Show simple item record

Spring phenological escape is critical for the survival of temperate tree seedlings

dc.contributor.authorLee, Benjamin R.
dc.contributor.authorIbáñez, Inés
dc.date.accessioned2021-09-08T14:34:36Z
dc.date.available2022-09-08 10:34:33en
dc.date.available2021-09-08T14:34:36Z
dc.date.issued2021-08
dc.identifier.citationLee, Benjamin R.; Ibáñez, Inés (2021). "Spring phenological escape is critical for the survival of temperate tree seedlings." Functional Ecology (8): 1848-1861.
dc.identifier.issn0269-8463
dc.identifier.issn1365-2435
dc.identifier.urihttps://hdl.handle.net/2027.42/169262
dc.description.abstractUnderstorey plants in deciduous forests often rely on access to ephemeral light availability before the canopy closes in spring and after the canopy reopens in fall, a strategy commonly referred to as phenological escape. Although there is evidence for a relationship between understorey plant phenology and demographic performance, a mechanistic link is still missing.In this study, we bridged this gap by estimating annual carbon assimilation as a function of foliar phenology and photosynthetic capacity for seedlings of two temperate tree species that commonly co‐occur across eastern North America. We then modelled the relationship between estimated carbon assimilation and observed seedling survival and growth.Our results indicate that seedlings of both species strongly depend on spring phenological escape to assimilate the majority of their annual carbon budget and that this mechanism significantly affects their likelihood of survival (but not growth). Foliar desiccation also played a strong role in driving patterns of seedling survival, suggesting that water availability will also help shape seedling recruitment dynamics. We found only weak associations between seedling senescence in fall and annual carbon assimilation, suggesting that phenological escape in fall plays a relatively minor role in seedling demographic performance.Our results indicate that spring phenological escape is critical for survival of these temperate tree species, and thus, any changes to this dynamic associated with climate change could strongly impact these species’ recruitment.A free Plain Language Summary can be found within the Supporting Information of this article.A free Plain Language Summary can be found within the Supporting Information of this article.
dc.publisherWiley Periodicals, Inc.
dc.publisherThe University of Michigan Press
dc.subject.otherAcer saccharum
dc.subject.otherC3 photosynthesis
dc.subject.othercarbon assimilation
dc.subject.otherdesiccation
dc.subject.otherfoliar phenology
dc.subject.othergrowth
dc.subject.otherQuercus rubra
dc.titleSpring phenological escape is critical for the survival of temperate tree seedlings
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169262/1/fec13821-sup-0001-Summary.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169262/2/fec13821_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169262/3/fec13821.pdf
dc.identifier.doi10.1111/1365-2435.13821
dc.identifier.sourceFunctional Ecology
dc.identifier.citedreferencePatrick, L. D., Ogle, K., & Tissue, D. T. ( 2009 ). A hierarchical Bayesian approach for estimation of photosynthetic parameters of C3 plants. Plant, Cell and Environment, 32 ( 12 ), 1695 – 1709. https://doi.org/10.1111/j.1365‐3040.2009.02029.x
dc.identifier.citedreferencePeltier, D. M. P., & Ibáñez, I. ( 2015 ). Patterns and variability in seedling carbon assimilation: Implications for tree recruitment under climate change. Tree Physiology, 35 ( 1 ), 71 – 85. https://doi.org/10.1093/treephys/tpu103
dc.identifier.citedreferencePfanz, H., & Aschan, G. ( 2001 ). The existence of bark and stem photosynthesis in woody plants and its significance for the overall carbon gain. An eco‐physiological and ecological approach. Progress in Botany, 62, 477 – 510. https://doi.org/10.1007/978‐3‐642‐56849‐7_19
dc.identifier.citedreferencePhillips, R. P., & Fahey, T. J. ( 2006 ). Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology, 87 ( 5 ), 1302 – 1313. https://doi.org/10.1890/0012‐9658(2006)87[1302:TSAMAI]2.0.CO;2
dc.identifier.citedreferencePiao, S., Liu, Q., Chen, A., Janssens, I. A., Fu, Y., Dai, J., Liu, L., Lian, X. U., Shen, M., & Zhu, X. ( 2019 ). Plant phenology and global climate change: Current progresses and challenges. Global Change Biology, 25 ( 6 ), 1922 – 1940. https://doi.org/10.1111/gcb.14619
dc.identifier.citedreferencePiper, F. I., Reyes‐Díaz, M., Corcuera, L. J., & Lusk, C. H. ( 2009 ). Carbohydrate storage, survival, and growth of two evergreen Nothofagus species in two contrasting light environments. Ecological Research, 24 ( 6 ), 1233 – 1241. https://doi.org/10.1007/s11284‐009‐0606‐5
dc.identifier.citedreferenceReich, P. B., Walters, M., Tjoelker, M., Vanderklein, D., & Buschena, C. ( 1998 ). Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Functional Ecology, 12 ( 3 ), 395 – 405. https://doi.org/10.1046/j.1365‐2435.1998.00209.x
dc.identifier.citedreferenceRoman, D. T., Novick, K. A., Brzostek, E. R., Dragoni, D., Rahman, F., & Phillips, R. P. ( 2015 ). The role of isohydric and anisohydric species in determining ecosystem‐scale response to severe drought. Oecologia, 179 ( 3 ), 641 – 654. https://doi.org/10.1007/s00442‐015‐3380‐9
dc.identifier.citedreferenceRouthier, M. C., & Lapointe, L. ( 2002 ). Impact of tree leaf phenology on growth rates and reproduction in the spring flowering species Trillium erectum (Liliaceae). American Journal of Botany, 89 ( 3 ), 500 – 505. https://doi.org/10.3732/ajb.89.3.500
dc.identifier.citedreferenceRuan, X., Pan, C. D., Liu, R., Li, Z. H., Shu‐Ling, L. I., Jiang, D. A., Zhang, J. C., Wang, G., & Zhao, Y. X., Wang, Q. ( 2016 ). Effects of climate warming on plant autotoxicity in forest evolution: A case simulation analysis for Picea schrenkiana regeneration. Ecology and Evolution, 6 ( 16 ), 5854 – 5866. https://doi.org/10.1002/ece3.2315
dc.identifier.citedreferenceSala, A., Woodruff, D. R., & Meinzer, F. C. ( 2012 ). Carbon dynamics in trees: Feast or famine? Tree Physiology, 32 ( 6 ), 764 – 775. https://doi.org/10.1093/treephys/tpr143
dc.identifier.citedreferenceSalifu, K. F., Apostol, K. G., Jacobs, D. F., & Islam, M. A. ( 2008 ). Growth, physiology, and nutrient retranslocation in nitrogen‐15 fertilized Quercus rubra seedlings. Annals of Forest Science, 65 ( 1 ), 101. https://doi.org/10.1051/forest:2007073
dc.identifier.citedreferenceSchneider, C. A., Rasband, W. S., & Eliceiri, K. W. ( 2012 ). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9 ( 7 ), 671 – 675. https://doi.org/10.1038/nmeth.2089
dc.identifier.citedreferenceSeiwa, K. ( 1998 ). Advantages of early germination for growth and survival of seedlings of Acer mono under different overstorey phenologies in deciduous broad‐leaved forests. Journal of Ecology, 86 ( 2 ), 219 – 228. https://doi.org/10.1046/j.1365‐2745.1998.00245.x
dc.identifier.citedreferenceSevillano, I., Short, I., Grant, J., & O’Reilly, C. ( 2016 ). Effects of light availability on morphology, growth and biomass allocation of Fagus sylvatica and Quercus robur seedlings. Forest Ecology and Management, 374, 11 – 19. https://doi.org/10.1016/j.foreco.2016.04.048
dc.identifier.citedreferenceSlot, M., & Kitajima, K. ( 2015 ). Whole‐plant respiration and its temperature sensitivity during progressive carbon starvation. Functional Plant Biology, 42 ( 6 ), 579 – 588. https://doi.org/10.1071/FP14329
dc.identifier.citedreferenceSmith, N. G., & Dukes, J. S. ( 2013 ). Plant respiration and photosynthesis in global‐scale models: Incorporating acclimation to temperature and CO 2. Global Change Biology, 19 ( 1 ), 45 – 63. https://doi.org/10.1111/j.1365‐2486.2012.02797.x
dc.identifier.citedreferenceSpiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. ( 2002 ). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 64 ( 4 ), 583 – 616. https://doi.org/10.1111/1467‐9868.00353
dc.identifier.citedreferenceThroop, H. L., & Lerdau, M. T. ( 2004 ). Effects of nitrogen deposition on insect herbivory: Implications for community and ecosystem processes. Ecosystems, 7 ( 2 ), 109 – 133. https://doi.org/10.1007/s10021‐003‐0225‐x
dc.identifier.citedreferenceUmaña, M. N., Forero‐Montaña, J., Muscarella, R., Nytch, C. J., Thompson, J., Uriarte, M., Zimmerman, J., & Swenson, N. G. ( 2016 ). Interspecific functional convergence and divergence and intraspecific negative density dependence underlie the seed‐to‐seedling transition in tropical trees. The American Naturalist, 187 ( 1 ), 99 – 109. https://doi.org/10.1086/684174
dc.identifier.citedreferenceVitasse, Y., Lenz, A., Hoch, G., & Körner, C. ( 2014 ). Earlier leaf‐out rather than difference in freezing resistance puts juvenile trees at greater risk of damage than adult trees. Journal of Ecology, 102 ( 4 ), 981 – 988. https://doi.org/10.1111/1365‐2745.12251
dc.identifier.citedreferenceWagner, S., Madsen, P., & Ammer, C. ( 2009 ). Evaluation of different approaches for modelling individual tree seedling height growth. Trees ‐ Structure and Function, 23 ( 4 ), 701 – 715. https://doi.org/10.1007/s00468‐009‐0313‐4
dc.identifier.citedreferenceWalters, M. B., & Reich, P. B. ( 1996 ). Are shade tolerance, survival, and growth linked? Low light and nitrogen effects on hardwood seedlings. Ecology, 77 ( 3 ), 841 – 853. https://doi.org/10.2307/2265505
dc.identifier.citedreferenceWilson, E. R., Vitols, K. C., & Park, A. ( 2007 ). Root characteristics and growth potential of container and bare‐root seedlings of red oak ( Quercus rubra L.) in Ontario, Canada. New Forests, 34 ( 2 ), 163 – 176. https://doi.org/10.1007/s11056‐007‐9046‐7
dc.identifier.citedreferenceZani, D., Crowther, T. W., Mo, L., Renner, S. S., & Zohner, C. M. ( 2020 ). Increased growing‐season productivity drives earlier autumn leaf senescence in temperate trees. Science, 370 ( 6520 ), 1066 – 1071. https://doi.org/10.1126/science.abd8911
dc.identifier.citedreferenceAbrams, M. D. ( 1990 ). Adaptations and responses to drought in Quercus species of North America. Tree Physiology, 7 ( 1_2_3_4 ), 227 – 238. https://doi.org/10.1093/treephys/7.1‐2‐3‐4.227
dc.identifier.citedreferenceAbrams, M. D., & Kubiske, M. E. ( 1990 ). Leaf structural characteristics of 31 hardwood and conifer tree species in central Wisconsin: Influence of light regime and shade‐tolerance rank. Forest Ecology and Management, 31 ( 4 ), 245 – 253. https://doi.org/10.1016/0378‐1127(90)90072‐J
dc.identifier.citedreferenceAugspurger, C. K. ( 2008 ). Early spring leaf out enhances growth and survival of saplings in a temperate deciduous forest. Oecologia, 156 ( 2 ), 281 – 286. https://doi.org/10.1007/s00442‐008‐1000‐7
dc.identifier.citedreferenceAugspurger, C. K., & Bartlett, E. A. ( 2003 ). Differences in leaf phenology between juvenile and adult trees in a temperate deciduous forest. Tree Physiology, 23 ( 8 ), 517 – 525. https://doi.org/10.1093/treephys/23.8.517
dc.identifier.citedreferenceBahari, Z. A., Pallardy, S. G., & Parker, W. C. ( 1985 ). Photosynthesis, water relations, and drought adaptation in six woody species of oak‐hickory forests in Central Missouri. Forest Science, 31 ( 3 ), 557 – 569.
dc.identifier.citedreferenceBarnes, B. V., & Wagner Jr., W. H. ( 2004 ). Michigan trees: A guide to the trees of the Great Lakes Region. The University of Michigan Press.
dc.identifier.citedreferenceBauerle, W. L., Oren, R., Way, D. A., Qian, S. S., Stoy, P. C., Thornton, P. E., Bowden, J. D., Hoffman, F. M., & Reynolds, R. F. ( 2012 ). Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling. Proceedings of the National Academy of Sciences of the United States of America, 109 ( 22 ), 8612 – 8617. https://doi.org/10.1073/pnas.1119131109
dc.identifier.citedreferenceCaemmerer, S. V. (Ed.) ( 2000 ). Biochemical models of leaf photosynthesis. Techniques in plant sciences (pp. 35 – 46 ). CSIRO Publishing.
dc.identifier.citedreferenceCanham, C. D., Kobe, R. K., Latty, E. F., & Chazdon, R. L. ( 1999 ). Interspecific and intraspecific variation in tree seedling survival: Effects of allocation to roots versus carbohydrate reserves. Oecologia, 121 ( 1 ), 1 – 11. https://doi.org/10.1007/s004420050900
dc.identifier.citedreferenceCastro, J. ( 1999 ). Seed mass versus seedling performance in Scots pine: A maternally dependent trait. New Phytologist, 144 ( 1 ), 153 – 161. https://doi.org/10.1046/j.1469‐8137.1999.00495.x
dc.identifier.citedreferenceCavender‐Bares, J., & Bazzaz, F. A. ( 2000 ). Changes in drought response strategies with ontogeny in Quercus rubra: Implications for scaling from seedlings to mature trees. Oecologia, 124 ( 1 ), 8 – 18. https://doi.org/10.1007/PL00008865
dc.identifier.citedreferenceClassen, A. T., Sundqvist, M. K., Henning, J. A., Newman, G. S., Moore, J. A. M., Cregger, M. A., Moorhead, L. C., & Patterson, C. M. ( 2015 ). Direct and indirect effects of climate change on soil microbial and soil microbial‐plant interactions: What lies ahead? Ecosphere, 6 ( 8 ). https://doi.org/10.1890/ES15‐00217.1
dc.identifier.citedreferenceColey, P. D. ( 1988 ). Effects of plant growth rate and leaf lifetime on the amount and type of anti‐herbivore defense. Oecologia, 74 ( 4 ), 531 – 536. https://doi.org/10.1007/BF00380050
dc.identifier.citedreferenceCraine, J. M., & Reich, P. B. ( 2005 ). Leaf‐level light compensation points in shade‐tolerant woody seedlings. New Phytologist, 166, 710 – 713. https://doi.org/10.1111/j.1469‐8137.2005.01420.x
dc.identifier.citedreferenceCrow, T. R. ( 1988 ). Reproductive mode and mechanisms for self‐replacement of northern red oak ( Quercus rubra ): A review. Forest Science, 34 ( 1 ), 19 – 40. https://doi.org/10.1016/S0378‐1127(03)00108‐7
dc.identifier.citedreferenceDickman, L. T., Mcdowell, N. G., Sevanto, S., Pangle, R. E., & Pockman, W. T. ( 2015 ). Carbohydrate dynamics and mortality in a piñon‐juniper woodland under three future precipitation scenarios. Plant, Cell and Environment, 38 ( 4 ), 729 – 739. https://doi.org/10.1111/pce.12441
dc.identifier.citedreferenceFarquhar, G. D., Caemmerer, S. V., & Berry, J. A. ( 1980 ). A biochemical model of photosynthetic CO 2 assimilation in leaves of C3 species. Planta, 149, 78 – 90. https://doi.org/10.1007/BF00386231
dc.identifier.citedreferenceForrest, J., & Miller‐Rushing, A. J. ( 2010 ). Toward a synthetic understanding of the role of phenology in ecology and evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 365 ( 1555 ), 3101 – 3112. https://doi.org/10.1098/rstb.2010.0145
dc.identifier.citedreferenceGelman, A., & Rubin, D. B. ( 1992 ). Inference from iterative simulation using multiple sequences. Statistical Science, 7 ( 4 ), 457 – 511. https://doi.org/10.1214/ss/1177011136
dc.identifier.citedreferenceGerhardt, K. ( 1998 ). Leaf defoliation of tropical dry forest tree seedlings – Implications for survival and growth. Trees ‐ Structure and Function, 13 ( 2 ), 88 – 95. https://doi.org/10.1007/PL00009741
dc.identifier.citedreferenceGómez‐Aparicio, L., & Canham, C. D. ( 2008 ). Neighbourhood analyses of the allelopathic effects of the invasive tree Ailanthus altissima in temperate forests. Journal of Ecology, 96 ( 3 ), 447 – 458. https://doi.org/10.1111/j.1365‐2745.2007.01352.x
dc.identifier.citedreferenceGonzález‐Rodríguez, V., Villar, R., & Navarro‐Cerrillo, R. M. ( 2011 ). Maternal influences on seed mass effect and initial seedling growth in four Quercus species. Acta Oecologica, 37 ( 1 ), 1 – 9. https://doi.org/10.1016/j.actao.2010.10.006
dc.identifier.citedreferenceGreen, P. T., Harms, K. E., & Connell, J. H. ( 2014 ). Nonrandom, diversifying processes are disproportionately strong in the smallest size classes of a tropical forest. Proceedings of the National Academy of Sciences of the United States of America, 111 ( 52 ), 18649 – 18654. https://doi.org/10.1073/pnas.1321892112
dc.identifier.citedreferenceGrossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., & McDowell, N. G. ( 2020 ). Plant responses to rising vapor pressure deficit. New Phytologist, 226 ( 6 ), 1550 – 1566. https://doi.org/10.1111/nph.16485
dc.identifier.citedreferenceGrubb, P. J. ( 1977 ). The maintenance of species‐richness in plant communities: The importance of the regeneration niche. Biological Reviews, 52 ( 4 ), 107 – 145. https://doi.org/10.1111/j.1469‐185X.1977.tb01347.x
dc.identifier.citedreferenceHandler, S., Duveneck, M. J., Iverson, L., Peters, E., Scheller, R. M., Wythers, K. R., Brandt, L., Butler, P., Janowiak, M., Shannon, P. D., Swanston, C., Eagle, A. C., Cohen, J. G., Corner, R., Reich, P. B., Baker, T., Chin, S., Clark, E., Fehringer, D., … Ziel, R. ( 2014 ). Michigan forest ecosystem vulnerability assessment and synthesis: A report from the Northwoods Climate Change Response Framework project. In General Technical Report NRS‐129. https://doi.org/10.2737/NRS‐GTR‐129
dc.identifier.citedreferenceHarper, J. L. ( 1977 ). Population biology of plants. Academic Press.
dc.identifier.citedreferenceHeberling, J. M., Cassidy, S. T., Fridley, J. D., & Kalisz, S. ( 2019 ). Carbon gain phenologies of spring‐flowering perennials in a deciduous forest indicate a novel niche for a widespread invader. New Phytologist, 221 ( 2 ), 778 – 788. https://doi.org/10.1111/nph.15404
dc.identifier.citedreferenceHeberling, J. M., McDonough MacKenzie, C., Fridley, J. D., Kalisz, S., & Primack, R. B. ( 2019 ). Phenological mismatch with trees reduces wildflower carbon budgets. Ecology Letters, 22 ( 4 ), 616 – 623. https://doi.org/10.1111/ele.13224
dc.identifier.citedreferenceHlásny, T., Barcza, Z., Fabrika, M., Balázs, B., Churkina, G., Pajtík, J., Sedmák, R., & Turcáni, M. ( 2011 ). Climate change impacts on growth and carbon balance of forests in Central Europe. Climate Research, 47 ( 3 ), 219 – 236. https://doi.org/10.3354/cr01024
dc.identifier.citedreferenceHoch, G., Siegwolf, R. T. W., Keel, S. G., Körner, C., & Han, Q. ( 2013 ). Fruit production in three masting tree species does not rely on stored carbon reserves. Oecologia, 171 ( 3 ), 653 – 662. https://doi.org/10.1007/s00442‐012‐2579‐2
dc.identifier.citedreferenceIbáñez, I., Katz, D. S. W., & Lee, B. R. ( 2017 ). The contrasting effects of short‐term climate change on the early recruitment of tree species. Oecologia, 184 ( 3 ), 701 – 713. https://doi.org/10.1007/s00442‐017‐3889‐1
dc.identifier.citedreferenceIbáñez, I., Primack, R. B., Miller‐Rushing, A. J., Ellwood, E., Higuchi, H., Lee, S. D., Kobori, H., & Silander, J. A. ( 2010 ). Forecasting phenology under global warming. Philosophical Transactions of the Royal Society B: Biological Sciences, 365 ( 1555 ), 3247 – 3260. https://doi.org/10.1098/rstb.2010.0120
dc.identifier.citedreferenceJackson, S. T., & Williams, J. W. ( 2004 ). Modern analogs in quaternary paleoecology: Here today, gone yesterday, gone tomorrow? Annual Review of Earth and Planetary Sciences, 32 ( 1 ), 495 – 537. https://doi.org/10.1146/annurev.earth.32.101802.120435
dc.identifier.citedreferenceJacques, M. H., Lapointe, L., Rice, K., Montgomery, R. A., Stefanski, A., & Reich, P. B. ( 2015 ). Responses of two understory herbs, Maianthemum canadense and Eurybia macrophylla, to experimental forest warming: Early emergence is the key to enhanced reproductive output. American Journal of Botany, 102 ( 10 ), 1610 – 1624. https://doi.org/10.3732/ajb.1500046
dc.identifier.citedreferenceJain, A., Sarsaiya, S., Wu, Q., Lu, Y., & Shi, J. ( 2019 ). A review of plant leaf fungal diseases and its environment speciation. Bioengineered, 10 ( 1 ), 409 – 424. https://doi.org/10.1080/21655979.2019.1649520
dc.identifier.citedreferenceJuice, S. M., Fahey, T. J., Siccama, T. G., Driscoll, C. T., Denny, E. G., Eagar, C., Cleavitt, N. L., Minocha, R., & Richardson, A. D. ( 2006 ). Response of sugar maple to calcium addition to northern hardwood forest. Ecology, 87 ( 5 ), 1267 – 1280. https://doi.org/10.1890/0012‐9658(2006)87[1267:ROSMTC]2.0.CO;2
dc.identifier.citedreferenceKaelke, C. M., Kruger, E. L., Reich, P. B., Kaelke, C. M., Kruger, E. L., & Reich, P. B. ( 2001 ). Trade‐offs in seedling survival, growth, and physiology among hardwood species of contrasting successional status along a light‐availability gradient. Canadian Journal of Forest Research, 31, 1602 – 1616. https://doi.org/10.1139/cjfr‐31‐9‐1602
dc.identifier.citedreferenceKeenan, T. F., & Richardson, A. D. ( 2015 ). The timing of autumn senescence is affected by the timing of spring phenology: Implications for predictive models. Global Change Biology, 21 ( 7 ), 2634 – 2641. https://doi.org/10.1111/gcb.12890
dc.identifier.citedreferenceKorol, R. L., Running, S. W., Milner, K. S., & Hunt Jr., E. R. ( 1991 ). Testing a mechanistic carbon balance model against observed tree growth. Canadian Journal of Forest Research, 21, 1098 – 1105. https://doi.org/10.1139/x91‐151
dc.identifier.citedreferenceKwit, M. C., Rigg, L. S., & Goldblum, D. ( 2010 ). Sugar maple seedling carbon assimilation at the northern limit of its range: The importance of seasonal light. Canadian Journal of Forest Research, 40 ( 2 ), 385 – 393. https://doi.org/10.1139/X09‐196
dc.identifier.citedreferenceLapointe, L. ( 2001 ). How phenology influences physiology in deciduous forest spring ephemerals. Physiologia Plantarum, 113 ( 2 ), 151 – 157. https://doi.org/10.1034/j.1399‐3054.2001.1130201.x
dc.identifier.citedreferenceLarigauderie, A., & Körner, C. ( 1995 ). Acclimation of leaf dark respiration to temperature in alpine and lowland plant species. Annals of Botany, 76, 245 – 252. https://doi.org/10.1006/anbo.1995.1093
dc.identifier.citedreferenceLee, B. R., & Ibáñez, I. ( 2021 ). Data from: Spring phenological escape is critical for the survival of temperate tree seedlings. Zenodo Digital Repository, https://doi.org/10.5061/dryad.1c59zw3tk
dc.identifier.citedreferenceLei, T. T., & Lechowicz, M. J. ( 1990 ). Shade adaptation and shade tolerance in saplings of three Acer species from eastern North America. Oecologia, 84, 224 – 228. https://doi.org/10.1007/BF00318275
dc.identifier.citedreferenceLiang, X., Zhang, T., Lu, X., Ellsworth, D. S., BassiriRad, H., You, C., Wang, D., He, P., Deng, Q. I., Liu, H., Mo, J., & Ye, Q. ( 2020 ). Global response patterns of plant photosynthesis to nitrogen addition: A meta‐analysis. Global Change Biology, 26 ( 6 ), 3585 – 3600. https://doi.org/10.1111/gcb.15071
dc.identifier.citedreferenceLoewenstein, N. J., & Pallardy, S. G. ( 1998 ). Drought tolerance, xylem sap abscisic acid and stomatal conductance during soil drying: A comparison of young plants of four temperate deciduous angiosperms. Tree Physiology, 18, 421 – 430. https://doi.org/10.1093/treephys/18.7.421
dc.identifier.citedreferenceLunn, D., Spiegelhalter, D. J., Thomas, A., & Best, N. ( 2009 ). The BUGS project: Evolution, critique and future directions. Statistics in Medicine, 28, 3049 – 3067. https://doi.org/10.1002/sim.3680
dc.identifier.citedreferenceLusk, C. H., & Del Pozo, A. ( 2002 ). Survival and growth of seedlings of 12 Chilean rainforest trees in two light environments: Gas exchange and biomass distribution correlates. Austral Ecology, 27 ( 2 ), 173 – 182. https://doi.org/10.1046/j.1442‐9993.2002.01168.x
dc.identifier.citedreferenceMarks, P. L., & Gardescu, S. ( 1998 ). A case study of sugar maple ( Acer saccharum ) as a forest seedling bank species. Journal of the Torrey Botanical Society, 125 ( 4 ), 287 – 296. https://doi.org/10.2307/2997242
dc.identifier.citedreferenceMartin, P. H., Canham, C. D., & Kobe, R. K. ( 2010 ). Divergence from the growth‐survival trade‐off and extreme high growth rates drive patterns of exotic tree invasions in closed‐canopy forests. Journal of Ecology, 98 ( 4 ), 778 – 789. https://doi.org/10.1111/j.1365‐2745.2010.01666.x
dc.identifier.citedreferenceMcCarthy‐Neumann, S., & Ibáñez, I. ( 2012 ). Tree range expansion may be enhanced by escape from negative plant–soil feedbacks. Ecology, 93 ( 12 ), 2637 – 2649. https://doi.org/10.1890/11‐2281.1
dc.identifier.citedreferenceMcCarthy‐Neumann, S., & Ibáñez, I. ( 2013 ). Plant–soil feedback links negative distance dependence and light gradient partitioning during seedling establishment. Ecology, 94 ( 4 ), 780 – 786. https://doi.org/10.1890/12‐1338.1
dc.identifier.citedreferenceMcCarthy‐Neumann, S., & Kobe, R. K. ( 2010 ). Conspecific and heterospecific plant‐soil feedbacks influence survivorship and growth of temperate tree seedlings. Journal of Ecology, 98 ( 2 ), 408 – 418. https://doi.org/10.1111/j.1365‐2745.2009.01620.x
dc.identifier.citedreferenceMcDowell, N. G., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., & Williams, D. G., Yepez, E. A. ( 2008 ). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178 ( 4 ), 719 – 739. https://doi.org/10.1111/j.1469‐8137.2008.02436.x
dc.identifier.citedreferenceMcDowell, N. G., & Sevanto, S. ( 2010 ). The mechanisms of carbon starvation: How, when, or does it even occur at all? New Phytologist, 186, 264 – 266. https://doi.org/10.1111/nph.12154
dc.identifier.citedreferenceMcNaughton, S. J. ( 1983 ). Compensatory plant growth as a response to herbivory. Oikos, 40 ( 3 ), 329 – 336.Retrieved from https://www.jstor.org/stable/3544305
dc.identifier.citedreferenceMenzel, A., & Fabian, P. ( 1999 ). Growing season extended in Europe. Nature, 397 ( 6721 ), 659. https://doi.org/10.1038/17709
dc.identifier.citedreferenceMetz, C. E. ( 1978 ). Basic principles of ROC analysis. Seminars in Nuclear Medicine, 8 ( 4 ), 283 – 298. https://doi.org/10.1016/S0001‐2998(78)80014‐2
dc.identifier.citedreferenceMidgley, M. G., Brzostek, E., & Phillips, R. P. ( 2015 ). Decay rates of leaf litters from arbuscular mycorrhizal trees are more sensitive to soil effects than litters from ectomycorrhizal trees. Journal of Ecology, 103 ( 6 ), 1454 – 1463. https://doi.org/10.1111/1365‐2745.12467
dc.identifier.citedreferenceMontgomery, R. ( 2004 ). Relative importance of photosynthetic physiology and biomass allocation for tree seedling growth across a broad light gradient. Tree Physiology, 24 ( 2 ), 155 – 167. https://doi.org/10.1093/treephys/24.2.155
dc.identifier.citedreferenceMooney, H. A. ( 1972 ). The carbon balance of plants. Annual Review of Ecology and Systematics, 3 ( 1 ), 315 – 346. https://doi.org/10.1146/annurev.es.03.110172.001531
dc.identifier.citedreferenceMurtaugh, P. A. ( 1996 ). The statistical evaluation of ecological indicators. Ecological Applications, 6 ( 1 ), 132 – 139. https://doi.org/10.2307/2269559
dc.identifier.citedreferenceNabity, P. D., Zavala, J. A., & DeLucia, E. H. ( 2009 ). Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Annals of Botany, 103 ( 4 ), 655 – 663. https://doi.org/10.1093/aob/mcn127
dc.identifier.citedreferenceNiinemets, Ü. ( 2010 ). A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecological Research, 25 ( 4 ), 693 – 714. https://doi.org/10.1007/s11284‐010‐0712‐4
dc.identifier.citedreferenceNorby, R. J. ( 2021 ). Comment on ‘Increased growing‐season productivity drives earlier autumn leaf senescence in temperate trees’. Science, 371 ( 6533 ), eabg1438. https://doi.org/10.1126/science.abg1438
dc.identifier.citedreferencePellissier, F., & Souto, X. C. ( 1999 ). Allelopathy in northern temperate and boreal semi‐natural woodland. Critical Reviews in Plant Sciences, 18 ( 5 ), 637 – 652. https://doi.org/10.1080/07352689991309423
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.