Show simple item record

Current‐Density Regulating Lithium Metal Directional Deposition for Long Cycle‐Life Li Metal Batteries

dc.contributor.authorMao, Heng
dc.contributor.authorYu, Wei
dc.contributor.authorCai, Zhuanyun
dc.contributor.authorLiu, Guixian
dc.contributor.authorLiu, Limin
dc.contributor.authorWen, Rui
dc.contributor.authorSu, Yaqiong
dc.contributor.authorKou, Huari
dc.contributor.authorXi, Kai
dc.contributor.authorLi, Benqiang
dc.contributor.authorZhao, Hongyang
dc.contributor.authorDa, Xinyu
dc.contributor.authorWu, Hu
dc.contributor.authorYan, Wei
dc.contributor.authorDing, Shujiang
dc.date.accessioned2021-09-08T14:35:00Z
dc.date.available2022-09-08 10:34:57en
dc.date.available2021-09-08T14:35:00Z
dc.date.issued2021-08-23
dc.identifier.citationMao, Heng; Yu, Wei; Cai, Zhuanyun; Liu, Guixian; Liu, Limin; Wen, Rui; Su, Yaqiong; Kou, Huari; Xi, Kai; Li, Benqiang; Zhao, Hongyang; Da, Xinyu; Wu, Hu; Yan, Wei; Ding, Shujiang (2021). "Current‐Density Regulating Lithium Metal Directional Deposition for Long Cycle‐Life Li Metal Batteries." Angewandte Chemie 133(35): 19455-19462.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/169273
dc.description.abstractUncontrolled dendrite formation in the high energy density of lithium (Li) metal batteries (LMBs) may pose serious safety risks. While numerous studies have attempted to protect separators, these proposed methods fail to effectively inhibit upward dendrite growth that punctures through the separator. Here, we introduce a novel “orientated‐growth” strategy that transfers the main depositional interface to the anode/current collector interface from the anode/separator interface. We placed a layer of cellulose/graphene carbon composite aerogel (CCA) between the current collector and the anode (LCL‐bottom). This layer works as a charge organizer that induces a high current density and encourages Li to deposit at the anode/current collector interface. Both in situ and ex situ images of the electrode demonstrate that the anode part of the cell has been flipped; with the newly deposited particles facing the current collector and the smooth surface facing the separator. The electrode in half and full cells showed outstanding cyclic stability and rate capability, with the LCL‐bottom/LFP full cell capable of maintaining 94 % of its initial capacity after 1000 cycles.The structure of Li metal anode was designed, in which, the CCA layer working as charge organizer was placed between the current collector and the anode. It makes the main Li depositional interface transfer to the anode/current collector interface from the anode/separator interface, which effectively protects the separate. Electrochemical characterization of the electrode in half and full cells was significantly improved.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdepositional interface transfer
dc.subject.otheranode/separator interface
dc.subject.otherlithium metal battery
dc.subject.otherlong cycles
dc.titleCurrent‐Density Regulating Lithium Metal Directional Deposition for Long Cycle‐Life Li Metal Batteries
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169273/1/ange202105831_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169273/2/ange202105831.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169273/3/ange202105831-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/ange.202105831
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceJ. M. Zheng, M. H. Engelhard, D. H. Mei, S. H. Jiao, B. J. Polzin, J. G. Zhang, W. Xu, Nat. Energy 2017, 2, 17012.
dc.identifier.citedreferenceD. Zhang, A. Dai, M. Wu, K. Shen, T. Xiao, G. Hou, J. Lu, Y. Tang, ACS Energy Lett. 2020, 5, 180 – 186.
dc.identifier.citedreferenceJ. F. Zhu, J. Chen, Y. Luo, S. Q. Sun, L. G. Qin, H. Xu, P. Zhang, W. Zhang, W. Tian, Z. Sun, Energy Storage Mater. 2019, 23, 539 – 546.
dc.identifier.citedreferenceW. Deng, W. H. Zhu, X. F. Zhou, X. Q. Peng, Z. P. Liu, ACS Appl. Mater. Interfaces 2018, 10, 20387 – 20395.
dc.identifier.citedreferenceY. Deng, H. Lu, Y. Cao, B. Xu, Q. Hong, W. Cai, W. Yang, J. Power Sources 2019, 412, 170 – 179.
dc.identifier.citedreferenceL.-L. Kong, Z. Zhang, Y.-Z. Zhang, S. Liu, G.-R. Li, X.-P. Gao, ACS Appl. Mater. Interfaces 2016, 8, 31684 – 31694.
dc.identifier.citedreferenceB. Liu, J. G. Zhang, W. Xu, Joule 2018, 2, 833 – 845.
dc.identifier.citedreferenceX. G. Han, Y. H. Gong, K. Fu, X. F. He, G. T. Hitz, J. Q. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, L. Hu, Nat. Mater. 2017, 16, 572 – 580.
dc.identifier.citedreferenceD. C. Lin, Y. Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194 – 206.
dc.identifier.citedreferenceP. Shi, X. Q. Zhang, X. Shen, R. Zhang, H. Liu, Q. Zhang, Adv. Mater. Technol. 2020, 5, 1900806.
dc.identifier.citedreferenceG. X. Li, Z. Liu, Q. Q. Huang, Y. Gao, M. Regula, D. W. Wang, L. Q. Chen, D. H. Wang, Nat. Energy 2018, 3, 1076 – 1083.
dc.identifier.citedreferenceY. Zhang, W. Luo, C. W. Wang, Y. J. Li, C. J. Chen, J. W. Song, J. Q. Dai, E. M. Hitz, S. Xu, C. Yang, Y. Wang, L. Hu, Proc. Natl. Acad. Sci. USA 2017, 114, 3584 – 3589.
dc.identifier.citedreferenceY. Zhang, T. T. Zuo, J. Popovic, K. Lim, Y. X. Yin, J. Maier, Y. G. Guo, Mater. Today 2020, 33, 56 – 74.
dc.identifier.citedreferenceX. B. Cheng, R. Zhang, C. Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403 – 10473.
dc.identifier.citedreferenceK. Shen, Z. Wang, X. Bi, Y. Ying, D. Zhang, C. Jin, G. Hou, H. Cao, L. Wu, G. Zheng, Y. Tang, X. Tao, J. Lu, Adv. Energy Mater. 2019, 9, 1900260.
dc.identifier.citedreferenceY. S. Cohen, Y. Cohen, D. Aurbach, J. Phys. Chem. B 2000, 104, 12282 – 12291.
dc.identifier.citedreferenceY. P. Guo, H. Q. Li, T. Y. Zhai, Adv. Mater. 2017, 29, 1700007.
dc.identifier.citedreferenceX. W. Sun, X. Y. Zhang, Q. T. Ma, C. Z. Guan, W. Wang, J. Y. Luo, Angew. Chem. Int. Ed. 2020, 59, 6665 – 6674; Angew. Chem. 2020, 132, 6730 – 6739.
dc.identifier.citedreferenceX. Y. Zhang, A. X. Wang, X. J. Liu, J. Y. Luo, Acc. Chem. Res. 2019, 52, 3223 – 3232.
dc.identifier.citedreferenceR. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa, J. P. Bonnet, T. Phan, D. Bertin, D. Gigmes, D. Devaux, R. Denoyel, M. Armand, Nat. Mater. 2013, 12, 452 – 457.
dc.identifier.citedreferenceJ. M. Doux, H. Nguyen, D. Tan, A. Banerjee, X. F. Wang, E. A. Wu, C. H. Jo, H. D. Yang, Y. S. Meng, Adv. Energy Mater. 2020, 10, 1903253.
dc.identifier.citedreferenceH. F. Yan, H. C. Wang, D. H. Wang, X. Li, Z. L. Gong, Y. Yang, Nano Lett. 2019, 19, 3280 – 3287.
dc.identifier.citedreferenceX. Li, Z. H. Ren, M. N. Banis, S. X. Deng, Y. Zhao, Q. Sun, C. Wang, X. Yang, W. Li, J. Liang, X. Li, Y. Sun, K. Adair, R. Li, Y. Hu, T.-K. Sham, H. Huang, L. Zhang, S. Lu, J. Luo, X. Sun, ACS Energy Lett. 2019, 4, 2480 – 2488.
dc.identifier.citedreferenceQ. Zhang, D. X. Cao, Y. Ma, A. Natan, P. Aurora, H. L. Zhu, Adv. Mater. 2019, 31, 1901131.
dc.identifier.citedreferenceG. Wang, C. Chen, Y. H. Chen, X. W. Kang, C. H. Yang, F. Wang, Y. Liu, X. H. Xiong, Angew. Chem. Int. Ed. 2020, 59, 2055 – 2060; Angew. Chem. 2020, 132, 2071 – 20761.
dc.identifier.citedreferenceG. J. Xu, X. H. Shangguan, S. M. Dong, X. H. Zhou, G. L. Cui, Angew. Chem. Int. Ed. 2020, 59, 3400 – 3415; Angew. Chem. 2020, 132, 3426 – 3442.
dc.identifier.citedreferenceH. J. Yang, A. Naveed, Q. Y. Li, C. Guo, J. H. Chen, J. Y. Lei, J. Yang, Y. N. Nuli, J. L. Wang, Energy Storage Mater. 2018, 15, 299 – 307.
dc.identifier.citedreferenceX. Cao, X. D. Ren, L. F. Zou, M. H. Engelhard, W. Huang, H. S. Wang, B. E. Matthews, H. Lee, C. Niu, B. W. Arey, Y. Cui, C. Wang, J. Xiao, J. Liu, W. Xu, J.-G. Zhang, Nat. Energy 2019, 4, 796 – 805.
dc.identifier.citedreferenceG. X. Li, Y. Gao, X. He, Q. Q. Huang, S. R. Chen, S. H. Kim, D. H. Wang, Nat. Commun. 2017, 8, 850.
dc.identifier.citedreferenceH. Mao, L. M. Liu, L. Shi, H. Wu, J. X. Lang, K. Wang, T. Zhu, Y. Gao, Z. Sun, J. Zhao, G. Gao, D. Zhang, W. Yan, S. Ding, Sci. Bull. 2020, 65, 803 – 811.
dc.identifier.citedreferenceG. X. Li, Q. Q. Huang, X. He, Y. Gao, D. W. Wang, S. H. Kim, D. H. Wang, ACS Nano 2018, 12, 1500 – 1507.
dc.identifier.citedreferenceW. Li, H. B. Yao, K. Yan, G. Y. Zheng, Z. Liang, Y. M. Chiang, Y. Cui, Nat. Commun. 2015, 6, 7436.
dc.identifier.citedreferenceY. Lu, Z. Tu, L. Archer, Nat. Mater. 2014, 13, 961 – 969.
dc.identifier.citedreferenceX. Ji, D. Y. Liu, D. G. Prendiville, Y. C. Zhang, X. N. Liu, G. D. Stucky, Nano Today 2012, 7, 10 – 20.
dc.identifier.citedreferenceA. Kozen, C. F. Lin, A. J. Pearse, M. A. Schroeder, X. G. Han, L. B. Hu, S. B. Lee, G. W. Rubloff, M. Noked, ACS Nano 2015, 9, 5884 – 5892.
dc.identifier.citedreferenceY. Yang, M. Zhao, H. B. Geng, Y. F. Zhang, Y. X. Fang, C. C. Li, J. B. Zhao, Chem. Eur. J. 2019, 25, 5036 – 5042.
dc.identifier.citedreferenceS. F. Liu, X. H. Xia, Y. Zhong, S. J. Deng, Z. J. Yao, L. Y. Zhang, X.-B. Cheng, X. Wang, Q. Zhang, J. Tu, Energy Mater. 2018, 8, 1702322.
dc.identifier.citedreferenceG. Huang, J. H. Han, F. Zhang, Z. Q. Wang, H. Kashani, K. Watanabe, M. W. Chen, Adv. Mater. 2019, 31, 1805334.
dc.identifier.citedreferenceJ. Liu, Z. N. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthira, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang, J.-G. Zhang, Nat. Energy 2019, 4, 180 – 186.
dc.identifier.citedreferenceY. X. Song, Y. Shi, J. Wan, S. Y. Lang, X. C. Hu, H. J. Yan, B. Liu, Y.-G. Guo, R. Wen, L.-J. Wan, Energy Environ. Sci. 2019, 12, 2496 – 2506.
dc.identifier.citedreferenceH. Liu, X. B. Cheng, R. Xu, X. Q. Zhang, C. Yan, J. Q. Huang, Q. Zhang, Adv. Energy Mater. 2019, 9, 1902254.
dc.identifier.citedreferenceJ. Pu, J. C. Li, K. Zhang, T. Zhang, C. W. Li, H. X. Ma, J. Zhu, P. V. Braun, J. Lu, H. Zhang, Nat. Commun. 2019, 10, 1896.
dc.identifier.citedreferenceJ. Zhao, G. M. Zhou, K. Yan, J. Xie, Y. Z. Li, L. Liao, Y. Jin, K. Liu, P.-C. Hsu, J. Wang, H.-M. Cheng, Y. Cui, Nat. Nanotechnol. 2017, 12, 993 – 999.
dc.identifier.citedreferenceM. Armand, J. M. Tarascon, Nature 2008, 451, 652 – 657.
dc.identifier.citedreferenceM. S. Whittingham, Chem. Rev. 2014, 114, 11414 – 11443.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.