Show simple item record

Plasticity of the paternal brain: Effects of fatherhood on neural structure and function

dc.contributor.authorHorrell, Nathan D.
dc.contributor.authorAcosta, Melina C.
dc.contributor.authorSaltzman, Wendy
dc.date.accessioned2021-09-08T14:33:44Z
dc.date.available2022-08-08 10:33:43en
dc.date.available2021-09-08T14:33:44Z
dc.date.issued2021-07
dc.identifier.citationHorrell, Nathan D.; Acosta, Melina C.; Saltzman, Wendy (2021). "Plasticity of the paternal brain: Effects of fatherhood on neural structure and function." Developmental Psychobiology 63(5): 1499-1520.
dc.identifier.issn0012-1630
dc.identifier.issn1098-2302
dc.identifier.urihttps://hdl.handle.net/2027.42/169236
dc.description.abstractCare of infants is a hallmark of mammals. Whereas parental care by mothers is obligatory for offspring survival in virtually all mammals, fathers provide care for their offspring in only an estimated 5%–10% of genera. In these species, the transition into fatherhood is often accompanied by pronounced changes in males’ behavioral responses to young, including a reduction in aggression toward infants and an increase in nurturant behavior. The onset of fatherhood can also be associated with sensory, affective, and cognitive changes. The neuroplasticity that mediates these changes is not well understood; however, fatherhood can alter the production and survival of new neurons; function and structure of existing neurons; morphology of brain structures; and neuroendocrine signaling systems. Although these changes are thought to promote infant care by fathers, very little evidence exists to support this hypothesis; in most cases, neither the mechanisms underlying neuroplasticity in fathers nor its functional significance is known. In this paper, we review the available data on the neuroplasticity that occurs during the transition into fatherhood. We highlight gaps in our knowledge and future directions that will provide key insights into how and why fatherhood alters the structure and functioning of the male brain.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfatherhood
dc.subject.otherneuroplasticity
dc.subject.otherpaternal behavior
dc.subject.otherneurogenesis
dc.subject.otherneuroendocrine
dc.subject.otherinfant care
dc.titlePlasticity of the paternal brain: Effects of fatherhood on neural structure and function
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169236/1/dev22097_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169236/2/dev22097.pdf
dc.identifier.doi10.1002/dev.22097
dc.identifier.sourceDevelopmental Psychobiology
dc.identifier.citedreferenceSaltzman, W., & Ziegler, T. E. ( 2014 ). Functional significance of hormonal changes in mammalian fathers. Journal of Neuroendocrinology, 26, 685 – 696. https://doi.org/10.1111/jne.12176
dc.identifier.citedreferenceTsuneoka, Y. ( 2019 ). Molecular neuroanatomy of the mouse medial preoptic area with reference to parental behavior. Anatomical Science International, 94, 39 – 52. https://doi.org/10.1007/s12565‐018‐0468‐4
dc.identifier.citedreferenceTsuneoka, Y., Tokita, K., Yoshihara, C., Amano, T., Esposito, G., Huang, A. J., Yu, L. M., Odaka, Y., Shinozuka, K., McHugh, T. J., & Kuroda, K. O. ( 2015 ). Distinct preoptic‐BST nuclei dissociate paternal and infanticidal behavior in mice. The European Molecular Biology Organization Journal, 34, 2652 – 2670.
dc.identifier.citedreferenceUnda, N. M., Portillo, W., Corona, R., & Paredes, R. G. ( 2016 ). Sexual stimulation increases the survival of new cells in the accessory olfactory bulb of the male rat. Frontiers in Neuroscience, 10, 65. https://doi.org/10.3389/fnins.2016.00065
dc.identifier.citedreferenceUriarte, N., Ferreño, M., Méndez, D., & Nogueira, J. ( 2020 ). Reorganization of perineuronal nets in the medial preoptic area during the reproductive cycle in female rats. Scientific Reports, 10, 5479. https://doi.org/10.1038/s41598‐020‐62163‐z
dc.identifier.citedreferenceValtcheva, S., & Froemke, R. C. ( 2019 ). Neuromodulation of maternal circuits by oxytocin. Cell and Tissue Research, 375, 57 – 68. https://doi.org/10.1007/s00441‐018‐2883‐1
dc.identifier.citedreferencevan ‘t Veer, A. E., Thijssen, S., Witteman, J., van IJzendoorn, M. H., & Bakermans‐Kranenburg, M. J. ( 2019 ). Exploring the neural basis for paternal protection: An investigation of the neural response to infants in danger. Social Cognitive and Affective Neuroscience, 14, 447 – 457. https://doi.org/10.1093/scan/nsz018
dc.identifier.citedreferenceVan Praag, H., Fleshner, M., Schwartz, M. W., & Mattson, M. P. ( 2014 ). Exercise, energy intake, glucose homeostasis, and the brain. Journal of Neuroscience, 34, 15139 – 15149. https://doi.org/10.1523/JNEUROSCI.2814‐14.2014
dc.identifier.citedreferenceVertes, R. P. ( 1991 ). A PHA‐L analysis of ascending projections of the dorsal raphe nucleus in the rat. Journal of Comparative Neurology, 313, 643 – 668. https://doi.org/10.1002/cne.903130409
dc.identifier.citedreferenceVinograd, A., Fuchs‐Shlomai, Y., Stern, M., Mukherjee, D., Gao, Y., Citri, A., Davison, I., & Mizrahi, A. ( 2017 ). Functional plasticity of odor representations during motherhood. Cell Reports, 21, 351 – 365. https://doi.org/10.1016/j.celrep.2017.09.038
dc.identifier.citedreferenceWang, B., Li, L., He, Z., Wang, L., Zhang, S., Qiao, H., Jia, R., & Tai, F. ( 2018 ). Effects of reproductive experience on paternal behavior, levels of testosterone, prolactin in serum and dendritic spines in medial prefrontal cortex of mandarin voles. Integrative Zoology, 13, 711 – 722.
dc.identifier.citedreferenceWang, B., Li, Y., Wu, R., Zhang, S., & Tai, F. ( 2015 ). Behavioral responses to pups in males with different reproductive experiences are associated with changes in central OT, TH and OTR, D1R, D2R mRNA expression in mandarin voles. Hormones and Behavior, 67, 73 – 82. https://doi.org/10.1016/j.yhbeh.2014.11.013
dc.identifier.citedreferenceWang, B., Wang, L., Wang, K., & Tai, F. ( 2018 ). The effects of fathering experience on paternal behaviors and levels of central expression of oxytocin and dopamine‐2 type receptors in mandarin voles. Physiology & Behavior, 193, 35 – 42. https://doi.org/10.1016/j.physbeh.2018.02.043
dc.identifier.citedreferenceWang, Z. X., Liu, Y., Young, L. J., & Insel, T. R. ( 2000 ). Hypothalamic vasopressin gene expression increases in both males and females postpartum in a biparental rodent. Journal of Neuroendocrinology, 12, 111 – 120. https://doi.org/10.1046/j.1365‐2826.2000.00435.x
dc.identifier.citedreferenceWang, Z., Smith, W., Major, D. E., & De Vries, G. J. ( 1994 ). Sex and species differences in the effects of cohabitation on vasopressin messenger RNA expression in the bed nucleus of the stria terminalis in prairie voles ( Microtus ochrogaster ) and meadow voles ( Microtus pennsylvanicus ). Brain Research, 640, 212 – 218. https://doi.org/10.1016/0006‐8993(94)91784‐1
dc.identifier.citedreferenceWaselus, M., Valentino, R. J., & Van Bockstaele, E. J. ( 2011 ). Collateralized dorsal raphe nucleus projections: A mechanism for the integration of diverse functions during stress. Journal of Chemical Neuroanatomy, 41, 266 – 280. https://doi.org/10.1016/j.jchemneu.2011.05.011
dc.identifier.citedreferenceWittfoth‐Schardt, D., Gründing, J., Wittfoth, M., Lanfermann, H., Heinrichs, M., Domes, G., Buchheim, A., Gündel, H., & Waller, C. ( 2012 ). Oxytocin modulates neural reactivity to children’s faces as a function of social salience. Neuropsychopharmacology, 37, 1799 – 1807. https://doi.org/10.1038/npp.2012.47
dc.identifier.citedreferenceWoller, M. J., Sosa, M. E., Chiang, Y., Prudom, S. L., Keelty, P., Moore, J. E., & Ziegler, T. E. ( 2012 ). Differential hypothalamic secretion of neurocrines in male common marmosets: Parental experience effects? Journal of Neuroendocrinology, 24, 413 – 421. https://doi.org/10.1111/j.1365‐2826.2011.02252.x
dc.identifier.citedreferenceWu, Z., Autry, A. E., Bergan, J. F., Watabe‐Uchida, M., & Dulac, C. G. ( 2014 ). Galanin neurons in the medial preoptic area govern parental behaviour. Nature, 509, 325 – 330. https://doi.org/10.1038/nature13307
dc.identifier.citedreferenceYuan, W., He, Z., Hou, W., Wang, L., Li, L., Zhang, J., Yang, Y., Jia, R., Qiao, H., & Tai, F. ( 2019 ). Role of oxytocin in the medial preoptic area (MPOA) in the modulation of paternal behavior in mandarin voles. Hormones and Behavior, 110, 46 – 55. https://doi.org/10.1016/j.yhbeh.2019.02.014
dc.identifier.citedreferenceZhang, J.‐Q., Cai, W.‐Q., Zhou, D.‐S., & Su, B.‐Y. ( 2002 ). Distribution and differences of estrogen receptor beta immunoreactivity in the brain of adult male and female rats. Brain Research, 935, 73 – 80. https://doi.org/10.1016/S0006‐8993(02)02460‐5
dc.identifier.citedreferenceZhao, M., Garland, Jr., T., Chappell, M. A., Andrew, J. R., Harris, B. N., & Saltzman, W. ( 2018 ). Effects of a physical and energetic challenge on male California mice ( Peromyscus californicus ): Modulation by reproductive condition. Journal of Experimental Biology, 221. https://doi.org/10.1242/jeb.168559
dc.identifier.citedreferenceZhao, M., Garland, Jr., T., Chappell, M. A., Andrew, J. R., & Saltzman, W. ( 2017 ). Metabolic and affective consequences of fatherhood in male California mice. Physiology & Behavior, 177, 57 – 67. https://doi.org/10.1016/j.physbeh.2017.04.010
dc.identifier.citedreferenceZiegler, T. E., Prudom, S. L., Schultz‐Darken, N. J., Kurian, A. V., & Snowdon, C. T. ( 2006 ). Pregnancy weight gain: Marmoset and tamarin dads show it too. Biology Letters, 2, 181 – 183. https://doi.org/10.1098/rsbl.2005.0426
dc.identifier.citedreferenceZiegler, T. E., & Snowdon, C. T. ( 2000 ). Preparental hormone levels and parenting experience in male cotton‐top tamarins, Saguinus oedipus. Hormones and Behavior, 38, 159 – 167. https://doi.org/10.1006/hbeh.2000.1617
dc.identifier.citedreferenceAbraham, E., Hendler, T., Shapira‐Lichter, I., Kanat‐Maymon, Y., Zagoory‐Sharon, O., & Feldman, R. ( 2014 ). Father’s brain is sensitive to childcare experiences. Proceedings of the National Academy of Sciences of the United States of America, 111, 9792 – 9797. https://doi.org/10.1073/pnas.1402569111
dc.identifier.citedreferenceAnagnostou, I., & Morales, T. ( 2019 ). Fatherhood diminishes the hippocampal damaging action of excitotoxic lesioning in mice. Journal of Neuroendocrinology, 31, e12783. https://doi.org/10.1111/jne.12783
dc.identifier.citedreferenceAndrew, J. R., Garland, Jr., T., Chappell, M. A., Zhao, M., Horrell, N. D., & Saltzman, W. ( 2020 ). Long‐term effects of fatherhood on morphology, energetics, and exercise performance in California mice ( Peromyscus californicus ). Physiological and Biochemical Zoology, 93, 75 – 86.
dc.identifier.citedreferenceAndrew, J. R., Garland, Jr., T., Chappell, M. A., Zhao, M., & Saltzman, W. ( 2019 ). Effects of short‐ and long‐term cold acclimation on morphology, physiology, and exercise performance of California mice ( Peromyscus californicus ): Potential modulation by fatherhood. Journal of Comparative Physiology B, 189, 471 – 487. https://doi.org/10.1007/s00360‐019‐01219‐7
dc.identifier.citedreferenceAndrew, J. R., Saltzman, W., Chappell, M. A., & Garland, Jr., T. ( 2016 ). Consequences of fatherhood in the biparental California mouse ( Peromyscus californicus ): Locomotor performance, metabolic rate, and organ masses. Physiological and Biochemical Zoology, 89, 130 – 140.
dc.identifier.citedreferenceAntzoulatos, E., Magorien, J. E., & Wood, R. I. ( 2008 ). Cell proliferation and survival in the mating circuit of adult male hamsters: Effects of testosterone and sexual behavior. Hormones and Behavior, 54, 735 – 740. https://doi.org/10.1016/j.yhbeh.2008.08.001
dc.identifier.citedreferenceBales, K. L., & Saltzman, W. ( 2016 ). Fathering in rodents: Neurobiological substrates and consequences for offspring. Hormones and Behavior, 77, 249 – 259. https://doi.org/10.1016/j.yhbeh.2015.05.021
dc.identifier.citedreferenceBamshad, M., Novak, M. A., & De Vries, G. J. ( 1993 ). Sex and species differences in the vasopressin innervation of sexually naive and parental prairie voles, Microtus ochrogaster and meadow voles, Microtus pennsylvanicus. Journal of Neuroendocrinology, 5, 247 – 255. https://doi.org/10.1111/j.1365‐2826.1993.tb00480.x
dc.identifier.citedreferenceBamshad, M., Novak, M. A., & de Vries, G. J. ( 1994 ). Cohabitation alters vasopressin innervation and paternal behavior in prairie voles ( Microtus ochrogaster ). Physiology & Behavior, 56, 751 – 758. https://doi.org/10.1016/0031‐9384(94)90238‐0
dc.identifier.citedreferenceBardi, M., Franssen, C. L., Hampton, J. E., Shea, E. A., Fanean, A. P., & Lambert, K. G. ( 2011 ). Paternal experience and stress responses in California mice ( Peromyscus californicus ). Comparative Medicine, 61, 20 – 30.
dc.identifier.citedreferenceBester‐Meredith, J. K., Young, L. J., & Marler, C. A. ( 1999 ). Species differences in paternal behavior and aggression in Peromyscus and their associations with vasopressin immunoreactivity and receptors. Hormones and Behavior, 36, 25 – 38.
dc.identifier.citedreferenceBraun, K., & Champagne, F. A. ( 2014 ). Paternal influences on offspring development: Behavioural and epigenetic pathways. Journal of Neuroendocrinology, 26, 697 – 706. https://doi.org/10.1111/jne.12174
dc.identifier.citedreferenceBrown, R. R., Murdoch, T., Murphy, P. R., & Moger, W. H. ( 1995 ). Hormonal responses of male gerbils to stimuli from their mate and pups. Hormones and Behavior, 29, 474 – 491. https://doi.org/10.1006/hbeh.1995.1275
dc.identifier.citedreferenceCampbell, J. C., Laugero, K. D., Van Westerhuyzen, J. A., Hostetler, C. M., Cohen, J. D., & Bales, K. L. ( 2009 ). Costs of pair‐bonding and paternal care in male prairie voles ( Microtus ochrogaster ). Physiology & Behavior, 98, 367 – 373. https://doi.org/10.1016/j.physbeh.2009.06.014
dc.identifier.citedreferenceCarter, C. S. ( 2017 ). The oxytocin‐vasopressin pathway in the context of love and fear. Frontiers in Endocrinology, 8. https://doi.org/10.3389/fendo.2017.00356
dc.identifier.citedreferenceCastro, A. E., Young, L. J., Camacho, F. J., Paredes, R. G., Diaz, N. F., & Portillo, W. ( 2020 ). Effects of mating and social exposure on cell proliferation in the adult male prairie vole ( Microtus ochrogaster ). Neural Plasticity, 8869669. https://doi.org/10.1155/2020/8869669
dc.identifier.citedreferenceCelio, M. R., Spreafico, R., De Biasi, S., & Vitellaro‐Zuccarello, L. ( 1998 ). Perineuronal nets: Past and present. Trends in Neurosciences, 21, 510 – 515. https://doi.org/10.1016/S0166‐2236(98)01298‐3
dc.identifier.citedreferenceCharnay, Y., & Léger, L. ( 2010 ). Brain serotonergic circuitries. Dialogues in Clinical Neuroscience, 12, 471 – 487.
dc.identifier.citedreferenceChauke, M., de Jong, T. R., Garland, Jr., T., & Saltzman, W. ( 2012 ). Paternal responsiveness is associated with, but not mediated by reduced neophobia in male California mice ( Peromyscus californicus ). Physiology & Behavior, 107, 65 – 75. https://doi.org/10.1016/j.physbeh.2012.05.012
dc.identifier.citedreferenceChauke, M., Malisch, J. L., Robinson, C., de Jong, T. R., & Saltzman, W. ( 2011 ). Effects of reproductive status on behavioral and endocrine responses to acute stress in a biparental rodent, the California mouse ( Peromyscus californicus ). Hormones and Behavior, 60, 128 – 138. https://doi.org/10.1016/j.yhbeh.2011.04.002
dc.identifier.citedreferenceCholeris, E., Ogawa, S., Kavaliers, M., Gustafsson, J. A., Korach, K. S., Muglia, L. J., & Pfaff, D. W. ( 2006 ). Involvement of estrogen receptor alpha, beta and oxytocin in social discrimination: A detailed behavioral analysis with knockout female mice. Genes, Brain, and Behavior, 5, 528 – 539.
dc.identifier.citedreferenceClark, M. M., & Galef, Jr., B. G. ( 1999 ). A testosterone‐mediated trade‐off between parental and sexual effort in male mongolian gerbils ( Meriones unguiculatus ). Journal of Comparative Psychology, 113, 388 – 395. https://doi.org/10.1037/0735‐7036.113.4.388
dc.identifier.citedreferenceCouillard‐Despres, S., Winner, B., Schaubeck, S., Aigner, R., Vroemen, M., Weidner, N., Ulrich, B., Jürgen, W., Hand‐Georg, K., & Aigner, L. ( 2005 ). Doublecortin expression levels in adult brain reflect neurogenesis. European Journal of Neuroscience, 21, 1 – 14. https://doi.org/10.1111/j.1460‐9568.2004.03813.x
dc.identifier.citedreferenceCushing, B. S., Perry, A., Musatov, S., Ogawa, S., & Papademetriou, E. ( 2008 ). Estrogen receptors in the medial amygdala inhibit the expression of male prosocial behavior. Journal of Neuroscience, 28, 10399 – 10403. https://doi.org/10.1523/JNEUROSCI.1928‐08.2008
dc.identifier.citedreferenceDe Jong, T. R., Chauke, M., Harris, B. N., & Saltzman, W. ( 2009 ). From here to paternity: Neural correlates of the onset of paternal behavior in California mice ( Peromyscus californicus ). Hormones and Behavior, 56, 220 – 231. https://doi.org/10.1016/j.yhbeh.2009.05.001
dc.identifier.citedreferenceDe Jong, T. R., Harris, B. N., Perea‐Rodriguez, J. P., & Saltzman, W. ( 2013 ). Physiological and neuroendocrine responses to chronic variable stress in male California mice ( Peromyscus californicus ): Influence of social environment and paternal state. Psychoneuroendocrinology, 38, 2023 – 2033. https://doi.org/10.1016/j.psyneuen.2013.03.006
dc.identifier.citedreferenceDe Jong, T. R., Measor, K. R., Chauke, M., Harris, B. N., & Saltzman, W. ( 2010 ). Brief pup exposure induces Fos expression in the lateral habenula and serotonergic caudal dorsal raphe nucleus of paternally experienced male California mice ( Peromyscus californicus ). Neuroscience, 169, 1094 – 1104. https://doi.org/10.1016/j.neuroscience.2010.06.012
dc.identifier.citedreferenceEl‐Sayes, J., Harasym, D., Turco, C. V., Locke, M. B., & Nelson, A. J. ( 2019 ). Exercise‐induced neuroplasticity: A mechanistic model and prospects for promoting plasticity. The Neuroscientist, 25, 65 – 85. https://doi.org/10.1177/1073858418771538
dc.identifier.citedreferenceFeldman, R. ( 2016 ). The neurobiology of mammalian parenting in the context of human caregiving. Hormones and Behavior, 77, 3 – 17.
dc.identifier.citedreferenceFranssen, C. L., Bardi, M., Shea, E. A., Hampton, J. E., Franssen, R. A., Kinsley, C. H., & Lambert, K. G. ( 2011 ). Fatherhood alters behavioural and neural responsiveness in a spatial task. Journal of Neuroendocrinology, 23, 1177 – 1187. https://doi.org/10.1111/j.1365‐2826.2011.02225.x
dc.identifier.citedreferenceGalea, L. A. M., Wainwright, S. R., Roes, M. M., Duarte‐Guterman, P., Chow, C., & Hamson, D. K. ( 2013 ). Sex, hormones and neurogenesis in the hippocampus: Hormonal modulation of neurogenesis and potential functional implications. Journal of Neuroendocrinology, 25, 1039 – 1061. https://doi.org/10.1111/jne.12070
dc.identifier.citedreferenceGalindo‐Leon, E. E., Lin, F. G., & Liu, R. C. ( 2009 ). Inhibitory plasticity in a lateral band improves cortical detection of natural vocalizations. Neuron, 62, 705 – 716. https://doi.org/10.1016/j.neuron.2009.05.001
dc.identifier.citedreferenceGandelman, R., Paschke, R. E., Zarrow, M. X., & Denenberg, V. H. ( 1970 ). Care of young under communal conditions in the mouse ( Mus musculus ). Developmental Psychobiology, 3, 245 – 250. https://doi.org/10.1002/dev.420030405
dc.identifier.citedreferenceGerdes, J., Lemke, H., Baisch, H., Wacker, H. H., Schwab, U., & Stein, H. ( 1984 ). Cell cycle analysis of a cell proliferation‐associated human nuclear antigen defined by the monoclonal antibody Ki‐67. Journal of Immunology, 133, 1710.
dc.identifier.citedreferenceGettler, L. T., McDade, T. W., Feranil, A. B., & Kuzawa, C. W. ( 2011 ). Longitudinal evidence that fatherhood decreases testosterone in human males. Proceedings of the National Academy of Sciences of the United States of America, 108, 16194 – 16199. https://doi.org/10.1073/pnas.1105403108
dc.identifier.citedreferenceGlasper, E. R., Hyer, M. M., Katakam, J., Harper, R., Ameri, C., & Wolz, T. ( 2015 ). Fatherhood contributes to increased hippocampal spine density and anxiety regulation in California mice. Brain and Behavior, 6, e00416.
dc.identifier.citedreferenceGlasper, E. R., Kenkel, W. M., Bick, J., & Rilling, J. K. ( 2019 ). More than just mothers: The neurobiological and neuroendocrine underpinnings of allomaternal caregiving. Frontiers in Neuroendocrinology, 53, 100741. https://doi.org/10.1016/j.yfrne.2019.02.005
dc.identifier.citedreferenceGlasper, E. R., Kozorovitskiy, Y., Pavlic, A., & Gould, E. ( 2011 ). Paternal experience suppresses adult neurogenesis without altering hippocampal function in Peromyscus californicus. Journal Comparative Neurology, 519, 2271 – 2281. https://doi.org/10.1002/cne.22628
dc.identifier.citedreferenceGonzález‐Mariscal, G., & Melo, A. I. ( 2017 ). Bidirectional effects of mother‐young contact on the maternal and neonatal brains. In R. von Bernhardi, J. Eugenín, & K. J. Muller (Eds.), The plastic brain (pp. 97 – 116 ). Springer.
dc.identifier.citedreferenceGromov, V. S. ( 2020 ). Paternal care in rodents: Ultimate causation and proximate mechanisms. Russian Journal of Theriology, 19, 1 – 20.
dc.identifier.citedreferenceGubernick, D. J., & Nelson, R. J. ( 1989 ). Prolactin and paternal behavior in the biparental California mouse, Peromyscus californicus. Hormones and Behavior, 23, 203 – 210. https://doi.org/10.1016/0018‐506X(89)90061‐5
dc.identifier.citedreferenceGubernick, D. J., Sengelaub, D. R., & Kurz, E. M. ( 1993 ). A neuroanatomical correlate of paternal and maternal behavior in the biparental California mouse ( Peromyscus californicus ). Behavioral Neuroscience, 107, 194 – 201. https://doi.org/10.1037/0735‐7044.107.1.194
dc.identifier.citedreferenceHammes, S. R., & Levin, E. R. ( 2007 ). Extranuclear steroid receptors: Nature and actions. Endocrine Reviews, 28, 726 – 741. https://doi.org/10.1210/er.2007‐0022
dc.identifier.citedreferenceHarris, B. N., Perea‐Rodriguez, J. P., & Saltzman, W. ( 2011 ). Acute effects of corticosterone injection on paternal behavior in California mouse ( Peromyscus californicus ) fathers. Hormones and Behavior, 60, 666 – 675. https://doi.org/10.1016/j.yhbeh.2011.09.001
dc.identifier.citedreferenceHarris, B. N., & Saltzman, W. ( 2013 ). Effect of reproductive status on hypothalamic‐pituitary‐adrenal (HPA) activity and reactivity in male California mice ( Peromyscus californicus ). Physiology & Behavior, 112–113, 70 – 76. https://doi.org/10.1016/j.physbeh.2013.02.016
dc.identifier.citedreferenceHill, R. A., & Boon, W. C. ( 2009 ). Estrogens, brain, and behavior: Lessons from knockout mouse models. Seminars in Reproductive Medicine, 27, 218 – 228. https://doi.org/10.1055/s‐0029‐1216275
dc.identifier.citedreferenceHolmboe, S. A., Priskorn, L., Jørgensen, N., Skakkebaek, N. E., Linneberg, A., Juul, A., & Andersson, A.‐M. ( 2017 ). Influence of marital status on testosterone levels – A ten year follow‐up of 1113 men. Psychoneuroendocrinology, 80, 155 – 161. https://doi.org/10.1016/j.psyneuen.2017.03.010
dc.identifier.citedreferenceHorrell, N. D., Hickmott, P. W., & Saltzman, W. ( 2019 ). Neural regulation of paternal behavior in mammals: Sensory, neuroendocrine, and experiential influences on the paternal brain. Current Topics in Behavioral Neuroscience, 43, 111 – 160.
dc.identifier.citedreferenceHorrell, N. D., Saltzman, W., & Hickmott, P. W. ( 2019 ). Plasticity of paternity: Effects of fatherhood on synaptic, intrinsic and morphological characteristics of neurons in the medial preoptic area of male California mice. Behavioural Brain Research, 365, 89 – 102.
dc.identifier.citedreferenceHyer, M. M., & Glasper, E. R. ( 2017 ). Separation increases passive stress‐coping behaviors during forced swim and alters hippocampal dendritic morphology in California mice. PLoS One, 12, e0175713. https://doi.org/10.1371/journal.pone.0175713
dc.identifier.citedreferenceHyer, M., Hunter, T. J., Katakam, J., Wolz, T., & Glasper, E. R. ( 2016 ). Neurogenesis and anxiety‐like behavior in male California mice during the mate’s postpartum period. European Journal of Neuroscience, 43, 703 – 709. https://doi.org/10.1111/ejn.13168
dc.identifier.citedreferenceHyer, M. M., Khantsis, S., Venezia, A. C., Madison, F. N., Hallgarth, L., Adekola, E., & Glasper, E. R. ( 2017 ). Estrogen‐dependent modifications to hippocampal plasticity in paternal California mice ( Peromyscus californicus). Hormones and Behavior, 96, 147 – 155. https://doi.org/10.1016/j.yhbeh.2017.09.015
dc.identifier.citedreferenceKenkel, W. M., Paredes, J., Yee, J. R., Pournajafi‐Nazarloo, H., Bales, K. L., & Carter, C. S. ( 2012 ). Neuroendocrine and behavioural responses to exposure to an infant in male prairie voles. Journal of Neuroendocrinology, 24, 874 – 886. https://doi.org/10.1111/j.1365‐2826.2012.02301.x
dc.identifier.citedreferenceKenkel, W. M., Suboc, G., & Carter, C. S. ( 2014 ). Autonomic, behavioral and neuroendocrine correlates of paternal behavior in male prairie voles. Physiology & Behavior, 128, 252 – 259. https://doi.org/10.1016/j.physbeh.2014.02.006
dc.identifier.citedreferenceKeyser‐Marcus, L., Stafisso‐Sandoz, G., Gerecke, K., Jasnow, A., Nightingale, L., Lambert, K. G., Gatewood, J., & Kinsley, C. H. ( 2001 ). Alterations of medial preoptic area neurons following pregnancy and pregnancy‐like steroidal treatment in the rat. Brain Research Bulletin, 55, 737 – 745. https://doi.org/10.1016/S0361‐9230(01)00554‐8
dc.identifier.citedreferenceKim, P. ( 2016 ). Human maternal brain plasticity: Adaptation to parenting. In H. J. V. Rutherford & L. C. Mayes (Eds.) Maternal brain plasticity: Preclinical and human research and implications for intervention. New directions for child and adolescent development. 153, 47 – 58.
dc.identifier.citedreferenceKim, P., Rigo, P., Mayes, L. C., Feldman, R., Leckman, J. F., & Swain, J. E. ( 2014 ). Neural plasticity in fathers of human infants. Social Neuroscience, 9, 522 – 535. https://doi.org/10.1080/17470919.2014.933713
dc.identifier.citedreferenceKim, S., & Strathearn, L. ( 2016 ). Oxytocin and maternal brain plasticity. In H. J. V. Rutherford & L. C. Mayes (Eds.) Maternal brain plasticity: Preclinical and human research and implications for intervention. New Directions for Child and Adolescent Development (Vol. 153, pp. 59 – 72 ).
dc.identifier.citedreferenceKinsley, C. H., Bardi, M., Karelina, K., Rima, B., Christon, L., Friedenberg, J., & Griffin, G. ( 2008 ). Motherhood induces and maintains behaivoral and neural plasticity across the lifespan in the rat. Archives of Sexual Behavior, 37, 43 – 56.
dc.identifier.citedreferenceKirkpatrick, B., Carter, C. S., Newman, S. W., & Insel, T. R. ( 1994 ). Axon‐sparing lesions of the medial nucleus of the amygdala decrease affiliative behaviors in the prairie vole ( Microtus ochrogaster ): Behavioral and anatomical specificity. Behavioral Neuroscience, 108, 501 – 513. https://doi.org/10.1037/0735‐7044.108.3.501
dc.identifier.citedreferenceKirkpatrick, B., Kim, J. W., & Insel, T. R. ( 1994 ). Limbic system fos associated with paternal behavior. Brain Research, 658, 112 – 118.
dc.identifier.citedreferenceKleiman, D. G., & Malcolm, J. R. ( 1981 ). The evolution of male parental investment in mammals. In D. J. Gubernick & P. H. Klopfer (Eds.), Parental care in mammals (pp. 347 – 388 ). Plenum Press.
dc.identifier.citedreferenceKozorovitskiy, Y., Hughes, M., Lee, K., & Gould, E. ( 2006 ). Fatherhood affects dendritic spines and vasopressin V1a receptors in the primate prefrontal cortex. Nature Neuroscience, 9, 1094 – 1095. https://doi.org/10.1038/nn1753
dc.identifier.citedreferenceKrishnan, K., Lau, B. Y. B., Ewall, G., Huang, J., & Shea, S. D. ( 2017 ). MECP2 regulates cortical plasticity underlying a learned behaviour in adult female mice. Nature Communications, 8, 14077. https://doi.org/10.1038/ncomms14077
dc.identifier.citedreferenceKruijver, F., Balesar, R., Espila, A., Unmehopa, U., & Swaab, D. ( 2002 ). Estrogen receptor‐α distribution in the human hypothalamus in relation to sex and endocrine status. Journal of Comparative Neurology, 454, 115 – 139.
dc.identifier.citedreferenceLambert, K. G. ( 2012 ). The parental brain: Transformations and adaptations. Physiology & Behavior, 107, 792 – 800. https://doi.org/10.1016/j.physbeh.2012.03.018
dc.identifier.citedreferenceLambert, K. G., Franssen, C. L., Bardi, M., Hampton, J. E., Hainley, L., Karsner, S., Tu, E. B., Hyer, M. M., Crockett, A., Baranova, A., Ferguson, T., Ferguson, T., & Kinsley, C. H. ( 2011 ). Characteristic neurobiological patterns differentiate paternal responsiveness in two Peromyscus species. Brain, Behavior and Evolution, 77, 159 – 175. https://doi.org/10.1159/000326054
dc.identifier.citedreferenceLambert, K. G., Franssen, C. L., Hampton, J. E., Rzucidlo, A. M., Hyer, M. M., True, M., Kaufman, C., & Bardi, M. ( 2013 ). Modeling paternal attentiveness: Distressed pups evoke differential neurobiological and behavioral responses in paternal and nonpaternal mice. Neuroscience, 234, 1 – 12. https://doi.org/10.1016/j.neuroscience.2012.12.023
dc.identifier.citedreferenceLau, B., Layo, D. E., Emery, B., Everett, M., Kumar, A., Stevenson, P., Reynolds, K. G., Cherosky, A., Bowyer, S. H., Roth, S., Fisher, D. G., McCord, R. P., & Krishnan, K. ( 2020 ). Lateralized Expression of cortical perineuronal nets during maternal experience is dependent on MECP2. Eneuro, 7 ( 3 ), ENEURO.0500‐19.2020. https://doi.org/10.1523/ENEURO.0500‐19.2020
dc.identifier.citedreferenceLee, M. K., Tuttle, J. B., Rebhun, L. I., Cleveland, D. W., & Frankfurter, A. ( 1990 ). The expression and posttranslational modification of a neuron‐specific β‐tubulin isotype during chick embryogenesis. Cell Motility, 17, 118 – 132.
dc.identifier.citedreferenceLeuner, B., Glasper, E. R., & Gould, E. ( 2010 ). Sexual experience promotes adult neurogenesis in the hippocampus despite an initial elevation in stress hormones. PLoS One, 5, e11597. https://doi.org/10.1371/journal.pone.0011597
dc.identifier.citedreferenceLeuner, B., Mirescu, C., Noiman, L., & Gould, E. ( 2007 ). Maternal experience inhibits the production of immature neurons in the hioppocampus during the postpartum period through elevations in adrenal steroids. Hippocampus, 17, 434 – 442.
dc.identifier.citedreferenceLeuner, B., & Sabihi, S. ( 2016 ). The birth of new neurons in the maternal brain: Hormonal regulation and functional implications. Frontiers in Neuroendocrinology, 41, 99 – 113. https://doi.org/10.1016/j.yfrne.2016.02.004
dc.identifier.citedreferenceLeypold, B. G., Yu, C. R., Leinders‐Zufall, T., Kim, M. M., Zufall, F., & Axel, R. ( 2002 ). Altered sexual and social behaviors in trp2 mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 99 ( 9 ), 6376 – 6381. https://doi.org/10.1073/pnas.082127599
dc.identifier.citedreferenceLi, T., Chen, X., Mascaro, J., Haroon, E., & Rilling, J. K. ( 2017 ). Intranasal oxytocin, but not vasopressin, augments neural responses to toddlers in human fathers. Hormones and Behavior, 93, 193 – 202. https://doi.org/10.1016/j.yhbeh.2017.01.006
dc.identifier.citedreferenceLieberwirth, C., Wang, Y., Jia, X., Liu, Y., & Wang, Z. ( 2013 ). Fatherhood reduces the survival of adult‐generated cells and affects various types of behavior in the prairie vole ( Microtus ochrogaster ). European Journal of Neuroscience, 38, 3345 – 3355.
dc.identifier.citedreferenceLiu, H. X., Lopatina, O., Higashida, C., Fujimoto, H., Akther, S., Inzhutova, A., Liang, M., Zhong, J., Tsuji, T., Yoshihara, T., Sumi, K., Ishiyama, M., Ma, W.‐J., Ozaki, M., Yagitani, S., Yokoyama, S., Mukaia, N., Sakurai, T., Hori, O., … Higashida, H. ( 2013 ). Displays of paternal mouse pup retrieval following communicative interaction with maternal mates. Nature Communications, 4, 1346. https://doi.org/10.1038/ncomms2336
dc.identifier.citedreferenceLonstein, J. S., & De Vries, G. J. ( 2000 ). Sex differences in the parental behavior of rodents. Neuroscience and Biobehavioral Reviews, 24, 669 – 686. https://doi.org/10.1016/S0149‐7634(00)00036‐1
dc.identifier.citedreferenceMa, E., Lau, J., Grattan, D. R., Lovejoy, D. A., & Wynne‐Edwards, K. E. ( 2005 ). Male and female prolactin receptor mRNA expression in the brain of a biparental and a uniparental hamster, Phodopus, before and after the birth of a litter. Journal of Neuroendocrinology, 17, 81 – 90. https://doi.org/10.1111/j.1365‐2826.2005.01278.x
dc.identifier.citedreferenceMacbeth, A. H., & Luine, V. N. ( 2010 ). Changes in anxiety and cognition due to reproductive experience: A review of data from rodent and human mothers. Neuroscience and Biobehavioral Reviews, 34, 452 – 467.
dc.identifier.citedreferenceMak, G. K., & Weiss, S. ( 2010 ). Paternal recognition of adult offspring mediated by newly generated CNS neurons. Nature Neuroscience, 13, 753 – 758. https://doi.org/10.1038/nn.2550
dc.identifier.citedreferenceMartínez, A., Arteaga‐Silva, M., Bonilla‐Jaime, H., Cárdenas, M., Rojas‐Castañeda, J., Vigueras‐Villaseñor, R., Limón‐Morales, O., & Luis, J. ( 2019 ). Paternal behavior in the Mongolian gerbil, and its regulation by social factors, T, ERα, and AR. Physiology & Behavior, 199, 351 – 358. https://doi.org/10.1016/j.physbeh.2018.12.001
dc.identifier.citedreferenceMartínez, A., Ramos, G., Martínez‐Torres, M., Nicolás, L., Carmona, A., Cárdenas, M., & Luis, J. ( 2015 ). Paternal behavior in the Mongolian gerbil ( Meriones unguiculatus ): Estrogenic and androgenic regulation. Hormones and Behavior, 71, 92 – 95. https://doi.org/10.1016/j.yhbeh.2015.04.009
dc.identifier.citedreferenceMascaro, J. S., Hackett, P. D., & Rilling, J. K. ( 2014 ). Differential neural responses to child and sexual stimuli in human fathers and non‐fathers and their hormonal correlates. Psychoneuroendocrinology, 46, 153 – 163. https://doi.org/10.1016/j.psyneuen.2014.04.014
dc.identifier.citedreferenceMayer, H. S., Crepeau, M., Duque‐Wilckens, N., Torres, L. Y., Trainor, B. C., & Stolzenberg, D. S. ( 2019 ). Histone deacetylase inhibitor treatment promotes spontaneous caregiving behaviour in non‐aggressive virgin male mice. Journal of Neuroendocrinology, 31, e12734. https://doi.org/10.1111/jne.12734
dc.identifier.citedreferenceMazur, A., & Michalek, J. ( 1998 ). Marriage, divorce, and male testosterone. Social Forces, 77, 315 – 330. https://doi.org/10.2307/3006019
dc.identifier.citedreferenceMcCarthy, M. M., & vom Saal, F. S. ( 1986 ). Infanticide by virgin CF‐1 and wild male house mice ( Mus musculus ): Effects of age, prolonged isolation, and testing procedure. Developmental Psychobiology, 19, 279 – 290. https://doi.org/10.1002/dev.420190313
dc.identifier.citedreferenceMedina, J., & Workman, J. L. ( 2018 ). Maternal experience and adult neurogenesis in mammals: Implications for maternal care, cognition, and mental health. Journal of Neuroscience Research, 98, 1293 – 1308. https://doi.org/10.1002/jnr.24311
dc.identifier.citedreferenceMedina, J., & Workman, J. L. ( 2020 ). Maternal experience and adult neurogenesis in mammals: Implications for maternal care, cognition, and mental health. Journal of Neuroscience Research, 98, 1293 – 1308. https://doi.org/10.1002/jnr.24311
dc.identifier.citedreferenceMiller, M. W., & Nowakowski, R. S. ( 1988 ). Use of bromodeoxyuridine‐immunohistochemistry to examine the proliferation, migration and time of origin of cells in the central nervous system. Brain Research, 457, 44 – 52. https://doi.org/10.1016/0006‐8993(88)90055‐8
dc.identifier.citedreferenceMullen, R. J., Buck, C. R., & Smith, A. M. ( 1992 ). NeuN, a neuronal specific nuclear protein in vertebrates. Development, 116, 201 – 211.
dc.identifier.citedreferenceMuzerelle, A., Scotto‐Lomassese, S., Bernard, J. F., Soiza‐Reilly, M., & Gaspar, P. ( 2016 ). Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5–B9) to the forebrain and brainstem. Brain Structure & Function, 221, 535 – 561. https://doi.org/10.1007/s00429‐014‐0924‐4
dc.identifier.citedreferenceNakahara, T. S., Cardozo, L. M., Ibarra‐Soria, X., Bard, A. D., Carvalho, V. M., Trintinalia, G. Z., Logan, D. W., & Papes, F. ( 2016 ). Detection of pup odors by non‐canonical adult vomeronasal neurons expressing an odorant receptor gene is influenced by sex and parenting status. BMC Biology, 14, 12. https://doi.org/10.1186/s12915‐016‐0234‐9
dc.identifier.citedreferenceNuman, M. ( 2020 ). The parental brain: Mechanisms, development, and evolution. Oxford University Press.
dc.identifier.citedreferenceNunes, S., Fite, J. E., & French, J. A. ( 2000 ). Variation in steroid hormones associated with infant care behaviour and experience in male marmosets ( Callithrix kuhlii ). Animal Behaviour, 60, 857 – 865. https://doi.org/10.1006/anbe.2000.1524
dc.identifier.citedreferenceO’Connell, L. A. ( 2020 ). Frank Beach Award winner: Lessons from poison frogs on ecological drivers of behavioral diversification. Hormones and Behavior, 126, 104869. https://doi.org/10.1016/j.yhbeh.2020.104869
dc.identifier.citedreferenceOlazábal, D. E., Pereira, M., Agrati, D., Ferreira, A., Fleming, A. S., González‐Mariscal, G., Lévy, F., Lucion, A. B., Morrell, J. I., Numan, M., & Uriarte, N. ( 2013a ). Flexibility and adaptation of the neural substrate that supports maternal behavior in mammals. Neuroscience and Biobehavioral Reviews, 37, 1875 – 1892. https://doi.org/10.1016/j.neubiorev.2013.04.004
dc.identifier.citedreferenceOlazábal, D. E., Pereira, M., Agrati, D., Ferreira, A., Fleming, A. S., González‐Mariscal, G., Lévy, F., Lucion, A. B., Morrell, J. I., Numan, M., & Uriarte, N. ( 2013b ). New theoretical and experimental approaches on maternal motivation in mammals. Neuroscience and Biobehavioral Reviews, 37, 1860 – 1874. https://doi.org/10.1016/j.neubiorev.2013.04.003
dc.identifier.citedreferenceOphir, A. G. ( 2017 ). Navigating monogamy: Nonapeptide sensitivity in a memory neural circuit may shape social behavior and mating decisions. Frontiers in Neuroscience, 11, 397. https://doi.org/10.3389/fnins.2017.00397
dc.identifier.citedreferenceOrchard, E. R., Ward, P. G. D., Sforazzini, F., Storey, E., Egan, G. F., & Jamadar, S. D. ( 2020 ). Relationship between parenthood and cortical thickness in late adulthood. PLoS One, 15, e0236031.
dc.identifier.citedreferenceSpeakman, J. R. ( 2008 ). The physiological costs of reproduction in small mammals. Philosophical Transactions of the Royal Society B, 363, 375 – 398. https://doi.org/10.1098/rstb.2007.2145
dc.identifier.citedreferenceParker, K. J., Kinney, L. F., Phillips, K. M., & Lee, T. M. ( 2001 ). Paternal behavior is associated with central neurohormone receptor binding patterns in meadow voles ( Microtus pennsylvanicus ). Behavioral Neuroscience, 115, 1341 – 1348. https://doi.org/10.1037/0735‐7044.115.6.1341
dc.identifier.citedreferencePerea‐Rodriguez, J. P., Takahashi, E. Y., Amador, T. M., Hao, R. C., Saltzman, W., & Trainor, B. C. ( 2015 ). Effects of reproductive experience on central expression of progesterone, oestrogen α, oxytocin and vasopressin receptor mRNA in male California mice ( Peromyscus californicus ). Journal of Neuroendocrinology, 27, 245 – 252.
dc.identifier.citedreferencePerea‐Rodriguez, J. P., Zhao, M., Harris, B. N., Raqueno, J., & Saltzman, W. ( 2018 ). Behavioral and endocrine consequences of placentophagia in male California mice ( Peromyscus californicus ). Physiology & Behavior, 188, 283 – 290. https://doi.org/10.1016/j.physbeh.2018.02.022
dc.identifier.citedreferencePerrigo, G., Belvin, L., & Vom Saal, F. S. ( 1992 ). Time and sex in the male mouse: Temporal regulation of infanticide and parental behavior. Chronobiology International, 9, 421 – 433. https://doi.org/10.3109/07420529209064554
dc.identifier.citedreferencePortillo, W., Unda, N., Camacho, F. J., Sánchez, M., Corona, R., Arzate, D. M., Díaz, N. F., & Paredes, R. G. ( 2012 ). Sexual activity increases the number of newborn cells in the accessory olfactory bulb of male rats. Frontiers in Neuroanatomy, 6, 25. https://doi.org/10.3389/fnana.2012.00025
dc.identifier.citedreferenceReburn, C. J., & Wynne‐Edwards, K. E. ( 1999 ). Hormonal changes in males of a naturally biparental and a uniparental mammal. Hormones and Behavior, 35, 163 – 176. https://doi.org/10.1006/hbeh.1998.1509
dc.identifier.citedreferenceRomero‐Morales, L., Cárdenas, M., Martínez‐Torres, M., Cárdenas, R., Álvarez‐Rodríguez, C., & Luis, J. ( 2020 ). Estradiol and estrogen receptor α in the mPOA and MeA in dwarf hamster ( Phodopus campbelli ) fathers. Hormones and Behavior, 119, 104653. https://doi.org/10.1016/j.yhbeh.2019.104653
dc.identifier.citedreferenceRuscio, M. G., Sweeny, T. D., Hazelton, J. L., Suppatkul, P., Boothe, E., & Carter, C. S. ( 2008 ). Pup exposure elicits hippocampal cell proliferation in the prairie vole. Behavioural Brain Research, 187, 9 – 16. https://doi.org/10.1016/j.bbr.2007.08.028
dc.identifier.citedreferenceSaltzman, W., Harris, B. N., de Jong, T. R., Nguyen, P. P., Cho, J. T., Hernandez, M., & Perea‐Rodriguez, J. P. ( 2015 ). Effects of parental status on male body mass in the monogamous, biparental California mouse. Journal of Zoology, 296, 23 – 29. https://doi.org/10.1111/jzo.12211
dc.identifier.citedreferenceSaltzman, W., Harris, B. N., de Jong, T. R., Perea‐Rodriguez, J. P., Horrell, N. D., Zhao, M., & Andrew, J. R. ( 2017 ). Paternal care in biparental rodents: Intra‐ and interindividual variation. Integrative and Comparative Biology, 57, 589 – 602. https://doi.org/10.1093/icb/icx047
dc.identifier.citedreferenceKinsley, C. H., & Amory‐Meyer, E. ( 2011 ). Why the maternal brain? Journal of Neuroendocrinology, 23, 974 – 983. https://doi.org/10.1111/j.1365‐2826.2011.02194.x
dc.identifier.citedreferenceSato, K., Hamasaki, Y., Fukui, K., Ito, K., Miyamichi, K., Minami, M., & Amano, T. ( 2020 ). Amygdalohippocampal area neurons that project to the preoptic area mediate infant‐directed attack in male mice. Journal of Neuroscience, 40, 3981 – 3994. https://doi.org/10.1523/JNEUROSCI.0438‐19.2020
dc.identifier.citedreferenceSchneider, J. S., Stone, M. K., Wynne‐Edwards, K. E., Horton, T. H., Lydon, J., O’Malley, B., & Levine, J. E. ( 2003 ). Progesterone receptors mediate male aggression toward infants. Proceedings of the National Academy of Sciences of the United States of America, 100, 2951 – 2956. https://doi.org/10.1073/pnas.0130100100
dc.identifier.citedreferenceSchum, J. E., & Wynne‐Edwards, K. E. ( 2005 ). Estradiol and progesterone in paternal and non‐paternal hamsters ( Phodopus ) becoming fathers: Conflict with hypothesized roles. Hormones and Behavior, 47, 410 – 418.
dc.identifier.citedreferenceSeelke, A. M. H., Bond, J. M., Simmons, T. C., Joshi, N., Settles, M. L., Stolzenberg, D., Rhemtulla, M., & Bales, K. L. ( 2018 ). Fatherhood alters gene expression within the MPOA. Environmental Epigenetics, 4, dvy026. https://doi.org/10.1093/eepi/dvy026
dc.identifier.citedreferenceSeifritz, E., Esposito, F., Neuhoff, J. G., Lüthi, A., Mustovic, H., Dammann, G., von Bardeleben, U., Radue, E. W., Cirillo, S., Tedeschi, G., & Di Salle, F. ( 2003 ). Differential sex‐independent amygdala response to infant crying and laughing in parents versus nonparents. Biological Psychiatry, 54, 1367 – 1375. https://doi.org/10.1016/S0006‐3223(03)00697‐8
dc.identifier.citedreferenceShingo, T., Gregg, C., Enwere, E., Fujikawa, H., Hassam, R., Geary, C., Cross, J. C., & Weiss, S. ( 2003 ). Pregnancy‐stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science, 299, 117 – 120. https://doi.org/10.1126/science.1076647
dc.identifier.citedreferenceSlattery, D. A., & Neumann, I. D. ( 2008 ). No stress please! Mechanisms of stress hyporesponsiveness of the maternal brain. Journal of Physiology, 586 ( 2 ), 377 – 385. https://doi.org/10.1113/jphysiol.2007.145896
dc.identifier.citedreferenceSong, Z., Tai, F., Yu, C., Wu, R., Zhang, X., Broders, H., He, F., & Guo, R. ( 2010 ). Sexual or paternal experiences alter alloparental behavior and the central expression of ERalpha and OT in male mandarin voles ( Microtus mandarinus ). Behavioural Brain Research, 214, 290 – 300.
dc.identifier.citedreferenceSorg, B. A., Berretta, S., Blacktop, J. M., Fawcett, J. W., Kitagawa, H., Kwok, J. C., & Miquel, M. ( 2016 ). Casting a wide net: Role of perineuronal nets in neural plasticity. The Journal of Neuroscience, 36, 11459 – 11468. https://doi.org/10.1523/JNEUROSCI.2351‐16.2016
dc.identifier.citedreferenceStockley, P., & Hobson, L. ( 2016 ). Paternal care and litter size coevolution in mammals. Proceedings of the Royal Society of London B, 283, 20160140. https://doi.org/10.1098/rspb.2016.0140
dc.identifier.citedreferenceTachikawa, K. S., Yoshihara, Y., & Kuroda, K. O. ( 2013 ). Behavioral transition from attack to parenting in male mice: A crucial role of the vomeronasal system. Journal of Neuroscience, 33, 5120 – 5126. https://doi.org/10.1523/JNEUROSCI.2364‐12.2013
dc.identifier.citedreferenceTimonin, M. E., Cushing, B. S., & Wynne‐Edwards, K. E. ( 2008 ). In three brain regions central to maternal behaviour, neither male nor female Phodopus dwarf hamsters show changes in oestrogen receptor alpha distribution with mating or parenthood. Journal of Neuroendocrinology, 29, 1301 – 1309.
dc.identifier.citedreferenceTrainor, B. C., Bird, I. M., Alday, N. A., Schlinger, B. A., & Marler, C. A. ( 2003 ). Variation in aromatase activity in the medial preoptic area and plasma progesterone is associated with the onset of paternal behavior. Neuroendocrinology, 78, 36 – 44. https://doi.org/10.1159/000071704
dc.identifier.citedreferenceTrouillet, A.‐C., Keller, M., Weiss, J., Leinders‐Zufall, T., Birnbaumer, L., Zufall, F., & Chamero, P. ( 2019 ). Central role of G protein Gαi2 and Gαi2 + vomeronasal neurons in balancing territorial and infant‐directed aggression of male mice. Proceedings of the National Academy of Sciences of the United States of America, 1821492116.
dc.identifier.citedreferenceTsai, M. J., & O’Malley, B. W. ( 1994 ). Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annual Review of Biochemistry, 63, 451 – 486. https://doi.org/10.1146/annurev.bi.63.070194.002315
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.