Show simple item record

Osteoblasts Generate Testosterone From DHEA and Activate Androgen Signaling in Prostate Cancer Cells

dc.contributor.authorMoon, Henry H
dc.contributor.authorClines, Katrina L
dc.contributor.authorO’Day, Patrick J
dc.contributor.authorAl‐barghouthi, Basel M
dc.contributor.authorFarber, Emily A
dc.contributor.authorFarber, Charles R
dc.contributor.authorAuchus, Richard J
dc.contributor.authorClines, Gregory A
dc.date.accessioned2021-09-08T14:35:40Z
dc.date.available2022-09-08 10:35:39en
dc.date.available2021-09-08T14:35:40Z
dc.date.issued2021-08
dc.identifier.citationMoon, Henry H; Clines, Katrina L; O’Day, Patrick J; Al‐barghouthi, Basel M ; Farber, Emily A; Farber, Charles R; Auchus, Richard J; Clines, Gregory A (2021). "Osteoblasts Generate Testosterone From DHEA and Activate Androgen Signaling in Prostate Cancer Cells." Journal of Bone and Mineral Research 36(8): 1566-1579.
dc.identifier.issn0884-0431
dc.identifier.issn1523-4681
dc.identifier.urihttps://hdl.handle.net/2027.42/169292
dc.description.abstractBone metastasis is a complication of prostate cancer in up to 90% of men afflicted with advanced disease. Therapies that reduce androgen exposure remain at the forefront of treatment. However, most prostate cancers transition to a state whereby reducing testicular androgen action becomes ineffective. A common mechanism of this transition is intratumoral production of testosterone (T) using the adrenal androgen precursor dehydroepiandrosterone (DHEA) through enzymatic conversion by 3β- and 17β- hydroxysteroid dehydrogenases (3βHSD and 17βHSD). Given the ability of prostate cancer to form blastic metastases in bone, we hypothesized that osteoblasts might be a source of androgen synthesis. RNA expression analyses of murine osteoblasts and human bone confirmed that at least one 3βHSD and 17βHSD enzyme isoform was expressed, suggesting that osteoblasts are capable of generating androgens from adrenal DHEA. Murine osteoblasts were treated with 100- nM and 1- μM DHEA or vehicle control. Conditioned media from these osteoblasts were assayed for intermediate and active androgens by liquid chromatography- tandem mass spectrometry. As DHEA was consumed, the androgen intermediates androstenediol and androstenedione were generated and subsequently converted to T. Conditioned media of DHEA- treated osteoblasts increased androgen receptor (AR) signaling, prostate- specific antigen (PSA) production, and cell numbers of the androgen- sensitive prostate cancer cell lines C4- 2B and LNCaP. DHEA did not induce AR signaling in osteoblasts despite AR expression in this cell type. We describe an unreported function of osteoblasts as a source of T that is especially relevant during androgen- responsive metastatic prostate cancer invasion into bone. © 2021 American Society for Bone and Mineral Research (ASBMR). This article has been contributed to by US Government employees and their work is in the public domain in the USA.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherDHEA
dc.subject.otherSEX STEROIDS
dc.subject.otherTESTOSTERONE
dc.subject.otherOSTEOBLASTS; PROSTATE CANCER
dc.titleOsteoblasts Generate Testosterone From DHEA and Activate Androgen Signaling in Prostate Cancer Cells
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialities
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169292/1/jbmr4313_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169292/2/jbmr4313.pdf
dc.identifier.doi10.1002/jbmr.4313
dc.identifier.sourceJournal of Bone and Mineral Research
dc.identifier.citedreferenceNormington K, Russell DW. Tissue distribution and kinetic characteristics of rat steroid 5 alpha- reductase isozymes. Evidence for distinct physiological functions. J Biol Chem. 1992; 267 ( 27 ): 19548 - 19554.
dc.identifier.citedreferenceBlaszczyk N, Masri BA, Mawji NR, et al. Osteoblast- derived factors induce androgen- independent proliferation and expression of prostate- specific antigen in human prostate cancer cells. Clin Cancer Res. 2004; 10 ( 5 ): 1860 - 1869.
dc.identifier.citedreferenceKampa M, Papakonstanti EA, Hatzoglou A, Stathopoulos EN, Stournaras C, Castanas E. The human prostate cancer cell line LNCaP bears functional membrane testosterone receptors that increase PSA secretion and modify actin cytoskeleton. FASEB J. 2002; 16 ( 11 ): 1429 - 1431.
dc.identifier.citedreferenceZhu YS, Cai LQ, You X, Cordero JJ, Huang Y, Imperato- McGinley J. Androgen- induced prostate- specific antigen gene expression is mediated via dihydrotestosterone in LNCaP cells. J Androl. 2003; 24 ( 5 ): 681 - 687.
dc.identifier.citedreferenceSong W, Khera M. Physiological normal levels of androgen inhibit proliferation of prostate cancer cells in vitro. Asian J Androl. 2014; 16 ( 6 ): 864 - 868.
dc.identifier.citedreferenceYu P, Duan X, Cheng Y, et al. Androgen- independent LNCaP cells are a subline of LNCaP cells with a more aggressive phenotype and androgen suppresses their growth by inducing cell cycle arrest at the G1 phase. Int J Mol Med. 2017; 40 ( 5 ): 1426 - 1434.
dc.identifier.citedreferencePeng HM, Valentin- Goyco J, Im SC, et al. Expression in Escherichia coli, purification, and functional reconstitution of human steroid 5α- reductases. Endocrinology. 2020; 161 ( 8 ): 1 - 11.
dc.identifier.citedreferenceNotini AJ, McManus JF, Moore A, et al. Osteoblast deletion of exon 3 of the androgen receptor gene results in trabecular bone loss in adult male mice. J Bone Miner Res. 2007; 22 ( 3 ): 347 - 356.
dc.identifier.citedreferenceChiang C, Chiu M, Moore AJ, et al. Mineralization and bone resorption are regulated by the androgen receptor in male mice. J Bone Miner Res. 2009; 24 ( 4 ): 621 - 631.
dc.identifier.citedreferenceMaatta JA, Buki KG, Ivaska KK, et al. Inactivation of the androgen receptor in bone- forming cells leads to trabecular bone loss in adult female mice. BoneKEy Rep. 2013; 2: 440.
dc.identifier.citedreferenceSinnesael M, Claessens F, Laurent M, et al. Androgen receptor (AR) in osteocytes is important for the maintenance of male skeletal integrity: evidence from targeted AR disruption in mouse osteocytes. J Bone Miner Res. 2012; 27 ( 12 ): 2535 - 2543.
dc.identifier.citedreferenceShea HC, Head DD, Setchell KD, Russell DW. Analysis of HSD3B7 knockout mice reveals that a 3α- hydroxyl stereochemistry is required for bile acid function. Proc Natl Acad Sci U S A. 2007; 104 ( 28 ): 11526 - 11533.
dc.identifier.citedreferenceSchwarz M, Wright AC, Davis DL, Nazer H, Bjorkhem I, Russell DW. The bile acid synthetic gene 3β- hydroxy- Π5 - C 27 - steroid oxidoreductase is mutated in progressive intrahepatic cholestasis. J Clin Invest. 2000; 106 ( 9 ): 1175 - 1184.
dc.identifier.citedreferenceCheng JB, Jacquemin E, Gerhardt M, et al. Molecular genetics of 3β- hydroxy- Π5 - C 27 - steroid oxidoreductase deficiency in 16 patients with loss of bile acid synthesis and liver disease. J Clin Endocrinol Metab. 2003; 88 ( 4 ): 1833 - 1841.
dc.identifier.citedreferenceFizazi K, Carducci M, Smith M, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration- resistant prostate cancer: a randomised, double- blind study. Lancet. 2011; 377 ( 9768 ): 813 - 822.
dc.identifier.citedreferenceDavis ID, Martin AJ, Stockler MR, et al. Enzalutamide with standard first- line therapy in metastatic prostate cancer. N Engl J Med. 2019; 381 ( 2 ): 121 - 131.
dc.identifier.citedreferenceArmstrong AJ, Szmulewitz RZ, Petrylak DP, et al. ARCHES: a randomized, phase III study of androgen deprivation therapy with enzalutamide or placebo in men with metastatic hormone- sensitive prostate cancer. J Clin Oncol. 2019; 37 ( 32 ): 2974 - 2986.
dc.identifier.citedreferenceEfstathiou E, Titus M, Tsavachidou D, et al. Effects of abiraterone acetate on androgen signaling in castrate- resistant prostate cancer in bone. J Clin Oncol. 2012; 30 ( 6 ): 637 - 643.
dc.identifier.citedreferenceDobbs RW, Malhotra NR, Greenwald DT, Wang AY, Prins GS, Abern MR. Estrogens and prostate cancer. Prostate Cancer Prostatic Dis. 2019; 22 ( 2 ): 185 - 194.
dc.identifier.citedreferenceAmanatullah DF, Tamaresis JS, Chu P, et al. Local estrogen axis in the human bone microenvironment regulates estrogen receptor- positive breast cancer cells. Breast Cancer Res. 2017; 19 ( 1 ): 121.
dc.identifier.citedreferenceTurcu AF, Nanba AT, Chomic R, et al. Adrenal- derived 11- oxygenated 19- carbon steroids are the dominant androgens in classic 21- hydroxylase deficiency. Eur J Endocrinol. 2016; 174 ( 5 ): 601 - 609.
dc.identifier.citedreferenceO’Reilly MW, Kempegowda P, Jenkinson C, et al. 11- oxygenated C19 steroids are the predominant androgens in polycystic ovary syndrome. J Clin Endocrinol Metab. 2017; 102 ( 3 ): 840 - 848.
dc.identifier.citedreferenceSopher AB, Thornton JC, Silfen ME, et al. Prepubertal girls with premature adrenarche have greater bone mineral content and density than controls. J Clin Endocrinol Metab. 2001; 86 ( 11 ): 5269 - 5272.
dc.identifier.citedreferenceSopher AB, Jean AM, Zwany SK, et al. Bone age advancement in prepubertal children with obesity and premature adrenarche: possible potentiating factors. Obesity (Silver Spring). 2011; 19 ( 6 ): 1259 - 1264.
dc.identifier.citedreferenceUtriainen P, Laakso S, Liimatta J, Jaaskelainen J, Voutilainen R. Premature adrenarche- a common condition with variable presentation. Horm Res Paediatr. 2015; 83 ( 4 ): 221 - 231.
dc.identifier.citedreferenceRege J, Turcu AF, Kasa- Vubu JZ, et al. 11- Ketotestosterone is the dominant circulating bioactive androgen during normal and premature adrenarche. J Clin Endocrinol Metab. 2018; 103 ( 12 ): 4589 - 4598.
dc.identifier.citedreferenceUcer S, Iyer S, Bartell SM, et al. The effects of androgens on murine cortical bone do not require AR or ERalpha signaling in osteoblasts and osteoclasts. J Bone Miner Res. 2015; 30 ( 7 ): 1138 - 1149.
dc.identifier.citedreferenceTran C, Ouk S, Clegg NJ, et al. Development of a second- generation antiandrogen for treatment of advanced prostate cancer. Science. 2009; 324 ( 5928 ): 787 - 790.
dc.identifier.citedreferenceAlmeida M, Laurent MR, Dubois V, et al. Estrogens and androgens in skeletal physiology and pathophysiology. Physiol Rev. 2017; 97 ( 1 ): 135 - 187.
dc.identifier.citedreferenceBubendorf L, Schopfer A, Wagner U, et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol. 2000; 31 ( 5 ): 578 - 583.
dc.identifier.citedreferenceSowder ME, Johnson RW. Bone as a preferential site for metastasis. JBMR Plus. 2019; 3 ( 3 ).
dc.identifier.citedreferenceWeilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. Nat Rev Cancer. 2011; 11 ( 6 ): 411 - 425.
dc.identifier.citedreferenceIhle CL, Straign DM, Provera MD, Novitskiy SV, Owens P. Loss of myeloid BMPR1a alters differentiation and reduces mouse prostate cancer growth. Front Oncol. 2020; 10: 357.
dc.identifier.citedreferenceHall CL, Bafico A, Dai J, Aaronson SA, Keller ET. Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Res. 2005; 65 ( 17 ): 7554 - 7560.
dc.identifier.citedreferenceClines GA, Mohammad KS, Bao Y, et al. Dickkopf homolog 1 mediates endothelin- 1- stimulated new bone formation. Mol Endocrinol. 2007; 22: 486 - 498.
dc.identifier.citedreferenceDai J, Hall CL, Escara- Wilke J, Mizokami A, Keller JM, Keller ET. Prostate cancer induces bone metastasis through Wnt- induced bone morphogenetic protein- dependent and independent mechanisms. Cancer Res. 2008; 68 ( 14 ): 5785 - 5794.
dc.identifier.citedreferenceKimura T, Kuwata T, Ashimine S, et al. Targeting of bone- derived insulin- like growth factor- II by a human neutralizing antibody suppresses the growth of prostate cancer cells in a human bone environment. Clin Cancer Res. 2010; 16 ( 1 ): 121 - 129.
dc.identifier.citedreferenceWan X, Li ZG, Yingling JM, et al. Effect of transforming growth factor beta (TGF- β) receptor I kinase inhibitor on prostate cancer bone growth. Bone. 2012; 50 ( 3 ): 695 - 703.
dc.identifier.citedreferenceFournier PG, Juarez P, Jiang G, et al. The TGF- β signaling regulator PMEPA1 suppresses prostate cancer metastases to bone. Cancer Cell. 2015; 27 ( 6 ): 809 - 821.
dc.identifier.citedreferenceSeidenfeld J, Samson DJ, Hasselblad V, et al. Single- therapy androgen suppression in men with advanced prostate cancer: a systematic review and meta- analysis. Ann Intern Med. 2000; 132 ( 7 ): 566 - 577.
dc.identifier.citedreferenceEisenberger MA, Blumenstein BA, Crawford ED, et al. Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. N Engl J Med. 1998; 339 ( 15 ): 1036 - 1042.
dc.identifier.citedreferenceKarantanos T, Corn PG, Thompson TC. Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene. 2013; 32 ( 49 ): 5501 - 5511.
dc.identifier.citedreferenceDillard PR, Lin MF, Khan SA. Androgen- independent prostate cancer cells acquire the complete steroidogenic potential of synthesizing testosterone from cholesterol. Mol Cell Endocrinol. 2008; 295 ( 1- 2 ): 115 - 120.
dc.identifier.citedreferenceAuchus RJ. The backdoor pathway to dihydrotestosterone. Trends Endocrinol Metab. 2004; 15 ( 9 ): 432 - 438.
dc.identifier.citedreferenceChang KH, Ercole CE, Sharifi N. Androgen metabolism in prostate cancer: from molecular mechanisms to clinical consequences. Br J Cancer. 2014; 111 ( 7 ): 1249 - 1254.
dc.identifier.citedreferenceAuchus RJ, Sharifi N. Sex hormones and prostate cancer. Annu Rev Med. 2020; 71: 33 - 45.
dc.identifier.citedreferenceGrino PB, Griffin JE, Wilson JD. Testosterone at high concentrations interacts with the human androgen receptor similarly to dihydrotestosterone. Endocrinology. 1990; 126 ( 2 ): 1165 - 1172.
dc.identifier.citedreferenceKuwano Y, Fujikawa H, Watanabe A, et al. 3Beta- hydroxysteroid dehydrogenase activity in human osteoblast- like cells. Endocr J. 1997; 44 ( 6 ): 847 - 853.
dc.identifier.citedreferenceFeix M, Wolf L, Schweikert HU. Distribution of 17beta- hydroxysteroid dehydrogenases in human osteoblast- like cells. Mol Cell Endocrinol. 2001; 171 ( 1- 2 ): 163 - 164.
dc.identifier.citedreferenceSaito H, Yanaihara T. Steroid formation in osteoblast- like cells. J Int Med Res. 1998; 26 ( 1 ): 1 - 12.
dc.identifier.citedreferenceDavey RA, Grossmann M. Androgen receptor structure, function and biology: from bench to bedside. Clin Biochem Rev. 2016; 37 ( 1 ): 3 - 15.
dc.identifier.citedreferenceBakker AD, Klein- Nulend J. Osteoblast isolation from murine calvaria and long bones. Methods Mol Biol. 2012; 816: 19 - 29.
dc.identifier.citedreferenceSigma- Aldrich. Preparation of charcoal- stripped fetal bovine serum 2020. Available at: https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Usage/f2442use.pdf.
dc.identifier.citedreferenceKim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015; 12 ( 4 ): 357 - 360.
dc.identifier.citedreferencePertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA- seq reads. Nat Biotechnol. 2015; 33 ( 3 ): 290 - 295.
dc.identifier.citedreferenceWright C, O’Day P, Alyamani M, Sharifi N, Auchus RJ. Abiraterone acetate treatment lowers 11- oxygenated androgens. Eur J Endocrinol. 2020; 182 ( 4 ): 413 - 421.
dc.identifier.citedreferenceDavio A, Woolcock H, Nanba AT, et al. Sex differences in 11- oxygenated androgen patterns across adulthood. J Clin Endocrinol Metab. 2020; 105 ( 8 ): e2921 - e2987.
dc.identifier.citedreferenceBanker M, Puttabyatappa M, O’Day P, et al. Association of maternal- neonatal steroids with early pregnancy endocrine disrupting chemicals and pregnancy outcomes. J Clin Endocrinol Metab. 2020; 106 ( 3 ): 665 - 687.
dc.identifier.citedreferenceCampana C, Rege J, Turcu AF, et al. Development of a novel cell based androgen screening model. J Steroid Biochem Mol Biol. 2016; 156: 17 - 22.
dc.identifier.citedreferenceChen S, Wang J, Yu G, Liu W, Pearce D. Androgen and glucocorticoid receptor heterodimer formation. A possible mechanism for mutual inhibition of transcriptional activity. J Biol Chem. 1997; 272 ( 22 ): 14087 - 14092.
dc.identifier.citedreferenceFarr JN, Roforth MM, Fujita K, et al. Effects of age and estrogen on skeletal gene expression in humans as assessed by RNA sequencing. PLoS One. 2015; 10 ( 9 ).
dc.identifier.citedreferenceWu TT, Sikes RA, Cui Q, et al. Establishing human prostate cancer cell xenografts in bone: induction of osteoblastic reaction by prostate- specific antigen- producing tumors in athymic and SCID/bg mice using LNCaP and lineage- derived metastatic sublines. Int J Cancer. 1998; 77 ( 6 ): 887 - 894.
dc.identifier.citedreferenceHearn JWD, AbuAli G, Reichard CA, et al. HSD3B1 and resistance to androgen- deprivation therapy in prostate cancer: a retrospective, multicohort study. Lancet Oncol. 2016; 17 ( 10 ): 1435 - 1444.
dc.identifier.citedreferenceStanbrough M, Bubley GJ, Ross K, et al. Increased expression of genes converting adrenal androgens to testosterone in androgen- independent prostate cancer. Cancer Res. 2006; 66 ( 5 ): 2815 - 2825.
dc.identifier.citedreferenceMontgomery RB, Mostaghel EA, Vessella R, et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration- resistant tumor growth. Cancer Res. 2008; 68 ( 11 ): 4447 - 4454.
dc.identifier.citedreferenceUemura M, Tamura K, Chung S, et al. Novel 5 alpha- steroid reductase (SRD5A3, type- 3) is overexpressed in hormone- refractory prostate cancer. Cancer Sci. 2008; 99 ( 1 ): 81 - 86.
dc.identifier.citedreferenceHofland J, van Weerden WM, Dits NF, et al. Evidence of limited contributions for intratumoral steroidogenesis in prostate cancer. Cancer Res. 2010; 70 ( 3 ): 1256 - 1264.
dc.identifier.citedreferenceTitus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res. 2005; 11 ( 13 ): 4653 - 4657.
dc.identifier.citedreferenceLiu XH, Kirschenbaum A, Yao S, Liu G, Aaronson SA, Levine AC. Androgen- induced Wnt signaling in preosteoblasts promotes the growth of MDA- PCa- 2b human prostate cancer cells. Cancer Res. 2007; 67 ( 12 ): 5747 - 5753.
dc.identifier.citedreferenceHagberg Thulin M, Nilsson ME, Thulin P, et al. Osteoblasts promote castration- resistant prostate cancer by altering intratumoral steroidogenesis. Mol Cell Endocrinol. 2016; 422: 182 - 191.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.