Show simple item record

Relative Tsunami Hazard From Segments of Cascadia Subduction Zone For Mw 7.5–9.2 Earthquakes

dc.contributor.authorSalaree, Amir
dc.contributor.authorHuang, Yihe
dc.contributor.authorRamos, Marlon D.
dc.contributor.authorStein, Seth
dc.date.accessioned2021-09-08T14:34:12Z
dc.date.available2022-09-08 10:34:11en
dc.date.available2021-09-08T14:34:12Z
dc.date.issued2021-08-28
dc.identifier.citationSalaree, Amir; Huang, Yihe; Ramos, Marlon D.; Stein, Seth (2021). "Relative Tsunami Hazard From Segments of Cascadia Subduction Zone For Mw 7.5–9.2 Earthquakes." Geophysical Research Letters 48(16): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/169252
dc.description.abstractTsunamis from earthquakes of various magnitudes have affected Cascadia in the past. Simulations of Mw 7.5–9.2 earthquake constrained by earthquake rupture physics and geodetic locking models show that Mw ≥ 8.5 events initiating in the middle segments of the subduction zone can create coastal tsunami amplitudes comparable to those from the largest expected event. Our rupture and tsunami simulations reveal that the concave coastline geometry of the Pacific Northwest coastline focuses tsunami energy between latitudes 44° and 45° in Oregon. The possible coastal tsunami amplitudes are largely insensitive to the choice of slip model for a given magnitude. These results are useful for identifying the most hazardous segments of the subduction zone and demonstrate that a worst‐case rupture scenario does not uniquely yield the worst‐case tsunami scenario at a given location.Plain Language SummaryOffshore earthquakes along the Pacific Northwest coast of the U.S. and Canada (Cascadia region) can have magnitudes as high as 9.2, as was probably the case for an earthquake in the year 1700 CE that resulted in a large tsunami in Cascadia and across the Pacific Ocean. To learn more about the future tsunami hazard in the region, we design computer models of tsunamis from a wide range of earthquake scenarios. We find that almost regardless of the earthquake source details, events larger than magnitude 8.5 near the coast of Oregon can create large and widespread tsunamis along the US west coast. These are consequences of the geometry of offshore earthquake faulting and the concave shape of coastline in the region.Key PointsA Mw = 8.5 event in central Cascadia (Oregon) can create coastal tsunami amplitudes comparable to those from the largest possible eventThe concave coastline contributes to larger coastal tsunami amplitudes in central CascadiaThe choice of slip model does not significantly affect the distribution of coastal tsunami amplitudes in Cascadia
dc.publisherWiley Periodicals, Inc.
dc.publisherUniversity Science Books
dc.subject.otherCascadia
dc.subject.othercoastal morphology
dc.subject.othercoastal hazard
dc.subject.othertsunami
dc.subject.otherearthquake rupture
dc.subject.othersimulation
dc.titleRelative Tsunami Hazard From Segments of Cascadia Subduction Zone For Mw 7.5–9.2 Earthquakes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169252/1/grl62846.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169252/2/grl62846_am.pdf
dc.identifier.doi10.1029/2021GL094174
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceSatake, K., Shimazaki, K., Tsuji, Y., & Ueda, K. ( 1996 ). Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700. Nature, 379 ( 6562 ), 246. https://doi.org/10.1038/379246a0
dc.identifier.citedreferencePeters, R., Jaffe, B., Gelfenbaum, G., & Peterson, C. ( 2003 ). Cascadia tsunami deposit database. In US geological survey open‐file report (pp. 03 – 13 ). Retrieved from http://pubs.usgs.gov/of/2003/0013/
dc.identifier.citedreferencePlafker, G. ( 1997 ). Catastrophic tsunami generated by submarine slides and back‐arc thrusting during the 1992 earthquake on eastern Flores I., Indonesia. Geological Society of America Bulletin, 29 ( 57 ).
dc.identifier.citedreferencePriest, G. R., Goldfinger, C., Wang, K., Witter, R. C., Zhang, Y., & Baptista, A. M. ( 2010 ). Confidence levels for tsunami‐inundation limits in northern Oregon inferred from a 10,000‐year history of great earthquakes at the Cascadia subduction zone. Natural Hazards, 54 ( 1 ), 27 – 73. https://doi.org/10.1007/s11069-009-9453-5
dc.identifier.citedreferencePriest, G. R., Witter, R. C., Zhang, Y. J., Wang, K., Goldfinger, C., Stimely, L. L., et al. ( 2013 ). Tsunami inundation scenarios for Oregon (Open‐File Report O‐13‐19). Oregon Department of Geology Mineral Industries.
dc.identifier.citedreferenceRabinovich, A. B. ( 1997 ). Spectral analysis of tsunami waves: Separation of source and topography effects. Journal of Geophysical Research, 102 ( C6 ), 12663 – 12676. https://doi.org/10.1029/97jc00479
dc.identifier.citedreferenceRamos, M. D., Huang, Y., Ulrich, T., Li, D., Gabriel, A. A., & Thomas, A. M. ( 2021 ). Assessing margin‐wide rupture behaviors along the Cascadia megathrust with 3‐D dynamic rupture simulations. Journal of Geophysical Research: Solid Earth, 126, e2021JB022005. https://doi.org/10.1029/2021jb022005
dc.identifier.citedreferenceSalaree, A., & Okal, E. A. ( 2020 ). Effects of bathymetry complexity on tsunami propagation: A spherical harmonics approach. Geophysical Journal International, 223 ( 1 ), 632 – 647. https://doi.org/10.1093/gji/ggaa334
dc.identifier.citedreferenceSatake, K. ( 2015 ). Geological and historical evidence of irregular recurrent earthquakes in Japan. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373, 20140375. https://doi.org/10.1098/rsta.2014.0375
dc.identifier.citedreferenceSatake, K., Wang, K., & Atwater, B. F. ( 2003 ). Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions. Journal of Geophysical Research, 108, 17. https://doi.org/10.1029/2003jb002521
dc.identifier.citedreferenceSchmalzle, G. M., McCaffrey, R., & Creager, K. C. ( 2014 ). Central Cascadia subduction zone creep. Geochemistry, Geophysics, Geosystems, 15 ( 4 ), 1515 – 1532. https://doi.org/10.1002/2013gc005172
dc.identifier.citedreferenceShuto, N., Suzuki, T., & Hasegawa, K. ( 1986 ). A study of numerical techniques on the tsunami propagation and run‐up. Science of Tsunami Hazards, 4, 111 – 124.
dc.identifier.citedreferenceSmall, D. T., & Melgar, D. ( 2020 ). Geodetic coupling models as constraints on stochastic earthquake ruptures: An example application to PTHA in Cascadia. Journal of Geophysical Research: Solid Earth, 126, e2020JB021149. https://doi.org/10.1029/2020JB021149
dc.identifier.citedreferenceStein, S., & Stein, J. ( 2014 ). Playing against nature: Integrating science and economics to mitigate natural hazards in an uncertain world. John Wiley and Sons.
dc.identifier.citedreferenceStein, S., & Wysession, M. ( 2009 ). An introduction to seismology, earthquakes, and earth structure. John Wiley and Sons.
dc.identifier.citedreferenceSynolakis, C. E., Bernard, E. N., Titov, V. V., K-noğlu, U., & González, F. I. ( 2008 ). Validation and verification of tsunami numerical models. In Tsunami science four years after the 2004 Indian ocean tsunami (pp. 2197 – 2228 ). Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0057-6_11
dc.identifier.citedreferenceThingbaijam, K. K. S., Martin Mai, P., & Goda, K. ( 2017 ). New empirical earthquake source‐scaling laws. Bulletin of the Seismological Society of America, 107 ( 5 ), 2225 – 2246. https://doi.org/10.1785/0120170017
dc.identifier.citedreferenceThio, H. K., & Somerville, P. ( 2009 ). A probabilistic tsunami hazard analysis of California. In TCLEE 2009: Lifeline earthquake engineering in a multihazard environment (pp. 1 – 12 ). https://doi.org/10.1061/41050(357)57
dc.identifier.citedreferenceThio, H. K., Somerville, P., & Polet, J. ( 2010 ). Probabilistic tsunami hazard in California. In Pacific earthquake engineering research center report. UC Berkeley Publications.
dc.identifier.citedreferenceTitov, V., K-noğlu, U., & Synolakis, C. ( 2016 ). Development of MOST for real‐time tsunami forecasting. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142, 03116004–1 – 03116004–16. https://doi.org/10.1061/(asce)ww.1943-5460.0000357
dc.identifier.citedreferenceTitov, V. V., & Synolakis, C. E. ( 1998 ). Numerical modeling of tidal wave runup. Journal of Waterway, Port, Coastal, and Ocean Engineering, 124 ( 4 ), 157 – 171. https://doi.org/10.1061/(asce)0733-950x(1998)124:4(157)
dc.identifier.citedreferenceWang, K., & Tréhu, A. M. ( 2016 ). Invited review paper: Some outstanding issues in the study of great megathrust earthquakes – The Cascadia example. Journal of Geodynamics, 98, 1 – 18. https://doi.org/10.1016/j.jog.2016.03.010
dc.identifier.citedreferenceWatt, J. T., & Brothers, D. S. ( 2021 ). Systematic characterization of morphotectonic variability along the Cascadia convergent margin: Implications for shallow megathrust behavior and tsunami hazards. Geosphere, 17 ( 1 ), 95 – 117. https://doi.org/10.1130/ges02178.1
dc.identifier.citedreferenceWessel, P., & Smith, W. H. ( 1998 ). New, improved version of generic mapping tools released. Eos, Transactions American Geophysical Union, 79 ( 47 ), 579 – 579. https://doi.org/10.1029/98EO00426
dc.identifier.citedreferenceWilliamson, A., Melgar, D., & Rim, D. ( 2019 ). The effect of earthquake kinematics on tsunami propagation. Journal of Geophysical Research: Solid Earth, 124, 11639 – 11650. https://doi.org/10.1029/2019jb017522
dc.identifier.citedreferenceWitter, R. C., Zhang, Y., Wang, K., Priest, G. R., Goldfinger, C., Stimely, L. L., et al. ( 2011 ). Simulating tsunami inundation at Bandon, Coos County, Oregon, using hypothetical Cascadia and Alaska earthquake scenarios. In Oregon department of geology and mineral industries special paper (Vol. 43, pp. 57 ). State Library of Oregon.
dc.identifier.citedreferenceAki, K., & Richards, P. G. ( 2002 ). Quantitative seismology. University Science Books.
dc.identifier.citedreferenceAtwater, B. F. ( 1987 ). Evidence for great Holocene earthquakes along the outer coast of Washington State. Science, 236 ( 4804 ), 942 – 944. https://doi.org/10.1126/science.236.4804.942
dc.identifier.citedreferenceAtwater, B. F., Musumi‐Rokkaku, S., Satake, K., Tsuji, Y., Ueda, K., & Yamaguchi, D. K. ( 2015 ). The orphan tsunami of 1700: Japanese clues to a parent earthquake in North America. University of Washington Press.
dc.identifier.citedreferenceAtwater, B. F., Stuiver, M., & Yamaguchi, D. K. ( 1991 ). Radiocarbon test of earthquake magnitude at the cascadia subduction zone. Nature, 353 ( 6340 ), 156 – 158. https://doi.org/10.1038/353156a0
dc.identifier.citedreferenceBen‐Menahem, A., & Rosenman, M. ( 1972 ). Amplitude patterns of tsunami waves from submarine earthquakes. Journal of Geophysical Research, 77 ( 17 ), 3097 – 3128. https://doi.org/10.1029/jb077i017p03097
dc.identifier.citedreferenceBerger, M. J., George, D. L., LeVeque, R. J., & Mandli, K. T. ( 2011 ). The GeoClaw software for depth‐averaged flows with adaptive refinement. Advances in Water Resources, 34 ( 9 ), 1195 – 1206. https://doi.org/10.1016/j.advwatres.2011.02.016
dc.identifier.citedreferenceCourant, R., Friedrichs, K., & Lewy, H. ( 1928 ). Uber die partiellen differenzengleichungen der mathematischen Physik. Mathematische Annalen, 100 ( 1 ), 32 – 74. https://doi.org/10.1007/bf01448839
dc.identifier.citedreferenceCrosson, R. S., & Owens, T. J. ( 1987 ). Slab geometry of the Cascadia subduction zone beneath Washington from earthquake hypocenters and teleseismic converted waves. Geophysical Research Letters, 14 ( 8 ), 824 – 827. https://doi.org/10.1029/gl014i008p00824
dc.identifier.citedreferenceDarienzo, M. E., & Peterson, C. D. ( 1995 ). Magnitude and frequency of subduction‐zone earthquakes along the northern Oregon coast in the past 3,000 years. Oregon Geology, 57 ( 1 ), 3 – 12.
dc.identifier.citedreferenceDavies, G., Griffin, J., Løvholt, F., Glimsdal, S., Harbitz, C., Thio, H. K., et al. ( 2018 ). A global probabilistic tsunami hazard assessment from earthquake sources. Geological Society, London, Special Publications, 456 ( 1 ), 219 – 244. https://doi.org/10.1144/sp456.5
dc.identifier.citedreferenceGeller, R. J. ( 1976 ). Scaling relations for earthquake source parameters and magnitudes. Bulletin of the Seismological Society of America, 66 ( 5 ), 1501 – 1523.
dc.identifier.citedreferenceGoldfinger, C., Galer, S., Beeson, J., Hamilton, T., Black, B., Romsos, C., et al. ( 2017 ). The importance of site selection, sediment supply, and hydrodynamics: A case study of submarine paleoseismology on the Northern Cascadia margin. Marine Geology, 384, 4 – 46. https://doi.org/10.1016/j.margeo.2016.06.008
dc.identifier.citedreferenceGoldfinger, C., Nelson, C. H., Morey, A. E., Johnson, J. E., Patton, J. R., Karabanov, E. B., et al. ( 2012 ). Turbidite event history–methods and implications for Holocene paleoseismicity of the Cascadia subduction zone (Tech. rep.). US Geological Survey.
dc.identifier.citedreferenceGonzález, F. I., Geist, E. L., Jaffe, B., K-noğlu, U., Mofjeld, H., Synolakis, C. E., et al. ( 2009 ). Probabilistic tsunami hazard assessment at seaside, Oregon, for near‐and far‐field seismic sources. Journal of Geophysical Research, 114 ( C11 ), C11023. https://doi.org/10.1029/2008jc005132
dc.identifier.citedreferenceGonzález, F. I., LeVeque, R. J., Chamberlain, P., Hirai, B., Varkovitzky, J., & George, D. L. ( 2011 ). Validation of the geoclaw model. In NTHMP MMS tsunami inundation model validation workshop. GeoClaw Tsunami Modeling Group.
dc.identifier.citedreferenceGreen, G. ( 1838 ). On the motion of waves in a variable canal of small depth and width. Transactions of the Cambridge Philosophical Society, 6, 457.
dc.identifier.citedreferenceGriggs, G. B., & Kulm, L. ( 1970 ). Sedimentation in Cascadia deep‐sea channel. Geological Society of America Bulletin, 81 ( 5 ), 1361 – 1384. https://doi.org/10.1130/0016-7606(1970)81[1361:sicdc]2.0.co;2
dc.identifier.citedreferenceHeaton, T. H., & Snavely, P. D. Jr. ( 1985 ). Possible tsunami along the northwestern coast of the United States inferred from Indian traditions. Bulletin of the Seismological Society of America, 75 ( 5 ), 1455 – 1460. https://doi.org/10.1785/bssa0750051455
dc.identifier.citedreferenceHowe, B. M., Arbic, B. K., Aucan, J., Barnes, C. R., Bayliff, N., Becker, N., et al. ( 2019 ). SMART cables for observing the global ocean: Science and implementation. Frontiers in Marine Science, 6, 424. https://doi.org/10.3389/fmars.2019.00424
dc.identifier.citedreferenceK-noğlu, U., & Synolakis, C. E. ( 1998 ). Long wave runup on piecewise linear topographies. Journal of Fluid Mechanics, 374, 1 – 28.
dc.identifier.citedreferenceKelsey, H. M., Nelson, A. R., Hemphill‐Haley, E., & Witter, R. C. ( 2005 ). Tsunami history of an Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia subduction zone. Geological Society of America Bulletin, 117 ( 7–8 ), 1009 – 1032. https://doi.org/10.1130/b25452.1
dc.identifier.citedreferenceLi, S., Wang, K., Wang, Y., Jiang, Y., & Dosso, S. E. ( 2018 ). Geodetically inferred locking state of the Cascadia megathrust based on a viscoelastic Earth model. Journal of Geophysical Research: Solid Earth, 123 ( 9 ), 8056 – 8072. https://doi.org/10.1029/2018jb015620
dc.identifier.citedreferenceLindell, M. K., & Prater, C. S. ( 2010 ). Tsunami preparedness on the Oregon and Washington coast: Recommendations for research. Natural Hazards Review, 11 ( 2 ), 69 – 81. https://doi.org/10.1061/(asce)1527-6988(2010)11:2(69)
dc.identifier.citedreferenceMansinha, L., & Smylie, D. ( 1971 ). The displacement fields of inclined faults. Bulletin of the Seismological Society of America, 61 ( 5 ), 1433 – 1440.
dc.identifier.citedreferenceMelgar, D. ( 2021 ). Was the January 26th, 1700 Cascadia earthquake part of an event sequence? Journal of Geophysical Research. Retrieved from https://eartharxiv.org/repository/view/2029/
dc.identifier.citedreferenceMelgar, D., LeVeque, R. J., Dreger, D. S., & Allen, R. M. ( 2016 ). Kinematic rupture scenarios and synthetic displacement data: An example application to the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 121 ( 9 ), 6658 – 6674. https://doi.org/10.1002/2016jb013314
dc.identifier.citedreferenceMunk, W., Snodgrass, F., & Carrier, G. ( 1956 ). Edge waves on the continental shelf. Science, 123 ( 3187 ), 127 – 132. https://doi.org/10.1126/science.123.3187.127
dc.identifier.citedreferenceOkal, E. A. ( 1988 ). Seismic parameters controlling far‐field tsunami amplitudes: A review. Natural Hazards, 1 ( 1 ), 67 – 96. https://doi.org/10.1007/bf00168222
dc.identifier.citedreferencePark, H., Cox, D. T., Alam, M. S., & Barbosa, A. R. ( 2017 ). Probabilistic seismic and tsunami hazard analysis conditioned on a megathrust rupture of the Cascadia subduction zone. Frontiers in built environment, 3, 32. https://doi.org/10.3389/fbuil.2017.00032
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.