Show simple item record

Quantitative analysis of γ‐glutamylisoleucine, γ‐glutamylthreonine, and γ‐glutamylvaline in HeLa cells using UHPLC‐MS/MS

dc.contributor.authorThacker, Jonathan B.
dc.contributor.authorHe, Chenchen
dc.contributor.authorPennathur, Subramaniam
dc.date.accessioned2021-09-08T14:35:15Z
dc.date.available2022-09-08 10:35:13en
dc.date.available2021-09-08T14:35:15Z
dc.date.issued2021-08
dc.identifier.citationThacker, Jonathan B.; He, Chenchen; Pennathur, Subramaniam (2021). "Quantitative analysis of γ‐glutamylisoleucine, γ‐glutamylthreonine, and γ‐glutamylvaline in HeLa cells using UHPLC‐MS/MS." Journal of Separation Science 44(15): 2898-2907.
dc.identifier.issn1615-9306
dc.identifier.issn1615-9314
dc.identifier.urihttps://hdl.handle.net/2027.42/169280
dc.description.abstractγ‐Glutamylpeptides have been identified as potential biomarkers for a number of diseases including cancer, diabetes, and liver disease. In this study, we developed and validated a novel quantitative analytical strategy for measuring γ‐glutamylisoleucine, γ‐glutamylthreonine, and γ‐glutamylvaline, all of which have been previously reported as potential biomarkers for prostate cancer in HeLa cells using ultra‐high‐performance liquid chromatography‐tandem mass spectrometry. A BEH C18 column was used as the stationary phase. Mobile phase A was 99:1 water:formic acid and mobile phase B was acetonitrile. Chemical isotope labeling using benzoyl chloride was used as the internal standardization strategy. Sample preparation consisted of the addition of water to a frozen cell pellet, sonication, derivatization, centrifugation, and subsequent addition of an internal standard solution. The method was validated for selectivity, accuracy, precision, linearity, and stability. The determined concentrations of γ‐glutamylisoleucine, γ‐glutamylthreonine, and γ‐glutamylvaline in HeLa cells were 1.92 ± 0.06, 10.8 ± 0.4, and 1.96 ± 0.04 pmol/mg protein, respectively. In addition, the qualitative analysis of these analytes in human serum was achieved using a modified sample preparation strategy. To the best of our knowledge, this is the first report of the use of benzoyl chloride for chemical isotope labeling for metabolite quantitation in cells.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherglutamylpeptides
dc.subject.otherchemical isotope labeling
dc.subject.otherderivatization
dc.subject.otherinternal standard
dc.subject.otherquantification
dc.titleQuantitative analysis of γ‐glutamylisoleucine, γ‐glutamylthreonine, and γ‐glutamylvaline in HeLa cells using UHPLC‐MS/MS
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelManagement
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelBusiness and Economics
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169280/1/jssc7308.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169280/2/jssc7308_am.pdf
dc.identifier.doi10.1002/jssc.202001266
dc.identifier.sourceJournal of Separation Science
dc.identifier.citedreferenceKobayashi S, Tokairin Y, Miyakoshi T, Saito T, Nagaoka K, Ikeda Y, Fujii J, Konno H. Quantitative analysis of γ‐glutamylpeptides by liquid chromatography‐mass spectrometry and application for γ‐glutamyltransferase assays. Anal Biochem. 2019; 578: 13 – 22.
dc.identifier.citedreferenceLécuyer L, Dalle C, Lyan B, Demidem A, Rossary A, Vasson M‐P, Petera M, Lagree M, Ferreira T, Centeno D, Galan P, Hercberg S, Deschasaux M, Partula V, Srour B, Latino‐Martel P, Kesse‐Guyot E, Druesne‐Pecollo N, Durand S, Pujos‐Guillot E, Touvier M. Plasma metabolomic signatures associated with long‐term breast cancer risk in the SU.VI.MAX prospective cohort. Cancer Epidemiol Biomarkers Prev. 2019; 28: 1300 – 7.
dc.identifier.citedreferenceHuang J, Mondul AM, Weinstein SJ, Derkach A, Moore SC, Sampson JN, Albanes D. Prospective serum metabolomic profiling of lethal prostate cancer. Int J Cancer. 2019; 145: 3231 – 43.
dc.identifier.citedreferenceTang X, Lin C‐C, Spasojevic I, Iversen ES, Chi J‐T, Marks JR. A joint analysis of metabolomics and genetics of breast cancer. Breast Cancer Res. 2014; 16: 1 – 15.
dc.identifier.citedreferenceWang Y, Jacobs EJ, Carter BD, Gapstur SM, Stevens VL. Plasma metabolomic profiles and risk of advanced and fatal prostate cancer. Eur Urol Oncol. 2021; 4: 56 – 65. https://doi.org/10.1016/j.euo.2019.07.005.
dc.identifier.citedreferenceSuhre K, Meisinger C, Döring A, Altmaier E, Belcredi P, Gieger C, Chang D, Milburn MV, Gall WE, Weinberger KM, Mewes H‐W, Hrabé de Angelis M, Wichmann H‐E, Kronenberg F, Adamski J, Illig T. Metabolic footprint of diabetes: A multiplatform metabolomics study in an epidemiological setting. PLoS One. 2010; 5: 1 – 11.
dc.identifier.citedreferenceMin H‐K, Sookoian S, Pirola CJ, Cheng J, Mirshahi F, Sanyal AJ. Metabolic profiling reveals that PNPLA3 induces widespread effects on metabolism beyond triacylglycerol remodeling in Huh‐7 hepatoma cells. Am J Physiol Gastrointest Liver Physiol. 2014; 307: G66 – 76.
dc.identifier.citedreferenceSoga T, Sugimoto M, Honma M, Mori M, Igarashi K, Kashikura K, Ikeda S, Hirayama A, Yamamoto T, Yoshida H, Otsuka M, Tsuji S, Yatomi Y, Sakuragawa T, Watanabe H, Nihei K, Saito T, Kawata S, Suzuki H, Tomita M, Suematsu M. Serum metabolomics reveals γ‐glutamyl dipeptides as biomarkers for discrimination among different forms of liver disease. J Hepatol. 2011; 55: 896 – 905.
dc.identifier.citedreferenceCandi E, Tesauro M, Cardillo C, Lena AM, Schinzari F, Rodia G, Sica G, Gentileschi P, Rovella V, Annicchiarico‐Petruzzelli M, Di Daniele N, Melino G. Metabolic profiling of visceral adipose tissue from obese subjects with or without metabolic syndrome. Biochem J. 2018; 475: 1019 – 35.
dc.identifier.citedreferenceMoore SC, Matthews CE, Sampson JN, Stolzenberg‐Solomon RZ, Zheng W, Cai Q, Tan YT, Chow W‐H, Ji B‐T, Liu DK, Xiao Q, Boca SM, Leitzmann MF, Yang G, Xiang YB, Sinha R, Shu XO, Cross AJ. Human metabolic correlates of body mass index. Metabolomics 2014; 10: 259 – 69.
dc.identifier.citedreferenceZheng Y, Yu B, Alexander D, Steffen LM, Boerwinkle E, Human metabolome associates with dietary intake habits among African Americans in the atherosclerosis risk in communities study. Am J Epidemiol. 2014; 179: 1424 – 33.
dc.identifier.citedreferenceHirayama A, Igarashi K, Tomita M, Soga T. Development of quantitative method for determination of γ‐glutamyl peptides by capillary electrophoresis tandem mass spectrometry: An efficient approach avoiding matrix effect. J Chromatogr A. 2014; 1369: 161 – 9.
dc.identifier.citedreferenceSaoi M, Sasaki K, Sagawa H, Abe K, Kogiso T, Tokushige K, Hashimoto E, Ohashi Y, Britz‐McKibbin P. High throughput screening of serum γ‐glutamyl dipeptides for risk assessment of nonalcoholic steatohepatitis with impaired glutathione salvage pathway. J Proteome Res. 2020; 19: 2689 – 99.
dc.identifier.citedreferenceDesfontaine V, Goyon A, Veuthey J‐L, Charve J, Guillarme D. Development of a LC–MS/MS method for the determination of isomeric glutamyl peptides in food ingredients. J Sep Sci. 2018; 41: 847 – 55.
dc.identifier.citedreferenceFu I, Woolf EJ, Matuszewski BK. Effect of the sample matrix on the determination of indinavir in human urine by HPLC with turbo ion spray tandem mass spectrometric detection. J Pharm Biomed Anal. 1998; 18: 347 – 57.
dc.identifier.citedreferenceStokvis E, Rosing H, López‐Lázaro L, Schellens JHM, Beijnen JH. Switching from an analogous to a stable isotopically labeled internal standard for the LC‐MS/MS quantitation of the novel anticancer drug Kahalalide F significantly improves assay performance. Biomed Chromatogr. 2004; 18: 400 – 2.
dc.identifier.citedreferenceFDA. Bioanalytical method validation: Guidance for industry. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htmand/orhttp://www.fda.gov/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/default.htm. Accessed May 15, 2021.
dc.identifier.citedreferenceEuropean Commission. Commission decision 2002/657/ec of 12 August 2002 implementing council directive 96/23/ec concerning the performance of analytical methods and the interpretation of results. Off J Euro Commun. 2002; 8 – 36.
dc.identifier.citedreferenceSong P, Mabrouk OS, Hershey ND, Kennedy RT. In vivo neurochemical monitoring using benzoyl chloride derivatization and liquid chromatography−mass spectrometry. Anal Chem. 2012; 84: 412 – 9.
dc.identifier.citedreferenceWang Z, Yu J, Yao J, Wu L, Xiao H, Wang J, Gao R. Simultaneous identification and quantification of bisphenol A and 12 bisphenol analogues in environmental samples using precolumn derivatization and ultra high performance liquid chromatography with tandem mass spectrometry. J Sep Sci. 2018; 41: 2269 – 78.
dc.identifier.citedreferenceLearey JJ, Crawford‐Clark S, Bowen BJ, Barrow CJ, Adcock JL. Detection of biogenic amines in pet food ingredients by RP‐HPLC with automated dansyl chloride derivatization. J Sep Sci. 2018; 41: 4430 – 6.
dc.identifier.citedreferenceBaghdady YZ, Schug KA. Review of in situ derivatization techniques for enhanced bioanalysis using liquid chromatography with mass spectrometry. J Sep Sci. 2016; 39: 102 – 14.
dc.identifier.citedreferenceWong J‐MT, Malec PA, Mabrouk OS, Ro J, Dus M, Kennedy RT. Benzoyl chloride derivatization with liquid chromatography–mass spectrometry for targeted metabolomics of neurochemicals in biological samples. J Chromatogr A. 2016; 1446: 78 – 90.
dc.identifier.citedreferenceMeng X, Bai H, Ma Q, Zhang P, Ma H, Deng Y. Broad targeted analysis of neurochemicals in rat serum using liquid chromatography tandem mass spectrometry with chemical derivatization. J Sep Sci. 2020; 43: 4006 – 17.
dc.identifier.citedreferenceNováková L, Veuthey JL, Guillarme D. Practical method transfer from high performance liquid chromatography to ultra‐high performance liquid chromatography: The importance of frictional heating. J Chromatogr A. 2011; 1218: 7971 – 81.
dc.identifier.citedreferenceSwartz ME. UPLC™ : An introduction and review. J Liq Chromatogr R T. 2005; 28: 1253 – 63.
dc.identifier.citedreferenceD’Amboise M, Hanai T. Hydrophobicity and retention in reversed phase liquid chromatography. J Liq Chromatogr. 1982; 5: 229 – 44.
dc.identifier.citedreferenceNilssen O, Førde OH, Brenn T. The Tromsø study: distribution and population determinants of gamma‐glutamyltransferase. Am J Epidemiol. 1990; 132: 318 – 26.
dc.identifier.citedreferenceChen Y, Yang Y, Miller ML, Shen D, Shertzer HG, Stringer KF, Wang B, Schneider SN, Nebert DW, Dalton TP. Hepatocyte‐specific Gclc deletion leads to rapid onset of steatosis with mitochondrial injury and liver failure. Hepatology 2007; 45: 1118 – 28.
dc.identifier.citedreferenceMeister A, Anderson ME. Glutathione. Ann Rev Biochem. 1983; 52: 711 – 60.
dc.identifier.citedreferenceMeister A. The γ‐glutamyl cycle: Diseases associated with specific enzyme deficiencies. Ann Intern. 1974; 81: 247 – 53.
dc.identifier.citedreferenceLee D‐H, Ha M‐H, Kim J‐H, Christiani DC, Gross MD, Steffes M, Blomhoff R, Jacobs DR. Gamma‐glutamyltransferase and diabetes—A 4 year follow‐up study. Diabetologia 2003; 46: 359 – 64.
dc.identifier.citedreferenceKunutsor SK, Abbasi A, Adler AI. Gamma‐glutamyl transferase and risk of type II diabetes: An updated systematic review and dose‐response meta‐analysis. Ann Epidemiol. 2014; 24: 809 – 16.
dc.identifier.citedreferenceLiu C‐F, Gu Y‐T, Wang H‐Y, Fang N‐Y. Gamma‐glutamyltransferase level and risk of hypertension: A systematic review and meta‐analysis. PLoS One. 2012; 7: 1 – 11.
dc.identifier.citedreferenceWhitfield JB, Pounder RE, Neale G, Moss DW. Serum y‐glutamyl transpeptidase activity in liver disease. Gut 1972; 13: 702 – 8.
dc.identifier.citedreferenceRuttmann E, Brant LJ, Concin H, Diem G, Rapp K, Ulmer H. Vorarlberg health monitoring and promotion program study group, γ‐glutamyltransferase as a risk factor for cardiovascular disease mortality. Circulation 2005; 112: 2130 – 7.
dc.identifier.citedreferenceKunutsor SK, Apekey TA, Khan H. Liver enzymes and risk of cardiovascular disease in the general population: A meta‐analysis of prospective cohort studies. Atherosclerosis 2014; 236: 7 – 17.
dc.identifier.citedreferenceKunutsor SK, Apekey TA, Van Hemelrijck M, Calori G, Perseghin G. Gamma glutamyltransferase, alanine aminotransferase and risk of cancer: Systematic review and meta‐analysis. Int J Cancer. 2015; 136: 1162 – 70.
dc.identifier.citedreferenceRuhl CE, Everhart JE, Elevated serum alanine aminotransferase and γ‐glutamyltransferase and mortality in the United States population. Gastroenterology 2009; 136: 477 – 85.e11.
dc.identifier.citedreferenceKunutsor SK, Apekey TA, Seddoh D, Walley J. Liver enzymes and risk of all‐cause mortality in general populations: A systematic review and meta‐analysis. Int J Epidemiol. 2014; 43: 187 – 201.
dc.identifier.citedreferenceWhitfield JB. Gamma glutamyl transferase. Crit Rev Clin Lab Sci. 2001; 38: 263 – 355.
dc.identifier.citedreferenceConnor KM, Hsu Y, Aggarwal PK, Capone S, Colombo AR, Ramsingh G. Understanding metabolic changes in aging bone marrow. Exp Hematol Oncol. 2018; 7: 1 – 11.
dc.identifier.citedreferenceYang L, Lv X, Du H, Wu D, Wang M. Causal effects of serum metabolites on amyotrophic lateral sclerosis: A Mendelian randomization study. Prog Neuro‐Psychoph. 2020; 97: 1 – 7.
dc.identifier.citedreferencePriolo C, Khabibullin D, Reznik E, Filippakis H, Ogórek B, Kavanagh TR, Nijmeh J, Herbert ZT, Asara JM, Kwiatkowski DJ, Wu C‐L, Henske EP. Impairment of gamma‐glutamyl transferase 1 activity in the metabolic pathogenesis of chromophobe renal cell carcinoma. Proc Natl Acad Sci USA. 2018; 115: E6274 – 82.
dc.identifier.citedreferenceKanaan YM, Sampey BP, Beyene D, Esnakula AK, Naab TJ, Ricks‐Santi LJ, Dasi S, Day A, Blackman KW, Frederick W, Copeland Sr., RL, Gabrielson E, DeWitty Jr., RL. Metabolic profile of triple‐negative breast cancer in African‐American women reveals potential biomarkers of aggressive disease. Cancer Genom Proteom. 2014; 11: 279 – 94.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.