Show simple item record

Quantification of Myocardial Creatine and Triglyceride Content in the Human Heart: Precision and Accuracy of in vivo Proton Magnetic Resonance Spectroscopy

dc.contributor.authorBakermans, Adrianus J.
dc.contributor.authorBoekholdt, S. Matthijs
dc.contributor.authorVries, Dylan K.
dc.contributor.authorReckman, Yolan J.
dc.contributor.authorFarag, Emile S.
dc.contributor.authorHeer, Paul
dc.contributor.authorUthman, Laween
dc.contributor.authorDenis, Simone W.
dc.contributor.authorZuurbier, Coert J.
dc.contributor.authorHoutkooper, Riekelt H.
dc.contributor.authorKoolbergen, David R.
dc.contributor.authorKluin, Jolanda
dc.contributor.authorPlanken, R. Nils
dc.contributor.authorLamb, Hildo J.
dc.contributor.authorWebb, Andrew G.
dc.contributor.authorStrijkers, Gustav J.
dc.contributor.authorBeard, Daniel A.
dc.contributor.authorJeneson, Jeroen A.L.
dc.contributor.authorNederveen, Aart J.
dc.date.accessioned2021-08-03T18:17:49Z
dc.date.available2022-09-03 14:17:48en
dc.date.available2021-08-03T18:17:49Z
dc.date.issued2021-08
dc.identifier.citationBakermans, Adrianus J.; Boekholdt, S. Matthijs; Vries, Dylan K.; Reckman, Yolan J.; Farag, Emile S.; Heer, Paul; Uthman, Laween; Denis, Simone W.; Zuurbier, Coert J.; Houtkooper, Riekelt H.; Koolbergen, David R.; Kluin, Jolanda; Planken, R. Nils; Lamb, Hildo J.; Webb, Andrew G.; Strijkers, Gustav J.; Beard, Daniel A.; Jeneson, Jeroen A.L.; Nederveen, Aart J. (2021). "Quantification of Myocardial Creatine and Triglyceride Content in the Human Heart: Precision and Accuracy of in vivo Proton Magnetic Resonance Spectroscopy." Journal of Magnetic Resonance Imaging 54(2): 411-420.
dc.identifier.issn1053-1807
dc.identifier.issn1522-2586
dc.identifier.urihttps://hdl.handle.net/2027.42/168531
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othervalidation
dc.subject.otherbiopsy
dc.subject.othermagnetic resonance spectroscopy
dc.subject.othermyectomy
dc.subject.othermyocardial metabolism
dc.subject.othertriglycerides
dc.titleQuantification of Myocardial Creatine and Triglyceride Content in the Human Heart: Precision and Accuracy of in vivo Proton Magnetic Resonance Spectroscopy
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168531/1/jmri27531.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168531/2/jmri27531-sup-0001-Supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168531/3/jmri27531_am.pdf
dc.identifier.doi10.1002/jmri.27531
dc.identifier.sourceJournal of Magnetic Resonance Imaging
dc.identifier.citedreferenceGastl M, Peereboom SM, Fuetterer M, et al. Retrospective phase‐based gating for cardiac proton spectroscopy with fixed scan time. J Magn Reson Imaging 2019; 50: 1973 ‐ 1981.
dc.identifier.citedreferenceBottomley PA, Lee YH, Weiss RG. Total creatine in muscle: Imaging and quantification with proton MR spectroscopy. Radiology 1997; 204: 403 ‐ 410.
dc.identifier.citedreferenceden Hollander JA, Evanochko WT, Pohost GM. Observation of cardiac lipids in humans by localized 1 H magnetic resonance spectroscopic imaging. Magn Reson Med 1994; 32: 175 ‐ 180.
dc.identifier.citedreferenceFaller KME, Lygate CA, Neubauer S, Schneider JE. 1 H‐MR spectroscopy for analysis of cardiac lipid and creatine metabolism. Heart Fail Rev 2013; 18: 657 ‐ 668.
dc.identifier.citedreferenceBottomley PA, Weiss RG. Non‐invasive magnetic‐resonance detection of creatine depletion in non‐viable infarcted myocardium. Lancet 1998; 351: 714 ‐ 718.
dc.identifier.citedreferenceNakae I, Mitsunami K, Omura T, et al. Proton magnetic resonance spectroscopy can detect creatine depletion associated with the progression of heart failure in cardiomyopathy. J Am Coll Cardiol 2003; 42: 1587 ‐ 1593.
dc.identifier.citedreferenceReingold JS, McGavock JM, Kaka S, Tillery T, Victor RG, Szczepaniak LS. Determination of triglyceride in the human myocardium by magnetic resonance spectroscopy: Reproducibility and sensitivity of the method. Am J Physiol Endocrinol Metab 2005; 289: E935 ‐ E939.
dc.identifier.citedreferencevan der Meer RW, Hammer S, Smit JWA, et al. Short‐term caloric restriction induces accumulation of myocardial triglycerides and decreases left ventricular diastolic function in healthy subjects. Diabetes 2007; 56: 2849 ‐ 2853.
dc.identifier.citedreferenceAengevaeren VL, Froeling M, van den Berg‐Faay S, et al. Marathon running transiently depletes the myocardial lipid pool. Physiol Rep 2020; 8: e14543.
dc.identifier.citedreferencePaiman EHM, van Eyk HJ, van Aalst MMA, et al. Effect of liraglutide on cardiovascular function and myocardial tissue characteristics in type 2 diabetes patients of South Asian descent living in The Netherlands: A double‐blind, randomized, placebo‐controlled trial. J Magn Reson Imaging 2020; 51: 1679 ‐ 1688.
dc.identifier.citedreferenceMahmod M, Bull S, Suttie JJ, et al. Myocardial steatosis and left ventricular contractile dysfunction in patients with severe aortic stenosis. Circ Cardiovasc Imaging 2013; 6: 808 ‐ 816.
dc.identifier.citedreferencede Heer P, Bizino MB, Lamb HJ, Webb AG. Parameter optimization for reproducible cardiac 1 H‐MR spectroscopy at 3 Tesla. J Magn Reson Imaging 2016; 44: 1151 ‐ 1158.
dc.identifier.citedreferenceSzczepaniak LS, Dobbins RL, Metzger GJ, et al. Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med 2003; 49: 417 ‐ 423.
dc.identifier.citedreferenceO’Connor RD, Xu J, Ewald GA, et al. Intramyocardial triglyceride quantification by magnetic resonance spectroscopy: in vivo and ex vivo correlation in human subjects. Magn Reson Med 2011; 65: 1234 ‐ 1238.
dc.identifier.citedreferenceFelblinger J, Jung B, Slotboom J, Boesch C, Kreis R. Methods and reproducibility of cardiac/respiratory double‐triggered 1 H‐MR spectroscopy of the human heart. Magn Reson Med 1999; 42: 903 ‐ 910.
dc.identifier.citedreferenceKankaanpää M, Lehto H‐R, Pärkkä JP, et al. Myocardial triglyceride content and epicardial fat mass in human obesity: Relationship to left ventricular function and serum free fatty acid levels. J Clin Endocrinol Metab 2006; 91: 4689 ‐ 4695.
dc.identifier.citedreferencevan der Meer RW, Doornbos J, Kozerke S, et al. Metabolic imaging of myocardial triglyceride content: reproducibility of 1 H MR spectroscopy with respiratory navigator gating in volunteers. Radiology 2007; 245: 251 ‐ 257.
dc.identifier.citedreferenceO’Connor RD, Bashir A, Cade WT, Yarasheski KE, Gropler RJ. 1 H‐magnetic resonance spectroscopy for quantifying myocardial lipid content in humans with the cardiometabolic syndrome. J Clin Hypertens 2009; 11: 528 ‐ 532.
dc.identifier.citedreferenceRial B, Robson MD, Neubauer S, Schneider JE. Rapid quantification of myocardial lipid content in humans using single breath‐hold 1 H MRS at 3 Tesla. Magn Reson Med 2011; 66: 619 ‐ 624.
dc.identifier.citedreferenceWeiss K, Martini N, Boesiger P, Kozerke S. Metabolic MR imaging of regional triglyceride and creatine content in the human heart. Magn Reson Med 2012; 68: 1696 ‐ 1704.
dc.identifier.citedreferenceWeiss K, Summermatter S, Stoeck CT, Kozerke S. Compensation of signal loss due to cardiac motion in point‐resolved spectroscopy of the heart. Magn Reson Med 2014; 72: 1201 ‐ 1207.
dc.identifier.citedreferenceIth M, Stettler C, Xu J, Boesch C, Kreis R. Cardiac lipid levels show diurnal changes and long‐term variations in healthy human subjects. NMR Biomed 2014; 27: 1285 ‐ 1292.
dc.identifier.citedreferenceGastl M, Peereboom SM, Fuetterer M, et al. Cardiac‐ versus diaphragm‐based respiratory navigation for proton spectroscopy of the heart. MAGMA 2019; 32: 259 ‐ 268.
dc.identifier.citedreferenceMurdoch JB, Lampman DA. Beyond WET and DRY: optimized pulses for water suppression. In: Proceedings of the 12th Annual Meeting of SMRM, New York, 1993 (abstract 1191).
dc.identifier.citedreferenceHowald H, Boesch C, Kreis R, et al. Content of intramyocellular lipids derived by electron microscopy, biochemical assays, and 1 H‐MR spectroscopy. J Appl Physiol 2002; 92: 2264 ‐ 2272.
dc.identifier.citedreferenceMorrow AG, Reitz BA, Epstein SE, et al. Operative treatment in hypertrophic subaortic stenosis. Techniques, and the results of pre and postoperative assessments in 83 patients. Circulation 1975; 52: 88 ‐ 102.
dc.identifier.citedreferenceVanhamme L, van den Boogaart A, van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 1997; 129: 35 ‐ 43.
dc.identifier.citedreferenceFiolet JWT, Baartscheer A, Schumacher CA, Coronel R, ter Welle HF. The change of the free energy of ATP hydrolysis during global ischemia and anoxia in the rat heart. Its possible role in the regulation of transsarcolemmal sodium and potassium gradients. J Mol Cell Cardiol 1984; 16: 1023 ‐ 1036.
dc.identifier.citedreferenceBakermans AJ, Geraedts TR, van Weeghel M, et al. Fasting‐induced myocardial lipid accumulation in long‐chain acyl‐CoA dehydrogenase knockout mice is accompanied by impaired left ventricular function. Circ Cardiovasc Imaging 2011; 4: 558 ‐ 565.
dc.identifier.citedreferenceBland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinicial measurement. Lancet 1986; 327: 307 ‐ 310.
dc.identifier.citedreferenceLandaw EM, DiStefano JJ 3rd. Multiexponential, multicompartmental, and noncompartmental modeling. II. Data analysis and statistical considerations. Am J Physiol 1984; 246: R665 ‐ R677.
dc.identifier.citedreferenceBakermans AJ, Abdurrachim D, Geraedts TR, Houten SM, Nicolay K, Prompers JJ. In vivo proton T 1 relaxation times of mouse myocardial metabolites at 9.4 T. Magn Reson Med 2015; 73: 2069 ‐ 2074.
dc.identifier.citedreferenceJuchem C, Cudalbu C, de Graaf RA, et al. B 0 shimming for in vivo magnetic resonance spectroscopy: Experts’ consensus recommendations. NMR Biomed 2020; e4350. https://doi.org/10.1002/nbm.4350
dc.identifier.citedreferenceKreis R. The trouble with quality filtering based on relative Cramér‐Rao lower bounds. Magn Reson Med 2016; 75: 15 ‐ 18.
dc.identifier.citedreferenceCowan DW. The creatine content of the myocardium of normal and abnormal human hearts. Am Heart J 1934; 9: 378 ‐ 385.
dc.identifier.citedreferenceBakermans AJ, Bazil JN, Nederveen AJ, et al. Human cardiac 31 P‐MR spectroscopy at 3 Tesla cannot detect failing myocardial energy homeostasis during exercise. Front Physiol 2017; 8: 939.
dc.identifier.citedreferenceRijzewijk LJ, van der Meer RW, Smit JWA, et al. Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol 2008; 52: 1793 ‐ 1799.
dc.identifier.citedreferenceKrššák M, Mlynárik V, Meyerspeer M, Moser E, Roden M. 1 H NMR relaxation times of skeletal muscle metabolites at 3 T. MAGMA 2004; 16: 155 ‐ 159.
dc.identifier.citedreferenceMadden MC, van Winkle WB, Kirk K, Pike MM, Pohost GM, Wolkowicz PE. 1 H‐NMR spectroscopy can accurately quantitate the lipolysis and oxidation of cardiac triacylglycerols. Biochim Biophys Acta 1993; 1169: 176 ‐ 182.
dc.identifier.citedreferenceKrššák M, Hofer H, Wrba F, et al. Non‐invasive assessment of hepatic fat accumulation in chronic hepatitis C by 1 H magnetic resonance spectroscopy. Eur J Radiol 2010; 74: e60 ‐ e66.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.