Show simple item record

Vaccine adverse event enrichment tests

dc.contributor.authorLi, Shuoran
dc.contributor.authorZhao, Lili
dc.date.accessioned2021-08-03T18:17:51Z
dc.date.available2022-09-03 14:17:50en
dc.date.available2021-08-03T18:17:51Z
dc.date.issued2021-08-30
dc.identifier.citationLi, Shuoran; Zhao, Lili (2021). "Vaccine adverse event enrichment tests." Statistics in Medicine 40(19): 4269-4278.
dc.identifier.issn0277-6715
dc.identifier.issn1097-0258
dc.identifier.urihttps://hdl.handle.net/2027.42/168532
dc.publisherWiley Periodicals, Inc.
dc.subject.othervaccine adverse event
dc.subject.otherVAERS
dc.subject.othervaccine safety
dc.subject.otherMedDRA
dc.subject.otherenrichment analysis
dc.titleVaccine adverse event enrichment tests
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168532/1/sim9027.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168532/2/sim9027_am.pdf
dc.identifier.doi10.1002/sim.9027
dc.identifier.sourceStatistics in Medicine
dc.identifier.citedreferenceSarntivijai S, Xiang Z, Shedden KA, et al. Ontology‐based combinatorial comparative analysis of adverse events associated with killed and live influenza vaccines. PLoS One. 2012; 7: e49941.
dc.identifier.citedreferenceMarcos E, Zhao B, He Y. The Ontology of Vaccine Adverse Events (OVAE) and its usage in representing and analyzing adverse events associated with US‐licensed human vaccines. J Biomed Semant. 2013; 4: 40.
dc.identifier.citedreferenceGuo A, Racz R, Hur J, et al. Ontology‐based collection, representation and analysis of drug‐associated neuropathy adverse events. J Biomed Semant. 2016; 7: 29.
dc.identifier.citedreferenceXie J, Zhao L, Zhou S, He Y. Statistical and ontological analysis of adverse events associated with monovalent and combination vaccines against hepatitis A and B diseases. Sci Rep. 2016; 6: 3418.
dc.identifier.citedreferenceLambkin‐Williams R, Gelder C, Broughton R, et al. An intranasal proteosome‐adjuvanted trivalent influenza vaccine is safe immunogenic and efficacious in the human viral influenza challenge model serum IgG and mucosal IgA are important correlates of protection against illness associated with infection. PLoS One. 2016; 11: e0163089.
dc.identifier.citedreferenceHaber P, Moro PL, Cano M, Lewis P, Stewart B, Shimabukuro TT. Post‐licensure surveillance of quadrivalent live attenuated influenza vaccine United States,vaccine adverse event reporting system(VAERS), July 2013–June 2014. Vaccine. 2015; 33: 1987 ‐ 1992.
dc.identifier.citedreferenceBaxtera R, Eatona A, Hansena J, Aukesa L, Caspardb H, Ambroseba CS. Safety of quadrivalent live attenuated influenza vaccinein subjects aged 2–49 years. Vaccine. 2017; 35: 1254 ‐ 1258.
dc.identifier.citedreferenceThissen D, Steinberg L, Kuang D. Quick and easy implementation of the Benjamini‐Hochberg procedure for controlling the false positive rate in multiple comparisons. J Educ Behav Stat. 2002; 27 ( 1 ): 77 ‐ 83.
dc.identifier.citedreferenceHuang L, Zalkikar J, Tiwari RC. A likelihood ratio test based method for signal detection with application to FDA’s drug safety data. J Am Stat Assoc. 2011; 106 ( 496 ): 1230 ‐ 1241.
dc.identifier.citedreferenceIuseppe A, Pastrello C, Jurisica I. Comprehensive pathway enrichment analysis workflows: COVID‐19 case study. Brief Bioinform. 2020.
dc.identifier.citedreferenceMootha VK, Lindgren CM, Eriksson KF, et al. PGC‐1 α ‐responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003; 34 ( 3 ): 267 ‐ 273.
dc.identifier.citedreferenceSubramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge‐based approach for interpreting genome‐wide expression profiles. Proc Natl Acad Sci. 2005; 102 ( 43 ): 15545 ‐ 15550.
dc.identifier.citedreferenceTarca AL, Bhatti G, Romero R. A comparison of gene set analysis methods in terms of sensitivity, prioritization and specificity. PLoS One. 2013; 8 ( 11 ): e79217.
dc.identifier.citedreferenceMaleki F, Ovens K, Hogan DJ, Kusalik AJ. Gene set analysis: challenges, opportunities, and future research. Front Genet. 2020; 11: 654.
dc.identifier.citedreferenceZeeberg BR, Feng W, Wang G, et al. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 2003; 4 ( 4 ): R28.
dc.identifier.citedreferenceVarricchio F, Iskander J, DeStefano F, et al. Understanding vaccine safety information from the vaccine adverse event reporting system. Pediatr Infect Dis J. 2004; 23: 287 ‐ 294.
dc.identifier.citedreferenceShimabukuro TT, Nguyen M, Martin D, DeStefano F. Safety monitoring in the vaccine adverse event reporting system (VAERS). Vaccine. 2015; 33 ( 36 ): 4398 ‐ 4405.
dc.identifier.citedreferenceZhao L, Lee S, Li R, Ong E, He Y, Freed G. Improvement in the analysis of vaccine adverse event reporting system database. Stat Biopharm Res. 2020; 12 ( 3 ): 303 ‐ 310.
dc.identifier.citedreferenceDuMouchel W. Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system. Am Stat. 1999; 53: 177 ‐ 190.
dc.identifier.citedreferenceEvans SJ, Waller PC, Davis S. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiol Drug Saf. 2001; 10: 483 ‐ 486.
dc.identifier.citedreferencevan Puijenbroek EP, Bate A, Leufkens HG, Lindquist M, Ro R, Egberts AC. A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiol Drug Saf. 2002; 11: 3 ‐ 10.
dc.identifier.citedreferenceBate A, Lindquist M, Edwards IR, et al. A Bayesian neural network method for adverse drug reaction signal generation. Eur J Clin Pharmacol. 1998; 54: 315 ‐ 321.
dc.identifier.citedreferenceLansner ROA, Bate AM, IRE L, et al. Bayesian neural networks with confidence estimations applied to data mining. Comput Stat Data Anal. 2000; 34: 473 ‐ 493.
dc.identifier.citedreferenceNóren GN, Bate A, Orre R, Edwards IR. Extending the methods used to screen the WHO drug safety database towards analysis of complex associations and improved accuracy for rare events. BCPNN. 2006; 25: 3740 ‐ 3757.
dc.identifier.citedreferenceDuMouchel W, Pregibon D. Empirical Bayes screening for multi‐item associations. Paper presented at: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2001:67‐76; San Francisco, CA.
dc.identifier.citedreferenceSzarfman A, Machado SG, O’Neill RT. Use of screening algorithms and computer systems to efficiently signal higher‐than‐expected combinations of drugs and events in the US FDA’s spontaneous reports database. PLoS One. 2002; 25: 381 ‐ 392.
dc.identifier.citedreferenceKulldorff M, Davis RL, Kolczak M, Lewis E, Lieu T, Platt R. A maximized sequential probability ratio test for drug and vaccine safety surveillance. Seq Anal. 2011; 30: 58 ‐ 78.
dc.identifier.citedreferenceDavis RL, Kolczak M, Lewis E, et al. Active surveillance of vaccine safety: a system to detect early signs of adverse events. Epidemiology. 2005; 16: 336 ‐ 341.
dc.identifier.citedreferenceLi L, Kulldorff M. A conditional maximized sequential probability ratio test for pharmacovigilance. Stat Med. 2009; 29: 284 ‐ 295.
dc.identifier.citedreferenceLi R, Stewart B, Weintraub E,, McNeil MM. Continuous sequential boundaries for vaccine safety surveillance. Stat Med 2014; 33: 3387 – 3397.
dc.identifier.citedreferenceKulldorff M, Dashevsky I, Avery TR, et al. Drug safety data mining with a tree‐based scan statistic. Pharmacoepidemiol Drug Saf. 2013; 22: 517 ‐ 523.
dc.identifier.citedreferenceMozzicato P. MedDRA: an overview of the medical dictionary for regulatory activities. Pharm Med. 2009; 23: 65 ‐ 75.
dc.identifier.citedreferenceZhang Y, Tao C, He Y, Kanjamala P, Liu H. Network‐based analysis of vaccine‐related associations reveals consistent knowledge with the vaccine ontology. J Biomed Semant. 2013; 4: 33.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.