Show simple item record

Advancing estuarine ecological forecasts: seasonal hypoxia in Chesapeake Bay

dc.contributor.authorScavia, Donald
dc.contributor.authorBertani, Isabella
dc.contributor.authorTesta, Jeremy M.
dc.contributor.authorBever, Aaron J.
dc.contributor.authorBlomquist, Joel D.
dc.contributor.authorFriedrichs, Marjorie A. M.
dc.contributor.authorLinker, Lewis C.
dc.contributor.authorMichael, Bruce D.
dc.contributor.authorMurphy, Rebecca R.
dc.contributor.authorShenk, Gary W.
dc.date.accessioned2021-09-08T14:35:31Z
dc.date.available2022-10-08 10:35:29en
dc.date.available2021-09-08T14:35:31Z
dc.date.issued2021-09
dc.identifier.citationScavia, Donald; Bertani, Isabella; Testa, Jeremy M.; Bever, Aaron J.; Blomquist, Joel D.; Friedrichs, Marjorie A. M.; Linker, Lewis C.; Michael, Bruce D.; Murphy, Rebecca R.; Shenk, Gary W. (2021). "Advancing estuarine ecological forecasts: seasonal hypoxia in Chesapeake Bay." Ecological Applications (6): n/a-n/a.
dc.identifier.issn1051-0761
dc.identifier.issn1939-5582
dc.identifier.urihttps://hdl.handle.net/2027.42/169288
dc.description.abstractEcological forecasts are quantitative tools that can guide ecosystem management. The coemergence of extensive environmental monitoring and quantitative frameworks allows for widespread development and continued improvement of ecological forecasting systems. We use a relatively simple estuarine hypoxia model to demonstrate advances in addressing some of the most critical challenges and opportunities of contemporary ecological forecasting, including predictive accuracy, uncertainty characterization, and management relevance. We explore the impacts of different combinations of forecast metrics, drivers, and driver time windows on predictive performance. We also incorporate multiple sets of state‐variable observations from different sources and separately quantify model prediction error and measurement uncertainty through a flexible Bayesian hierarchical framework. Results illustrate the benefits of (1) adopting forecast metrics and drivers that strike an optimal balance between predictability and relevance to management, (2) incorporating multiple data sources in the calibration data set to separate and propagate different sources of uncertainty, and (3) using the model in scenario mode to probabilistically evaluate the effects of alternative management decisions on future ecosystem state. In the Chesapeake Bay, the subject of this case study, we find that average summer or total annual hypoxia metrics are more predictable than monthly metrics and that measurement error represents an important source of uncertainty. Application of the model in scenario mode suggests that absent watershed management actions over the past decades, long‐term average hypoxia would have increased by 7% compared to 1985. Conversely, the model projects that if management goals currently in place to restore the Bay are met, long‐term average hypoxia would eventually decrease by 32% with respect to the mid‐1980s.
dc.publisherU.S. Geological Survey
dc.publisherWiley Periodicals, Inc.
dc.subject.otherhypoxia
dc.subject.otherBayesian
dc.subject.otherChesapeake Bay
dc.subject.otherforecasts
dc.titleAdvancing estuarine ecological forecasts: seasonal hypoxia in Chesapeake Bay
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169288/1/eap2384_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169288/2/eap2384.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169288/3/eap2384-sup-0001-AppendixS1.pdf
dc.identifier.doi10.1002/eap.2384
dc.identifier.sourceEcological Applications
dc.identifier.citedreferenceScavia, D., E. L. A. Kelly, and J. D. Hagy. 2006. A simple model for forecasting the effects of nitrogen loads on Chesapeake Bay hypoxia. Estuaries and Coasts 29: 674 – 684.
dc.identifier.citedreferenceShenk, G. W., and L. C. Linker. 2013. Development and application of the 2010 Chesapeake Bay Watershed total maximum daily load model. Journal of the American Water Resources Association 49: 1042 – 1056.
dc.identifier.citedreferenceSmith, D. A., and G. Matisoff. 2008. Sediment oxygen demand in the central basin of Lake Erie. Journal of Great Lakes Research 34: 731 – 744.
dc.identifier.citedreferenceStreeter, H. W., and E. B. Phelps. 1925. A study in the pollution and natural purification of the Ohio River, III factors concerning the phenomena of oxidation and reaeration. U.S. Public Health Service, Public Health Bulletin No. 146. Reprinted by US PHEW, PHA 1958.
dc.identifier.citedreferenceStumpf, R. P., L. T. Johnson, T. T. Wynne, and D. B. Baker. 2016. Forecasting annual cyanobacterial bloom biomass to inform management decisions in Lake Erie. Journal of Great Lakes Research 42: 1174 – 1183.
dc.identifier.citedreferenceStumpf, R. P., T. T. Wynne, D. B. Baker, and G. L. Fahnenstiel. 2012. Interannual variability of cyanobacterial blooms in Lake Erie. PLoS One 7: e42444.
dc.identifier.citedreferenceSturdivant, S. K., M. J. Brush, and R. J. Diaz. 2013. Modeling the effect of hypoxia on macrobenthos production in the lower Rappahannock River, Chesapeake Bay, USA. PLoS One 8: e84140.
dc.identifier.citedreferenceSturdivant, S. K., R. J. Díaz, R. Llansó, and D. M. Dauer. 2014. Relationship between hypoxia and macrobenthic production in Chesapeake Bay. Estuaries and Coasts 37: 1219 – 1232.
dc.identifier.citedreferenceSturtz, S., U. Ligges, and A. E. Gelman. 2005. R2WinBUGS: a package for running WinBUGS from R. Journal of Statistical Software 12: 1 – 16.
dc.identifier.citedreferenceTask Force. 2016. Mississippi River/Gulf of Mexico Watershed Nutrient Task Force. Looking forward: The strategy of the federal members of the Hypoxia Task Force (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, Washington, DC). https://www.epa.gov/sites/production/files/2016‐12/documents/federal_strategy_updates_12.2.16.pdf
dc.identifier.citedreferenceTesta, J. M., et al. 2017a. Ecological forecasting and the science of hypoxia in Chesapeake Bay. BioScience 67: 614 – 626.
dc.identifier.citedreferenceTesta, J. M., Y. Li, Y. J. Lee, M. Li, D. C. Brady, D. M. Di Toro, W. M. Kemp, and J. J. Fitzpatrick. 2014. Quantifying the effects of nutrient loading on dissolved O 2 cycling and hypoxia in Chesapeake Bay using a coupled hydrodynamic–biogeochemical model. Journal of Marine Systems 139: 139 – 158.
dc.identifier.citedreferenceTesta, J. M., Y. Li, Y. J. Lee, M. Li, D. C. Brady, D. M. D. Toro, and W. M. Kemp. 2017b. Modeling physical and biogeochemical controls on dissolved oxygen in Chesapeake Bay: lessons learned from simple and complex approaches. In D. Justic, K. Rose, R. Hetland, and K. Fennel, editors. Modeling coastal hypoxia—numerical simulations of patterns, controls and effects of dissolved oxygen dynamics. Springer, Cham, Switzerland.
dc.identifier.citedreferenceTesta, J. M., R. R. Murphy, D. C. Brady, and W. M. Kemp. 2018. Nutrient‐ and climate‐induced shifts in the phenology of linked biogeochemical cycles in a temperate estuary. Frontiers in Marine Science 5: 114.
dc.identifier.citedreferenceThomas, R. Q., R. J. Figueiredo, V. Daneshmand, B. J. Bookout, L. K. Puckett, and C. C. Carey. 2020. A near‐term iterative forecasting system successfully predicts reservoir hydrodynamics and partitions uncertainty in real time. Water Resources Research 56: e2019WR026138.
dc.identifier.citedreferenceTurner, R. E., N. N. Rabalais, and D. Justić. 2012. Predicting summer hypoxia in the northern Gulf of Mexico: redux. Marine Pollution Bulletin 64: 319 – 324.
dc.identifier.citedreferenceU.S. Environmental Protection Agency [US EPA]. 2003. Ambient water quality criteria for dissolved oxygen, water clarity and chlorophyll a for the Chesapeake Bay and its tidal tributaries rep. Page 343. U.S. Environmental Protection Agency Region III, Chesapeake Bay Program Office, Annapolis, Maryland, USA.
dc.identifier.citedreferenceUS EPA. 2010. Chesapeake Bay total maximum daily load for nitrogen, phosphorus and sediment. https://www.epa.gov/chesapeake‐bay‐tmdl/chesapeake‐bay‐tmdl‐document
dc.identifier.citedreferenceValette‐Silver, N., and D. Scavia. 2003. Ecological forecasting: New tools for coastal and marine ecosystem management. NOAA Technical Memorandum NOS NCCOS 1. Page 116. http://scavia.seas.umich.edu/wp‐content/uploads/2009/11/noaa_ecological_forecasting_book1.pdf
dc.identifier.citedreferenceVaquer‐Sunyer, R., and C. M. Duarte. 2008. Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences of the United States of America 105: 15452 – 15457.
dc.identifier.citedreferenceVerhamme, E., T. Redder, D. Schlea, J. Grush, J. Bratton, and J. DePinto. 2016. Development of the western Lake Erie ecosystem model (WLEEM): application to connect phosphorus loads to cyanobacteria biomass. Journal of Great Lakes Research 42: 1193 – 1205.
dc.identifier.citedreferenceVirginia Institute of Marine Science (VIMS). 2020a. Chesapeake Bay dead‐zone report card. November 2020. https://www.vims.edu/research/topics/dead_zones/forecasts/report_card/index.php
dc.identifier.citedreferenceVirginia Institute of Marine Science (VIMS). 2020b. Chesapeake Bay hypoxia forecast. https://www.vims.edu/research/topics/dead_zones/forecasts/cbay/index.php
dc.identifier.citedreferenceWang, J., and R. R. Hood. 2020. Modeling the origin of the particulate organic matter flux to the hypoxic zone of Chesapeake Bay in early summer. Estuaries and Coasts 44: 672 – 688.
dc.identifier.citedreferenceWhite, E. P., G. M. Yenni, S. D. Taylor, E. M. Christensen, E. K. Bledsoe, J. L. Simonis, and S. M. Ernest. 2019. Developing an automated iterative near‐term forecasting system for an ecological study. Methods in Ecology and Evolution 10: 332 – 344.
dc.identifier.citedreferenceWIP. 2020. Chesapeake Bay watershed implementation plans. Chesapeake Bay Program. https://www.chesapeakebay.net/what/programs/watershed_implementation
dc.identifier.citedreferenceZhang, H., L. Boegman, D. Scavia, and D. A. Culver. 2016. Spatial distributions of external and internal phosphorus loads in Lake Erie and their impacts on phytoplankton and water quality. Journal of Great Lakes Research 42: 1212 – 1227.
dc.identifier.citedreferenceZhang, Q., R. R. Murphy, R. Tian, M. K. Forsyth, E. M. Trentacoste, J. Keisman, and P. J. Tango. 2018. Chesapeake Bay’s water quality condition has been recovering: insights from a multimetric indicator assessment of thirty years of tidal monitoring data. Science of the Total Environment 637–638: 1617 – 1625.
dc.identifier.citedreferenceZhou, Y., D. R. Obenour, D. Scavia, T. H. Johengen, and A. M. Michalak. 2013. Spatial and temporal trends in Lake Erie hypoxia, 1987–2007. Environmental Science and Technology 47: 899 – 905.
dc.identifier.citedreferenceZhou, Y., D. Scavia, and A. M. Michalak. 2014. Nutrient loading and meteorological conditions explain interannual variability of hypoxia in the Chesapeake Bay. Limnology and Oceanography 59: 373 – 374.
dc.identifier.citedreferenceEFI. 2020. Ecological Forecasting Initiative. Forecasts to understand, manage, and conserve ecosystems. Webpage. Accessed November 2020. https://ecoforecast.org
dc.identifier.citedreferenceStow, C. A., and D. Scavia. 2009. Modeling hypoxia in the Chesapeake Bay: ensemble estimation using a Bayesian hierarchical model. Journal of Marine Systems 76: 244 – 250.
dc.identifier.citedreferenceAtor, S. W., J. D. Blomquist, J. S. Webber, and J. G. Chanat. 2020. Factors driving nutrient trends in streams of the Chesapeake Bay watershed. Journal of Environmental Quality 49: 812 – 834.
dc.identifier.citedreferenceBeckage, B., L. J. Gross, and S. Kauffman. 2011. The limits to prediction in ecological systems. Ecosphere 2: 125.
dc.identifier.citedreferenceBertani, I., D. R. Obenour, C. E. Steger, C. A. Stow, A. D. Gronewold, and D. Scavia. 2016. Probabilistically assessing the role of nutrient loading in harmful algal bloom formation in western Lake Erie. Journal of Great Lakes Research 42: 1184 – 1192.
dc.identifier.citedreferenceBever, A. J., M. A. M. Friedrichs, C. T. Friedrichs, and M. E. Scully. 2018. Estimating hypoxic volume in the Chesapeake Bay using two continuously sampled oxygen profiles. Journal of Geophysical Research: Oceans 123: 6392 – 6407.
dc.identifier.citedreferenceBever, A. J., M. A. M. Friedrichs, C. T. Friedrichs, M. E. Scully, and L. W. Lanerolle. 2013. Combining observations and numerical model results to improve estimates of hypoxic volume within the Chesapeake Bay, USA. Journal of Geophysical Research: Oceans 118: 4924 – 4944.
dc.identifier.citedreferenceBever, A. J., M. A. M. Friedrichs, and P. St‐Laurent. 2021. Real‐time environmental forecasts of the Chesapeake Bay: Model setup, improvements, and online visualization. Environmental Modelling and Software 140: 105036.
dc.identifier.citedreferenceBocaniov, S., and D. Scavia. 2016. Temporal and spatial dynamics of large lake hypoxia: Integrating statistical and three‐dimensional dynamic models to enhance lake management criteria. Water Resources Research 52: 4247 – 4263.
dc.identifier.citedreferenceBoesch, D. F. 2006. Scientific requirements for ecosystem‐based management in the restoration of Chesapeake Bay and coastal Louisiana. Ecological Engineering 26: 6 – 26.
dc.identifier.citedreferenceBorsuk, M. E., D. Higdon, C. Stow, and K. H. Reckhow. 2001. A Bayesian hierarchical model to predict benthic oxygen demand from organic matter loading in estuaries and coastal zones. Ecological Modelling 143: 165 – 181.
dc.identifier.citedreferenceBradford, J. B., et al. 2020. Ecological forecasting—21st century science for 21st century management, Pages 1 – 54. U.S. Geological Survey Open‐File Report 2020–1073. U.S. Geological Survey, Reston, Virginia, USA.
dc.identifier.citedreferenceBrady, D. C., T. E. Targett, and D. M. Tuzzolino. 2009. Behavioral responses of juvenile weakfish ( Cynoscion regalis ) to diel‐cycling hypoxia: swimming speed, angular correlation, expected displacement, and effects of hypoxia acclimation. Canadian Journal of Fisheries and Aquatic Sciences 66: 415 – 424.
dc.identifier.citedreferenceBuchheister, A., C. F. Bonzek, J. Gartland, and R. J. Latour. 2013. Patterns and drivers of the demersal fish community of Chesapeake Bay. Marine Ecology Progress Series 481: 161 – 180.
dc.identifier.citedreferenceCarey, C. C., et al. 2021. Advancing lake and reservoir water quality management with near‐term, iterative ecological forecasting. Inland Waters: 1 – 14. https://doi.org/10.1080/20442041.2020.1816421
dc.identifier.citedreferenceCarpenter, S. R. 2002. Ecological futures: building an ecology of the long now. Ecology 83: 2069 – 2083.
dc.identifier.citedreferenceChapra, S. C. 1997. Surface water‐quality modeling. McGraw‐Hill, New York, New York, USA.
dc.identifier.citedreferenceChesapeake Bay Program [CBP]. 2017. Chesapeake Assessment and Scenario Tool (CAST) Version 2017d. Chesapeake Bay Program Office. Accessed May 2020. https://cast.chesapeakebay.net/
dc.identifier.citedreferenceChesapeake Bay Program [CBP]. 2020. Chesapeake Bay Program Data Hub. Accessed April 2020. http://www.chesapeakebay.net/data
dc.identifier.citedreferenceClark, J. S. 2005. Why environmental scientists are becoming Bayesians. Ecology Letters 8: 2 – 14.
dc.identifier.citedreferenceClark, J. S., et al. 2001. Ecological forecasts: an emerging imperative. Science 293: 657 – 660.
dc.identifier.citedreferenceCoreau, A., G. Pinay, J. D. Thompson, P.‐O. Cheptou, and L. Mermet. 2009. The rise of research on futures in ecology: rebalancing scenarios and predictions. Ecology Letters 12: 1277 – 1286.
dc.identifier.citedreferenceCressie, N., C. A. Calder, J. S. Clark, J. M. V. Hoef, and C. K. Wikle. 2009. Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecological Applications 19: 553 – 570.
dc.identifier.citedreferenceDa, F., M. A. M. Friedrichs, and P. St‐Laurent. 2018. Impacts of atmospheric nitrogen deposition and coastal nitrogen fluxes on oxygen concentrations in Chesapeake Bay. Journal of Geophysical Research: Oceans 123: 5004 – 5025.
dc.identifier.citedreferenceDel Giudice, D., V. R. R. Matli, and D. R. Obenour. 2020. Bayesian mechanistic modeling characterizes Gulf of Mexico hypoxia: 1968–2016 and future scenarios. Ecological Applications 30: e02032.
dc.identifier.citedreferenceDietze, M. C., et al. 2018. Iterative near‐term ecological forecasting: Needs, opportunities, and challenges. Proceedings of the National Academy of Sciences of the United States of America 115: 1424 – 1432.
dc.identifier.citedreferenceDu, J., J. Shen, K. Park, Y.‐P. Wang, and X. Yu. 2018. Worsened physical condition due to climate change contributes to the increasing hypoxia in Chesapeake Bay. Science of the Total Environment 630: 707 – 717.
dc.identifier.citedreferenceEshleman, K. N., R. D. Sabo, and K. M. Kline. 2013. Surface water quality is improving due to declining atmospheric N deposition. Environmental Science and Technology 47: 12193 – 12200.
dc.identifier.citedreferenceEvans, M. R., et al. 2013. Predictive systems ecology. Proceedings of the Royal Society B 280: 20131452.
dc.identifier.citedreferenceEvans, M. A., and D. Scavia. 2011. Forecasting hypoxia in the Chesapeake Bay and Gulf of Mexico: model accuracy, precision, and sensitivity to ecosystem change. Environmental Research Letters 6:015001.
dc.identifier.citedreferenceFang, S., D. Del Giudice, D. Scavia, C. E. Binding, T. B. Bridgeman, J. D. Chaffin, M. A. Evans, J. Guinness, T. H. Johengen, and D. R. Obenour. 2019. A space–time geostatistical model for probabilistic estimation of harmful algal bloom biomass and areal extent. Science of the Total Environment 695: 133776.
dc.identifier.citedreferenceFeng, Y., S. F. DiMarco, and G. A. Jackson. 2012. Relative role of wind forcing and riverine nutrient input on the extent of hypoxia in the northern Gulf of Mexico. Geophysical Research Letters 39: L09601.
dc.identifier.citedreferenceFennel, K., A. Laurent, R. Hetland, D. Justić, D. S. Ko, J. Lehrter, M. Murrell, L. Wang, L. Yu, and W. Zhang. 2016. Effects of model physics on hypoxia simulations for the northern Gulf of Mexico: a model intercomparison. Journal of Geophysical Research: Oceans 121: 5731 – 5750.
dc.identifier.citedreferenceGelman, A., and J. Hill. 2007. Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, New York, New York, USA.
dc.identifier.citedreferenceGimenez, O., et al. 2014. Statistical ecology comes of age. Biology Letters 10: 20140698.
dc.identifier.citedreferenceGreat Lakes Water Quality Agreement [GLWQA]. 2016. The United States and Canada adopt phosphorus load reduction targets to combat Lake Erie algal blooms. https://binational.net/2016/02/22/finalptargets‐ciblesfinalesdep/
dc.identifier.citedreferenceGneiting, T., and M. Katzfuss. 2014. Probabilistic forecasting. Annual Review of Statistics and Its Application 1: 125 – 151.
dc.identifier.citedreferenceGoodrich, D. M., W. C. Boicourt, P. Hamilton, and D. W. Pritchard. 1987. Wind‐induced destratification in Chesapeake Bay. Journal of Physical Oceanography 17: 2232 – 2240.
dc.identifier.citedreferenceGurbisz, C., and W. M. Kemp. 2014. Unexpected resurgence of a large submersed plant bed in Chesapeake Bay: analysis of time series data. Limnology and Oceanography 59: 482 – 494.
dc.identifier.citedreferenceHagy, J. D., W. R. Boynton, C. W. Keefe, and K. V. Wood. 2004. Hypoxia in Chesapeake Bay, 1950–2001: long‐term change in relation to nutrient loading and river flow. Estuaries 4: 634 – 658.
dc.identifier.citedreferenceHarris, D. J., S. D. Taylor, and E. P. White. 2018. Forecasting biodiversity in breeding birds using best practices. PeerJ 6: e4278.
dc.identifier.citedreferenceHarwood, J., and K. Stokes. 2003. Coping with uncertainty in ecological advice: lessons from fisheries. Trends in Ecology and Evolution 18: 617 – 622.
dc.identifier.citedreferenceHirsch, R. M., D. L. Moyer, and S. A. Archfield. 2010. Weighted regression on time, discharge, and season (WRTDS), with an application to Chesapeake Bay river inputs. Journal of the American Water Resources Association 46: 857 – 880.
dc.identifier.citedreferenceHofman, J. M., D. G. Goldstein, and J. Hullman. 2020. How visualizing inferential uncertainty can mislead readers about treatment effects in scientific results. Pages 1 – 12. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, New York, USA.
dc.identifier.citedreferenceIrby, I. D., et al. 2016. Challenges associated with modeling low‐oxygen waters in Chesapeake Bay: a multiple model comparison. Biogeosciences 13: 2011 – 2028.
dc.identifier.citedreferenceIrby, I. D., and M. A. M. Friedrichs. 2019. Evaluating confidence in the impact of regulatory nutrient reduction on Chesapeake Bay water quality. Estuaries and Coasts 42: 16 – 32.
dc.identifier.citedreferenceIrby, I. D., M. A. M. Friedrichs, F. Da, and K. E. Hinson. 2018. The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay. Biogeosciences 15: 2649 – 2668.
dc.identifier.citedreferenceJeppesen, E., et al. 2005. Lake responses to reduced nutrient loading—an analysis of contemporary long‐term data from 35 case studies. Freshwater Biology 50: 1747 – 1771.
dc.identifier.citedreferenceJohnson‐Bice, S. M., J. M. Ferguson, J. D. Erb, T. D. Gable, and S. K. Windels. 2020. Ecological forecasts reveal limitations of common model selection methods: predicting changes in beaver colony densities. Ecological Applications 31: e02198.
dc.identifier.citedreferenceJordan, A., F. Krüger, and S. Lerch. 2019. Evaluating probabilistic forecasts with scoringRules. Journal of Statistical Software 90: 1 – 37.
dc.identifier.citedreferenceKatin, A., D. Del Giudice, and D. R. Obenour. 2019. Modeling biophysical controls on hypoxia in a shallow estuary using a Bayesian mechanistic approach. Environmental Modelling & Software 120: 104491.
dc.identifier.citedreferenceKemp, W. M., et al. 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series 303: 1 – 29.
dc.identifier.citedreferenceLee, Y. J., W. R. Boynton, M. Li, and Y. Li. 2013. Role of late winter–spring wind influencing summer hypoxia in Chesapeake Bay. Estuaries and Coasts 36: 683 – 696.
dc.identifier.citedreferenceSoroka, A. M., and D. J. Blomquist. 2020. Nitrogen flux estimates in support of Chesapeake Bay hypoxia and anoxia forecasts, 1985–2020: U.S. Geological Survey data release. https://doi.org/10.5066/P9QU1DWS
dc.identifier.citedreferenceLefcheck, J. S., et al. 2018. Long‐term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. Proceedings of the National Academy of Sciences of the United States of America 115: 3658 – 3662.
dc.identifier.citedreferenceLi, M., Y. J. Lee, J. M. Testa, Y. Li, W. Ni, W. M. Kemp, and D. M. Di Toro. 2016. What drives interannual variability of hypoxia in Chesapeake Bay: climate forcing versus nutrient loading? Geophysical Research Letters 43: 2127 – 2134.
dc.identifier.citedreferenceLinker, L. C., R. A. Batiuk, G. W. Shenk, and C. F. Cerco. 2013. Development of the Chesapeake Bay watershed total maximum daily load allocation. Journal of the American Water Resources Association 49: 986 – 1006.
dc.identifier.citedreferenceLiu, Y., G. B. Arhonditsis, C. A. Stow, and D. Scavia. 2011. Predicting the hypoxic‐volume in Chesapeake Bay with the Streeter Phelps model: a Bayesian approach. Journal of the American Water Resources Association 1: 1348 – 1363.
dc.identifier.citedreferenceLiu, Y., and D. Scavia. 2010. Analysis of the Chesapeake Bay hypoxia regime shift: insights from two simple mechanistic models. Estuaries and Coasts 33: 629 – 639.
dc.identifier.citedreferenceLunn, D. J., A. Thomas, N. Best, and D. Spiegelhalter. 2000. WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing 10: 325 – 337.
dc.identifier.citedreferenceLuo, Y. Q., K. Ogle, C. Tucker, S. F. Fei, C. Gao, S. LaDeau, J. S. Clark, and D. S. Schimel. 2011. Ecological forecasting and data assimilation in a data‐rich era. Ecological Applications 21: 1429 – 1442.
dc.identifier.citedreferenceMaryland Department of Natural Resources. 2020. Chesapeake Bay hypoxia reports. https://dnr.maryland.gov/waters/bay/Pages/Hypoxia‐Reports.aspx
dc.identifier.citedreferenceMatheson, J. E., and R. L. Winkler. 1976. Scoring rules for continuous probability distributions. Management Science 22: 1087 – 1096.
dc.identifier.citedreferenceMatli, V. R. R., S. Fang, J. Guinness, N. N. Rabalais, J. K. Craig, and D. R. Obenour. 2018. Space‐time geostatistical assessment of hypoxia in the northern Gulf of Mexico. Environmental Science and Technology 52: 12484 – 12493.
dc.identifier.citedreferenceMatli, V. R. R., A. Laurent, K. Fennel, K. Craig, J. Krause, and D. R. Obenour. 2020. Fusion‐based hypoxia estimates: combining geostatistical and mechanistic models of dissolved oxygen variability. Environmental Science and Technology 54: 13016 – 13025.
dc.identifier.citedreferenceMistiaen, J. A., I. E. Strand, and D. Lipton. 2003. Effects of environmental stress on blue crab ( Callinectes sapidus ) harvests in Chesapeake Bay tributaries. Estuaries 26: 316 – 322.
dc.identifier.citedreferenceModig, H., and E. Ólafsson. 1998. Responses of Baltic benthic invertebrates to hypoxic events. Journal of Experimental Marine Biology and Ecology 229: 133 – 148.
dc.identifier.citedreferenceMoriarty, J. M., M. A. M. Friedrichs, and C. K. Harris. 2020. Seabed resuspension in the Chesapeake Bay: implications for biogeochemical cycling and hypoxia. Estuaries and Coasts 44: 103 – 122.
dc.identifier.citedreferenceMouquet, N., et al. 2015. Predictive ecology in a changing world. Journal of Applied Ecology 52: 1293 – 1310.
dc.identifier.citedreferenceMurphy, R. R., W. M. Kemp, and W. P. Ball. 2011. Long‐term trends in Chesapeake Bay seasonal hypoxia, stratification, and nutrient loading. Estuaries and Coasts 34: 1293 – 1309.
dc.identifier.citedreferenceNational Aeronautics and Space Administration [NASA]. 2020. Ecological forecasting. Strengthening ecosystems. https://appliedsciences.nasa.gov/what‐we‐do/ecological‐forecasting
dc.identifier.citedreferenceNi, W., M. Li, A. C. Ross, and R. G. Najjar. 2020. Large projected decline in dissolved oxygen in a eutrophic estuary due to climate change. Journal of Geophysical Research: Oceans 124: 8271 – 8289.
dc.identifier.citedreferenceNational Oceanic and Atmospheric Administration [NOAA]. 2020. NOAA ecological forecasting. Predicting human health and coastal economies with early warnings. https://oceanservice.noaa.gov/ecoforecasting/
dc.identifier.citedreferenceNational Oceanic and Atmospheric Administration Great Lakes Environmental Research Laboratory (NOAA GLERL). 2020. Experimental Lake Erie hypoxia forecast. https://www.glerl.noaa.gov/res/HABs_and_Hypoxia/hypoxiaWarningSystem.html
dc.identifier.citedreferenceNorth Carolina Sea Grant. 2020. Midsummer Neuse River forecast shows greater potential for fish kills. https://ncseagrant.ncsu.edu/currents/2020/06/midsummer‐neuse‐river‐forecast‐shows‐greater‐potential‐for‐fish‐kills/
dc.identifier.citedreferenceObenour, D. R., A. D. Gronewold, C. A. Stow, and D. Scavia. 2014. Using a Bayesian hierarchical model to improve Lake Erie cyanobacteria bloom forecasts. Water Resources Research 50: 7847 – 7860.
dc.identifier.citedreferenceObenour, D. R., A. M. Michalak, and D. Scavia. 2015. Assessing biophysical controls on Gulf of Mexico hypoxia through probabilistic modeling. Ecological Applications 25: 492 – 505.
dc.identifier.citedreferenceObenour, D. R., A. M. Michalak, Y. Zhou, and D. Scavia. 2012. Quantifying the impacts of stratification and nutrient loading on hypoxia in the Northern Gulf of Mexico. Environmental Science and Technology 46 ( 10 ): 5489 – 5496. https://doi.org/10.1021/es204481a.
dc.identifier.citedreferenceObenour, D. R., D. Scavia, N. N. Rabalais, R. E. Turner, and A. M. Michalak. 2013. Retrospective analysis of midsummer hypoxic area and volume in the northern Gulf of Mexico, 1985–2011. Environmental Science and Technology 47: 9808 – 9815.
dc.identifier.citedreferencePappenberger, F., and K. J. Beven. 2006. Ignorance is bliss: or seven reasons not to use uncertainty analysis. Water Resources Research 42: W05302.
dc.identifier.citedreferencePappenberger, F., M.‐H. Ramos, H. L. Cloke, F. Wetterhall, L. Alfieri, K. Bogner, A. Mueller, and P. Salamon. 2015. How do I know if my forecasts are better? Using benchmarks in hydrological ensemble prediction. Journal of Hydrology 522: 697 – 713.
dc.identifier.citedreferencePayne, M. R., et al. 2017. Lessons from the first generation of marine ecological forecast products. Frontiers in Marine Science 4: 289.
dc.identifier.citedreferencePetchey, O. L., et al. 2015. The ecological forecast horizon, and examples of its uses and determinants. Ecology Letters 18: 597 – 611.
dc.identifier.citedreferenceR Development Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.r‐project.org
dc.identifier.citedreferenceRabalais, N. N. 2020. Gulf of Mexico hypoxia. https://gulfhypoxia.net/
dc.identifier.citedreferenceRaftery, A. E. 2016. Use and communication of probabilistic forecasts. Statistical Analysis and Data Mining: The ASA Data Science Journal 9: 397 – 410.
dc.identifier.citedreferenceRoss, A. C., C. A. Stock, K. W. Dixon, M. A. M. Friedrichs, R. R. Hood, M. Li, K. Pegion, V. Saba, and G. A. Vecchi. 2020. Estuarine forecasts at daily weather to subseasonal time scales. Earth and Space Science 7: e2020EA001179.
dc.identifier.citedreferenceRucinski, D., J. DePinto, D. Beletsky, and D. Scavia. 2016. Modeling hypoxia in the Central Basin of Lake Erie under potential phosphorus load reduction scenarios. Journal of Great Lakes Research 42: 1206 – 1211.
dc.identifier.citedreferenceRucinski, D., D. Scavia, J. DePinto, and D. Beletsky. 2014. Lake Erie’s hypoxia response to nutrient loads and meteorological variability. Journal of Great Lakes Research 40: 151 – 161.
dc.identifier.citedreferenceSalon, S., G. Cossarini, G. Bolzon, L. Feudale, P. Lazzari, A. Teruzzi, C. Solidoro, and A. Crise. 2019. Novel metrics based on Biogeochemical Argo data to improve the model uncertainty evaluation of the CMEMS Mediterranean marine ecosystem forecasts. Ocean Science 15: 997 – 1022.
dc.identifier.citedreferenceScavia, D., and I. Bertani. 2020. Chesapeake Bay hypoxic volume forecasts. June 7, 2020. http://scavia.seas.umich.edu/wp‐content/uploads/2020/10/2020‐Chesapeake‐Bay‐forecast_EndOfSummer.pdf
dc.identifier.citedreferenceScavia, D., I. Bertani, C. Long, and Y. Wang. 2019. Chesapeake Bay hypoxic volume forecasts. June 7, 2019. http://scavia.seas.umich.edu/wp‐content/uploads/2019/06/2019‐Chesapeake‐Bay‐forecast.pdf
dc.identifier.citedreferenceScavia, D., I. Bertani, D. R. Obenour, R. E. Turner, D. R. Forrest, and A. Katin. 2017. Ensemble modeling informs hypoxia management in the northern Gulf of Mexico. Proceedings of the National Academy of Sciences of the United States of America 114: 8823 – 8828.
dc.identifier.citedreferenceScavia, D., J. V. DePinto, and I. Bertani. 2016. A multi‐model approach to evaluating target phosphorus loads for Lake Erie. Journal of Great Lakes Research 42: 1139 – 1150.
dc.identifier.citedreferenceScavia, D., M. A. Evans, and D. R. Obenour. 2013. A scenario and forecast model for Gulf of Mexico hypoxic area and volume. Environmental Science and Technology 47: 10423 – 10428.
dc.identifier.citedreferenceScavia, D., D. Justic, and V. J. Bierman Jr. 2004. Reducing hypoxia in the Gulf of Mexico: advice from three models. Estuaries 27 ( 3 ): 419 – 425.
dc.identifier.citedreferenceScavia, D., N. N. Rabalais, R. E. Turner, D. Justic, and W. Wiseman Jr. 2003. Predicting the response of Gulf of Mexico hypoxia to variations in Mississippi River nitrogen load. Limnology and Oceanography 48: 951 – 956.
dc.identifier.citedreferenceScavia, D., Y.‐C. Wang, and D. R. Obenour. 2020a. Lake Erie harmful algal bloom forecast. June 7, 2020. http://scavia.seas.umich.edu/wp‐content/uploads/2020/07/2020‐LakeErieBloomForecastRelease.pdf
dc.identifier.citedreferenceScavia, D., I. Bertani, C. Long, D. R. Obenour, and Y.‐C. Wang. 2020b. Gulf of Mexico hypoxia forecast. June 7, 2020. http://scavia.seas.umich.edu/wp‐content/uploads/2020/08/2020‐Gulf‐of‐Mexico‐Hypoxic‐Forecast.pdf
dc.identifier.citedreferenceScavia, D., Y.‐C. Wang, D. R. Obenour, A. Apostel, S. J. Basile, M. M. Kalcic, C. J. Kirchhoff, L. Miralha, R. L. Muenich, and A. L. Steiner. 2020c. Quantifying uncertainty cascading from climate, watershed, and lake models in harmful algal bloom predictions. Science of the Total Environment 759: 143487.
dc.identifier.citedreferenceSchindler, D. E., and R. Hilborn. 2015. Prediction, precaution, and policy under global change. Science 347: 953 – 954.
dc.identifier.citedreferenceScully, M. E. 2010a. Wind modulation of dissolved oxygen in Chesapeake Bay. Estuaries and Coasts 33: 1164 – 1175.
dc.identifier.citedreferenceScully, M. E. 2010b. The importance of climate variability to wind‐driven modulation of hypoxia in Chesapeake Bay. Journal of Physical Oceanography 40: 1435 – 1440.
dc.identifier.citedreferenceScully, M. E. 2013. Physical controls on hypoxia in Chesapeake Bay: a numerical modeling study. Journal of Geophysical Research: Oceans 118: 1239 – 1256.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.