW001501
dc.identifier.citedreferencePulkkinen, A., Viljanen, A., & Pirjola, R. ( 2006 ). Estimation of geomagnetically induced current levels from different input data. Space Weather, 4 ( 8 ), S08005. https://doi.org/10.1029/2006SW000229
dc.identifier.citedreferenceWeygand, J. M., Amm, O., Viljanen, A., Angelopoulos, V., Murr, D., Engebretson, M. J., et al. ( 2011 ). Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays. Journal of Geophysical Research: Space Physics, 116 ( 3 ), 1 – 8. https://doi.org/10.1029/2010JA016177
dc.identifier.citedreferenceZhang, J. J., Wang, C., & Tang, B. B. ( 2012 ). Modeling geomagnetically induced electric field and currents by combining a global MHD model with a local one‐dimensional method. Space Weather, 10 ( 5 ), S05005. https://doi.org/10.1029/2012SW000772
dc.identifier.citedreferenceAmm, O., & Viljanen, A. ( 1999 ). Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary current systems. Earth, Planets and Space, 51 ( 6 ), 431 – 440. https://doi.org/10.1186/BF03352247
dc.identifier.citedreferenceBelakhovsky, V., Pilipenko, V., Engebretson, M., Sakharov, Y., & Selivanov, V. ( 2019 ). Impulsive disturbances of the geomagnetic field as a cause of induced currents of electric power lines. Journal of Space Weather and Space Climate, 9, 1 – 19. https://doi.org/10.1051/swsc/2019015
dc.identifier.citedreferenceBoteler, D. H., & Beek, G. J. V. ( 1999 ). August 4, 1972 revisited: A new look at the geomagnetic disturbance that caused the L4 cable system outage. Geophysical Research Letters, 26 ( 5 ), 577 – 580. https://doi.org/10.1029/1999gl900035
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.