Show simple item record

The feasibility of ultrasound‐assisted endovascular laser thrombolysis in an acute rabbit thrombosis model

dc.contributor.authorSingh, Rohit
dc.contributor.authorJo, Janggun
dc.contributor.authorRiegel, Matthew
dc.contributor.authorForrest, M. Laird
dc.contributor.authorYang, Xinmai
dc.date.accessioned2021-09-08T14:34:40Z
dc.date.available2022-09-08 10:34:38en
dc.date.available2021-09-08T14:34:40Z
dc.date.issued2021-08
dc.identifier.citationSingh, Rohit; Jo, Janggun; Riegel, Matthew; Forrest, M. Laird; Yang, Xinmai (2021). "The feasibility of ultrasound‐assisted endovascular laser thrombolysis in an acute rabbit thrombosis model." Medical Physics (8): 4128-4138.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/169264
dc.description.abstractPurposeThis study aimed to test the feasibility of combined ultrasound and laser technique, namely, ultrasound‐assisted endovascular laser thrombolysis (USELT), for thrombolysis by conducting in vivo tests in a rabbit thrombosis model.Materials and methodsAn acute thrombus was created in the right jugular vein of rabbit and then was treated with ultrasound only, laser only, and USELT to dissolve the blood clot. A total of 20 rabbits were used. Out of which, the first three rabbits were used to titrate the laser and ultrasound parameters. Then, five rabbits were treated with ultrasound only, five rabbits were treated with laser only, and seven rabbits were treated with USELT. During USELT, 532‐nm laser pulses were delivered endovascularly directly to the clot through a fiber optic, and 0.5 MHz ultrasound pulses were applied noninvasively to the same region. A laser fluence of 4 to 12 mJ/cm2 and ultrasound amplitude of 1 to 2 MPa were used. Recanalization of the jugular vein was assessed by performing ultrasound Doppler imaging immediately after the treatment. The maximum blood flow speed after the treatment as compared to its value before the treatment was used to calculate the blood flow recovery in vessel.ResultsThe blood flow was fully recovered (100%) in three rabbits, partially recovered in two rabbits (more than 50% and less than 100%) with mean percentage recovery of 69.73% and poorly recovered in two rabbits (<50%) with mean percentage recovery of 6.2% in the USELT group. In contrast, the treatment group with ultrasound or laser alone did not show recanalization of vein in any case, all the five rabbits were poorly/not recovered with a mean percentage recovery of 0%.ConclusionsThe USELT technology was shown to effectively dissolve the blood clots in an acute rabbit jugular vein thrombosis model.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherendovascular laser thrombolysis
dc.subject.othercavitation
dc.subject.otherrabbit thrombosis model
dc.subject.othernoninvasive ultrasound thrombolysis
dc.titleThe feasibility of ultrasound‐assisted endovascular laser thrombolysis in an acute rabbit thrombosis model
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169264/1/mp15068.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169264/2/mp15068-sup-0004-Supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169264/3/mp15068_am.pdf
dc.identifier.doi10.1002/mp.15068
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceCui H, Yang X. Real‐time monitoring of high‐intensity focused ultrasound ablations with photoacoustic technique: an in vitro study [published online ahead of print 2011/10/14]. Med Phys. 2011; 38 ( 10 ): 5345 ‐ 5350.
dc.identifier.citedreferenceTopaz O, Vetrovec G. Laser for optical thrombolysis and facilitation of balloon angioplasty in acute myocardial infarction following failed pharmacologic thrombolysis. Cathet Cardiovasc Diagn. 1995; 36 ( 1 ): 38 ‐ 42.
dc.identifier.citedreferenceShangguan HQ, Gregory KW, Casperson LW, Prahl SA. Enhanced laser thrombolysis with photomechanical drug delivery: an in vitro study. Lasers Surg Med. 1998; 23 ( 3 ): 151 ‐ 160.
dc.identifier.citedreferenceDenheijer P, Vandijk RB, Pentinga ML, Hillege HL, Lie KI. Laser thrombolysis in acute myocardial infarction: results of a clinical feasibility study. J Interv Cardiol. 1994; 7 ( 6 ): 525 ‐ 534.
dc.identifier.citedreferenceHazlewood D, Yang X. Enhanced laser surface ablation with an integrated photoacoustic imaging and high intensity focused ultrasound system. Lasers Surg Med. 2019; 51 ( 7 ): 616 ‐ 624.
dc.identifier.citedreferenceZhang H, Xie X, Li J, et al. Removal of choroidal vasculature using concurrently applied ultrasound bursts and nanosecond laser pulses. Sci Rep. 2018; 8 ( 1 ): 12848.
dc.identifier.citedreferenceLi S, Qin Y, Wang X, Yang X. Bubble growth in cylindrically‐shaped optical absorbers during photo‐mediated ultrasound therapy [published online ahead of print 2018/05/26]. Phys Med Biol. 2018; 63 ( 12 ): 125017.
dc.identifier.citedreferenceHu Z, Zhang H, Mordovanakis A, et al. High‐precision, non‐invasive anti‐microvascular approach via concurrent ultrasound and laser irradiation. Sci Rep. 2017; 7: 40243.
dc.identifier.citedreferenceCui H, Staley J, Yang X. Integration of photoacoustic imaging and high‐intensity focused ultrasound. J Biomed Optics. 2010; 15 ( 2 ): 021312.
dc.identifier.citedreferenceCui H, Yang X. Enhanced‐heating effect during photoacoustic imaging‐guided high‐intensity focused ultrasound. Appl Phys Lett. 2011; 99 ( 23 ): 231113.
dc.identifier.citedreferenceCui H, Yang X. Laser enhanced high‐intensity focused ultrasound thrombolysis: an in vitro study. J Acoust Soc Am. 2013; 133 ( 2 ): El123 ‐ 128.
dc.identifier.citedreferenceCui H, Zhang T, Yang X. Laser‐enhanced cavitation during high intensity focused ultrasound: an in vivo study. Appl Phys Lett. 2013; 102 ( 13 ): 133702.
dc.identifier.citedreferenceHazlewood D, Yang X. Enhanced cavitation activity in a slab‐shaped optical absorber during photo‐mediated ultrasound therapy. Phys Med Biol. 2020; 65 ( 5 ): 055006.
dc.identifier.citedreferenceJo J, Forrest ML, Yang X. Ultrasound‐assisted laser thrombolysis with endovascular laser and high‐intensity focused ultrasound. Med Phys. 2020; 48 ( 2 ): 579 ‐ 586. https://doi.org/10.1002/mp.14636
dc.identifier.citedreferencePaulus YM, Jain AT, Gariano RF, et al. Healing of retinal photocoagulation lesions. Invest Ophthalmol Vis Sci. 2008; 49 ( 12 ): 5540 ‐ 5545.
dc.identifier.citedreferenceChurch CC. Spontaneous homogeneous nucleation, inertial cavitation and the safety of diagnostic ultrasound. Ultrasound Med Biol. 2002; 28 ( 10 ): 1349 ‐ 1364.
dc.identifier.citedreferenceJo J, Yang X. Laser‐enhanced high‐intensity focused ultrasound heating in an in vivo small animal model. Appl Phys Lett. 2016; 109 ( 21 ): 213702.
dc.identifier.citedreferenceHoffman HJ, Telfair WB. Photospallation: a new theory and mechanism for mid‐infrared corneal ablations. J Refract Surg. 2000; 16 ( 1 ): 90 ‐ 94.
dc.identifier.citedreferenceVogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem Rev. 2003; 103 ( 2 ): 577 ‐ 644.
dc.identifier.citedreferenceArnal B, Wei C‐W, Perez C, et al. Sono‐photoacoustic imaging of gold nanoemulsions: part II. Real time imaging. Photoacoustics. 2015; 3 ( 1 ): 11 ‐ 19.
dc.identifier.citedreferenceArnal B, Perez C, Wei C‐W, et al. Sono‐photoacoustic imaging of gold nanoemulsions: part I. Exposure thresholds. Photoacoustics. 2015; 3 ( 1 ): 3 ‐ 10.
dc.identifier.citedreferenceFarny CH, Wu TM, Holt RG, Murray TW, Roy RA. Nucleating cavitation from laser‐illuminated nano‐particles. Acoust Res Lett Online‐Arlo. 2005; 6 ( 3 ): 138 ‐ 143.
dc.identifier.citedreferenceMcLaughlan JR, Roy RA, Ju H, Murray TW. Ultrasonic enhancement of photoacoustic emissions by nanoparticle‐targeted cavitation. Opt Lett. 2010; 35 ( 13 ): 2127 ‐ 2129.
dc.identifier.citedreferenceJu H, Roy RA, Murray TW. Gold nanoparticle targeted photoacoustic cavitation for potential deep tissue imaging and therapy. Biomed Optics Exp. 2013; 4 ( 1 ): 66 ‐ 76.
dc.identifier.citedreferenceJha AK, Larizgoitia I, Audera‐Lopez C, Prasopa‐Plaizier N, Waters H, Bates DW. The global burden of unsafe medical care: analytic modelling of observational studies. BMJ Q. Safety. 2013; 22 ( 10 ): 809 ‐ 815.
dc.identifier.citedreferenceAugustinos P, Ouriel K. Invasive approaches to treatment of venous thromboembolism. Circulation. 2004; 110 ( 9 ): I27 ‐ I34.
dc.identifier.citedreferenceJohnson BF, Manzo RA, Bergelin RO, Strandness DE. Relationship between changes in the deep venous system and the development of the postthrombotic‐syndrome after an acute episode of lower‐limb deep‐vein thrombosis ‐ a one‐year to 6‐year follow‐up. J Vasc Surg. 1995; 21 ( 2 ): 307 ‐ 313.
dc.identifier.citedreferenceKahn SR, Ginsberg JS. Relationship between deep venous thrombosis and the postthrombotic syndrome. Arch Intern Med. 2004; 164 ( 1 ): 17 ‐ 26.
dc.identifier.citedreferenceGrosse SD, Nelson RE, Nyarko KA, Richardson LC, Raskob GE. The economic burden of incident venous thromboembolism in the United States: a review of estimated attributable healthcare costs. Thromb Res. 2016; 137: 3 ‐ 10.
dc.identifier.citedreferenceKearon C, Akl EA, Ornelas J, et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest. 2016; 149 ( 2 ): 315 ‐ 352.
dc.identifier.citedreferenceMazzolai L, Aboyans V, Ageno W, et al. Diagnosis and management of acute deep vein thrombosis: a joint consensus document from the European Society of Cardiology working groups of aorta and peripheral vascular diseases and pulmonary circulation and right ventricular function. Eur Heart J. 2018; 39 ( 47 ): 4208 ‐ 4218.
dc.identifier.citedreferenceBose G, Graveline J, Yogendrakumar V, Fergusson D, Dowlatshahi D. Direct oral anticoagulants in treatment of cerebral venous thrombosis: a systematic review protocol. Syst Rev. 2019; 8 ( 1 ): 99.
dc.identifier.citedreferenceDaley MJ, Murthy MS, Peterson EJ. Bleeding risk with systemic thrombolytic therapy for pulmonary embolism: scope of the problem. Therap Adv Drug Safety. 2015; 6 ( 2 ): 57 ‐ 66.
dc.identifier.citedreferenceLuo H, Steffen W, Cercek B, Arunasalam S, Maurer G, Siegel RJ. Enhancement of thrombolysis by external ultrasound. Am Heart J. 1993; 125 ( 6 ): 1564 ‐ 1569.
dc.identifier.citedreferenceWright C, Hynynen K, Goertz D. In vitro and in vivo high‐intensity focused ultrasound thrombolysis. Invest Radiol. 2012; 47 ( 4 ): 217 ‐ 225.
dc.identifier.citedreferenceStone MJ, Frenkel V, Dromi S, et al. Pulsed‐high intensity focused ultrasound enhanced tPA mediated thrombolysis in a novel in vivo clot model, a pilot study. Thromb Res. 2007; 121 ( 2 ): 193 ‐ 202.
dc.identifier.citedreferenceTachibana K, Tachibana S. Th echo‐contrast material as an enhancer for ultrasound accelerated thrombolysis. Circulation. 1995; 92 ( 5 ): 1148 ‐ 1150.
dc.identifier.citedreferenceUnger EC, Matsunaga TO, McCreery T, Schumann P, Sweitzer R, Quigley R. Therapeutic applications of microbubbles. Eur J Radiol. 2002; 42 ( 2 ): 160 ‐ 168.
dc.identifier.citedreferenceParikh S, Motarjeme A, McNamara T, et al. Ultrasound‐accelerated thrombolysis for the treatment of deep vein thrombosis: initial clinical experience. J Vasc Interv Radiol. 2008; 19 ( 4 ): 521 ‐ 528.
dc.identifier.citedreferenceTer Haar G. Therapeutic ultrasound. Eur J Ultrasound. 1999; 9 ( 1 ): 3 ‐ 9.
dc.identifier.citedreferenceMaxwell AD, Owens G, Gurm HS, Ives K, Myers DD, Xu Z. Noninvasive treatment of deep venous thrombosis using pulsed ultrasound cavitation therapy (Histotripsy) in a porcine model. J Vasc Interv Radiol. 2011; 22 ( 3 ): 369 ‐ 377.
dc.identifier.citedreferenceRosnitskiy PB, Yuldashev PV, Sapozhnikov OA, et al. Design of HIFU transducers for generating specified nonlinear ultrasound fields. IEEE Trans Ultrason Ferroelectr Freq Control. 2017; 64 ( 2 ): 374 ‐ 390.
dc.identifier.citedreferenceSponer J. Dependence of the cavitation threshold on the ultrasonic frequency. Czech J Phys. 1990; 40 ( 10 ): 1123 ‐ 1132.
dc.identifier.citedreferenceDatta S, Coussics C‐C, Ammi AY, Mast TD, de Courten‐Myers GM, Holland CK. Ultrasound‐enhanced thrombolysis using Definity (R) as a cavitation nucleation agent. Ultrasound Med Biol. 2008; 34 ( 9 ): 1421 ‐ 1433.
dc.identifier.citedreferenceKhumri TM, Main ML. Safety and risk‐benefit profile of microbubble contrast agents in echocardiography. Asia Pacif Cardiol. 2008; 2 ( 1 ): 47 ‐ 49.
dc.identifier.citedreferenceParadossi G, Oddo L, Cerroni B, et al. In vivo toxicity study of engineered lipid microbubbles in rodents. ACS Omega. 2019; 4 ( 3 ): 5526 ‐ 5533.
dc.identifier.citedreferenceChang EH. An introduction to contrast‐enhanced ultrasound for nephrologists. Nephron. 2018; 138 ( 3 ): 176 ‐ 185.
dc.identifier.citedreferenceNogueira RG, Schwamm LH, Hirsch JA. Endovascular approaches to acute stroke, part 1: drugs, devices, and data. Am J Neuroradiol. 2009; 30 ( 4 ): 649 ‐ 661.
dc.identifier.citedreferenceBerlis A, Lutsep H, Barnwell S, et al. Mechanical thrombolysis in acute ischemic stroke with endovascular photoacoustic recanalization. Stroke. 2004; 35 ( 5 ): 1112 ‐ 1116.
dc.identifier.citedreferenceShah R, Martin RE, Topaz O. Laser angioplasty and laser‐induced thrombolysis in revascularization of anomalous coronary arteries. The J Invasive Cardiol. 2002; 14 ( 4 ): 180 ‐ 186.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.