Current‐Density Regulating Lithium Metal Directional Deposition for Long Cycle‐Life Li Metal Batteries
dc.contributor.author | Mao, Heng | |
dc.contributor.author | Yu, Wei | |
dc.contributor.author | Cai, Zhuanyun | |
dc.contributor.author | Liu, Guixian | |
dc.contributor.author | Liu, Limin | |
dc.contributor.author | Wen, Rui | |
dc.contributor.author | Su, Yaqiong | |
dc.contributor.author | Kou, Huari | |
dc.contributor.author | Xi, Kai | |
dc.contributor.author | Li, Benqiang | |
dc.contributor.author | Zhao, Hongyang | |
dc.contributor.author | Da, Xinyu | |
dc.contributor.author | Wu, Hu | |
dc.contributor.author | Yan, Wei | |
dc.contributor.author | Ding, Shujiang | |
dc.date.accessioned | 2021-09-08T14:35:00Z | |
dc.date.available | 2022-09-08 10:34:57 | en |
dc.date.available | 2021-09-08T14:35:00Z | |
dc.date.issued | 2021-08-23 | |
dc.identifier.citation | Mao, Heng; Yu, Wei; Cai, Zhuanyun; Liu, Guixian; Liu, Limin; Wen, Rui; Su, Yaqiong; Kou, Huari; Xi, Kai; Li, Benqiang; Zhao, Hongyang; Da, Xinyu; Wu, Hu; Yan, Wei; Ding, Shujiang (2021). "Current‐Density Regulating Lithium Metal Directional Deposition for Long Cycle‐Life Li Metal Batteries." Angewandte Chemie 133(35): 19455-19462. | |
dc.identifier.issn | 0044-8249 | |
dc.identifier.issn | 1521-3757 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/169273 | |
dc.description.abstract | Uncontrolled dendrite formation in the high energy density of lithium (Li) metal batteries (LMBs) may pose serious safety risks. While numerous studies have attempted to protect separators, these proposed methods fail to effectively inhibit upward dendrite growth that punctures through the separator. Here, we introduce a novel “orientated‐growth” strategy that transfers the main depositional interface to the anode/current collector interface from the anode/separator interface. We placed a layer of cellulose/graphene carbon composite aerogel (CCA) between the current collector and the anode (LCL‐bottom). This layer works as a charge organizer that induces a high current density and encourages Li to deposit at the anode/current collector interface. Both in situ and ex situ images of the electrode demonstrate that the anode part of the cell has been flipped; with the newly deposited particles facing the current collector and the smooth surface facing the separator. The electrode in half and full cells showed outstanding cyclic stability and rate capability, with the LCL‐bottom/LFP full cell capable of maintaining 94 % of its initial capacity after 1000 cycles.The structure of Li metal anode was designed, in which, the CCA layer working as charge organizer was placed between the current collector and the anode. It makes the main Li depositional interface transfer to the anode/current collector interface from the anode/separator interface, which effectively protects the separate. Electrochemical characterization of the electrode in half and full cells was significantly improved. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | depositional interface transfer | |
dc.subject.other | anode/separator interface | |
dc.subject.other | lithium metal battery | |
dc.subject.other | long cycles | |
dc.title | Current‐Density Regulating Lithium Metal Directional Deposition for Long Cycle‐Life Li Metal Batteries | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Chemistry | |
dc.subject.hlbsecondlevel | Materials Science and Engineering | |
dc.subject.hlbsecondlevel | Chemical Engineering | |
dc.subject.hlbtoplevel | Science | |
dc.subject.hlbtoplevel | Engineering | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/169273/1/ange202105831_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/169273/2/ange202105831.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/169273/3/ange202105831-sup-0001-misc_information.pdf | |
dc.identifier.doi | 10.1002/ange.202105831 | |
dc.identifier.source | Angewandte Chemie | |
dc.identifier.citedreference | J. M. Zheng, M. H. Engelhard, D. H. Mei, S. H. Jiao, B. J. Polzin, J. G. Zhang, W. Xu, Nat. Energy 2017, 2, 17012. | |
dc.identifier.citedreference | D. Zhang, A. Dai, M. Wu, K. Shen, T. Xiao, G. Hou, J. Lu, Y. Tang, ACS Energy Lett. 2020, 5, 180 – 186. | |
dc.identifier.citedreference | J. F. Zhu, J. Chen, Y. Luo, S. Q. Sun, L. G. Qin, H. Xu, P. Zhang, W. Zhang, W. Tian, Z. Sun, Energy Storage Mater. 2019, 23, 539 – 546. | |
dc.identifier.citedreference | W. Deng, W. H. Zhu, X. F. Zhou, X. Q. Peng, Z. P. Liu, ACS Appl. Mater. Interfaces 2018, 10, 20387 – 20395. | |
dc.identifier.citedreference | Y. Deng, H. Lu, Y. Cao, B. Xu, Q. Hong, W. Cai, W. Yang, J. Power Sources 2019, 412, 170 – 179. | |
dc.identifier.citedreference | L.-L. Kong, Z. Zhang, Y.-Z. Zhang, S. Liu, G.-R. Li, X.-P. Gao, ACS Appl. Mater. Interfaces 2016, 8, 31684 – 31694. | |
dc.identifier.citedreference | B. Liu, J. G. Zhang, W. Xu, Joule 2018, 2, 833 – 845. | |
dc.identifier.citedreference | X. G. Han, Y. H. Gong, K. Fu, X. F. He, G. T. Hitz, J. Q. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, L. Hu, Nat. Mater. 2017, 16, 572 – 580. | |
dc.identifier.citedreference | D. C. Lin, Y. Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194 – 206. | |
dc.identifier.citedreference | P. Shi, X. Q. Zhang, X. Shen, R. Zhang, H. Liu, Q. Zhang, Adv. Mater. Technol. 2020, 5, 1900806. | |
dc.identifier.citedreference | G. X. Li, Z. Liu, Q. Q. Huang, Y. Gao, M. Regula, D. W. Wang, L. Q. Chen, D. H. Wang, Nat. Energy 2018, 3, 1076 – 1083. | |
dc.identifier.citedreference | Y. Zhang, W. Luo, C. W. Wang, Y. J. Li, C. J. Chen, J. W. Song, J. Q. Dai, E. M. Hitz, S. Xu, C. Yang, Y. Wang, L. Hu, Proc. Natl. Acad. Sci. USA 2017, 114, 3584 – 3589. | |
dc.identifier.citedreference | Y. Zhang, T. T. Zuo, J. Popovic, K. Lim, Y. X. Yin, J. Maier, Y. G. Guo, Mater. Today 2020, 33, 56 – 74. | |
dc.identifier.citedreference | X. B. Cheng, R. Zhang, C. Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403 – 10473. | |
dc.identifier.citedreference | K. Shen, Z. Wang, X. Bi, Y. Ying, D. Zhang, C. Jin, G. Hou, H. Cao, L. Wu, G. Zheng, Y. Tang, X. Tao, J. Lu, Adv. Energy Mater. 2019, 9, 1900260. | |
dc.identifier.citedreference | Y. S. Cohen, Y. Cohen, D. Aurbach, J. Phys. Chem. B 2000, 104, 12282 – 12291. | |
dc.identifier.citedreference | Y. P. Guo, H. Q. Li, T. Y. Zhai, Adv. Mater. 2017, 29, 1700007. | |
dc.identifier.citedreference | X. W. Sun, X. Y. Zhang, Q. T. Ma, C. Z. Guan, W. Wang, J. Y. Luo, Angew. Chem. Int. Ed. 2020, 59, 6665 – 6674; Angew. Chem. 2020, 132, 6730 – 6739. | |
dc.identifier.citedreference | X. Y. Zhang, A. X. Wang, X. J. Liu, J. Y. Luo, Acc. Chem. Res. 2019, 52, 3223 – 3232. | |
dc.identifier.citedreference | R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa, J. P. Bonnet, T. Phan, D. Bertin, D. Gigmes, D. Devaux, R. Denoyel, M. Armand, Nat. Mater. 2013, 12, 452 – 457. | |
dc.identifier.citedreference | J. M. Doux, H. Nguyen, D. Tan, A. Banerjee, X. F. Wang, E. A. Wu, C. H. Jo, H. D. Yang, Y. S. Meng, Adv. Energy Mater. 2020, 10, 1903253. | |
dc.identifier.citedreference | H. F. Yan, H. C. Wang, D. H. Wang, X. Li, Z. L. Gong, Y. Yang, Nano Lett. 2019, 19, 3280 – 3287. | |
dc.identifier.citedreference | X. Li, Z. H. Ren, M. N. Banis, S. X. Deng, Y. Zhao, Q. Sun, C. Wang, X. Yang, W. Li, J. Liang, X. Li, Y. Sun, K. Adair, R. Li, Y. Hu, T.-K. Sham, H. Huang, L. Zhang, S. Lu, J. Luo, X. Sun, ACS Energy Lett. 2019, 4, 2480 – 2488. | |
dc.identifier.citedreference | Q. Zhang, D. X. Cao, Y. Ma, A. Natan, P. Aurora, H. L. Zhu, Adv. Mater. 2019, 31, 1901131. | |
dc.identifier.citedreference | G. Wang, C. Chen, Y. H. Chen, X. W. Kang, C. H. Yang, F. Wang, Y. Liu, X. H. Xiong, Angew. Chem. Int. Ed. 2020, 59, 2055 – 2060; Angew. Chem. 2020, 132, 2071 – 20761. | |
dc.identifier.citedreference | G. J. Xu, X. H. Shangguan, S. M. Dong, X. H. Zhou, G. L. Cui, Angew. Chem. Int. Ed. 2020, 59, 3400 – 3415; Angew. Chem. 2020, 132, 3426 – 3442. | |
dc.identifier.citedreference | H. J. Yang, A. Naveed, Q. Y. Li, C. Guo, J. H. Chen, J. Y. Lei, J. Yang, Y. N. Nuli, J. L. Wang, Energy Storage Mater. 2018, 15, 299 – 307. | |
dc.identifier.citedreference | X. Cao, X. D. Ren, L. F. Zou, M. H. Engelhard, W. Huang, H. S. Wang, B. E. Matthews, H. Lee, C. Niu, B. W. Arey, Y. Cui, C. Wang, J. Xiao, J. Liu, W. Xu, J.-G. Zhang, Nat. Energy 2019, 4, 796 – 805. | |
dc.identifier.citedreference | G. X. Li, Y. Gao, X. He, Q. Q. Huang, S. R. Chen, S. H. Kim, D. H. Wang, Nat. Commun. 2017, 8, 850. | |
dc.identifier.citedreference | H. Mao, L. M. Liu, L. Shi, H. Wu, J. X. Lang, K. Wang, T. Zhu, Y. Gao, Z. Sun, J. Zhao, G. Gao, D. Zhang, W. Yan, S. Ding, Sci. Bull. 2020, 65, 803 – 811. | |
dc.identifier.citedreference | G. X. Li, Q. Q. Huang, X. He, Y. Gao, D. W. Wang, S. H. Kim, D. H. Wang, ACS Nano 2018, 12, 1500 – 1507. | |
dc.identifier.citedreference | W. Li, H. B. Yao, K. Yan, G. Y. Zheng, Z. Liang, Y. M. Chiang, Y. Cui, Nat. Commun. 2015, 6, 7436. | |
dc.identifier.citedreference | Y. Lu, Z. Tu, L. Archer, Nat. Mater. 2014, 13, 961 – 969. | |
dc.identifier.citedreference | X. Ji, D. Y. Liu, D. G. Prendiville, Y. C. Zhang, X. N. Liu, G. D. Stucky, Nano Today 2012, 7, 10 – 20. | |
dc.identifier.citedreference | A. Kozen, C. F. Lin, A. J. Pearse, M. A. Schroeder, X. G. Han, L. B. Hu, S. B. Lee, G. W. Rubloff, M. Noked, ACS Nano 2015, 9, 5884 – 5892. | |
dc.identifier.citedreference | Y. Yang, M. Zhao, H. B. Geng, Y. F. Zhang, Y. X. Fang, C. C. Li, J. B. Zhao, Chem. Eur. J. 2019, 25, 5036 – 5042. | |
dc.identifier.citedreference | S. F. Liu, X. H. Xia, Y. Zhong, S. J. Deng, Z. J. Yao, L. Y. Zhang, X.-B. Cheng, X. Wang, Q. Zhang, J. Tu, Energy Mater. 2018, 8, 1702322. | |
dc.identifier.citedreference | G. Huang, J. H. Han, F. Zhang, Z. Q. Wang, H. Kashani, K. Watanabe, M. W. Chen, Adv. Mater. 2019, 31, 1805334. | |
dc.identifier.citedreference | J. Liu, Z. N. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthira, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang, J.-G. Zhang, Nat. Energy 2019, 4, 180 – 186. | |
dc.identifier.citedreference | Y. X. Song, Y. Shi, J. Wan, S. Y. Lang, X. C. Hu, H. J. Yan, B. Liu, Y.-G. Guo, R. Wen, L.-J. Wan, Energy Environ. Sci. 2019, 12, 2496 – 2506. | |
dc.identifier.citedreference | H. Liu, X. B. Cheng, R. Xu, X. Q. Zhang, C. Yan, J. Q. Huang, Q. Zhang, Adv. Energy Mater. 2019, 9, 1902254. | |
dc.identifier.citedreference | J. Pu, J. C. Li, K. Zhang, T. Zhang, C. W. Li, H. X. Ma, J. Zhu, P. V. Braun, J. Lu, H. Zhang, Nat. Commun. 2019, 10, 1896. | |
dc.identifier.citedreference | J. Zhao, G. M. Zhou, K. Yan, J. Xie, Y. Z. Li, L. Liao, Y. Jin, K. Liu, P.-C. Hsu, J. Wang, H.-M. Cheng, Y. Cui, Nat. Nanotechnol. 2017, 12, 993 – 999. | |
dc.identifier.citedreference | M. Armand, J. M. Tarascon, Nature 2008, 451, 652 – 657. | |
dc.identifier.citedreference | M. S. Whittingham, Chem. Rev. 2014, 114, 11414 – 11443. | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.