Show simple item record

Early‐life epilepsy after acute symptomatic neonatal seizures: A prospective multicenter study

dc.contributor.authorShellhaas, Renée A.
dc.contributor.authorWusthoff, Courtney J.
dc.contributor.authorNumis, Adam L.
dc.contributor.authorChu, Catherine J.
dc.contributor.authorMassey, Shavonne L.
dc.contributor.authorAbend, Nicholas S.
dc.contributor.authorSoul, Janet S.
dc.contributor.authorChang, Taeun
dc.contributor.authorLemmon, Monica E.
dc.contributor.authorThomas, Cameron
dc.contributor.authorMcNamara, Nancy A.
dc.contributor.authorGuillet, Ronnie
dc.contributor.authorFranck, Linda S.
dc.contributor.authorSturza, Julie
dc.contributor.authorMcCulloch, Charles E.
dc.contributor.authorGlass, Hannah C.
dc.date.accessioned2021-09-08T14:36:00Z
dc.date.available2022-09-08 10:35:59en
dc.date.available2021-09-08T14:36:00Z
dc.date.issued2021-08
dc.identifier.citationShellhaas, Renée A. ; Wusthoff, Courtney J.; Numis, Adam L.; Chu, Catherine J.; Massey, Shavonne L.; Abend, Nicholas S.; Soul, Janet S.; Chang, Taeun; Lemmon, Monica E.; Thomas, Cameron; McNamara, Nancy A.; Guillet, Ronnie; Franck, Linda S.; Sturza, Julie; McCulloch, Charles E.; Glass, Hannah C. (2021). "Early‐life epilepsy after acute symptomatic neonatal seizures: A prospective multicenter study." Epilepsia (8): 1871-1882.
dc.identifier.issn0013-9580
dc.identifier.issn1528-1167
dc.identifier.urihttps://hdl.handle.net/2027.42/169301
dc.description.abstractObjectiveWe aimed to evaluate early‐life epilepsy incidence, seizure types, severity, risk factors, and treatments among survivors of acute neonatal seizures.MethodsNeonates with acute symptomatic seizures born 7/2015‐3/2018 were prospectively enrolled at nine Neonatal Seizure Registry sites. One‐hour EEG was recorded at age three months. Post‐neonatal epilepsy and functional development (Warner Initial Developmental Evaluation of Adaptive and Functional Skills – WIDEA‐FS) were assessed. Cox regression was used to assess epilepsy‐free survival.ResultsAmong 282 infants, 37 (13%) had post‐neonatal epilepsy by 24‐months [median age of onset 7‐months (IQR 3–14)]. Among those with post‐neonatal epilepsy, 13/37 (35%) had infantile spasms and 12/37 (32%) had drug‐resistant epilepsy. Most children with post‐neonatal epilepsy had abnormal neurodevelopment at 24‐months (WIDEA‐FS >2SD below normal population mean for 81% of children with epilepsy vs 27% without epilepsy, RR 7.9, 95% CI 3.6–17.3). Infants with severely abnormal neonatal EEG background patterns were more likely to develop epilepsy than those with mild/moderate abnormalities (HR 3.7, 95% CI 1.9–5.9). Neonatal EEG with ≥3 days of seizures also predicted hazard of epilepsy (HR 2.9, 95% CI 1.4–5.9). In an adjusted model, days of neonatal EEG‐confirmed seizures (HR 1.4 per day, 95% CI 1.2–1.6) and abnormal discharge examination (HR 3.9, 95% CI 1.9–7.8) were independently associated with time to epilepsy onset. Abnormal (vs. normal) three‐month EEG was not associated with epilepsy.SignificanceIn this multicenter study, only 13% of infants with acute symptomatic neonatal seizures developed post‐neonatal epilepsy by age 24‐months. However, there was a high risk of severe neurodevelopmental impairment and drug‐resistant seizures among children with post‐neonatal epilepsy. Days of EEG‐confirmed neonatal seizures was a potentially modifiable epilepsy risk factor. An EEG at three months was not clinically useful for predicting epilepsy. These practice changing findings have implications for family counseling, clinical follow‐up planning, and future research to prevent post‐neonatal epilepsy.
dc.publisherWiley Periodicals, Inc.
dc.publisherW.B. Saunders Company
dc.subject.otherneonatal encephalopathy
dc.subject.otherneonatal seizures
dc.subject.otherneurocritical care
dc.subject.otherseizure
dc.subject.otheranti‐seizure medication
dc.subject.otherelectroencephalogram
dc.subject.otherepilepsy
dc.subject.otherhypoxic‐ischemic encephalopathy
dc.subject.otherinfantile spasms
dc.titleEarly‐life epilepsy after acute symptomatic neonatal seizures: A prospective multicenter study
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169301/1/epi16978_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169301/2/epi16978.pdf
dc.identifier.doi10.1111/epi.16978
dc.identifier.sourceEpilepsia
dc.identifier.citedreferencePalisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997; 39 ( 4 ): 214 – 23.
dc.identifier.citedreferenceRonen GM, Buckley D, Penney S, Streiner DL. Long‐term prognosis in children with neonatal seizures: a population based study. Neurology. 2007; 69: 1816 – 22.
dc.identifier.citedreferenceGlass HC, Pham TN, Danielsen B, Towner D, Glidden D, Wu YW. Antenatal and intrapartum risk factors for seizures in term newborns: a population‐based study, California 1998–2002. J Pediatr. 2009; 154: 24 – 8.
dc.identifier.citedreferenceMurray DM, Boylan GB, Ali I, Ryan CA, Murphy BP, Connolly S. Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch Dis Child Fetal Neonatal Ed. 2008; 93: F187 – 91.
dc.identifier.citedreferenceKharoshankaya L, Stevenson NJ, Livingstone V, Murray DM, Murphy BP, Ahearne CE, et al. Seizure burden and neurodevelopmental outcome in neonates with hypoxic‐ischemic encephalopathy. Dev Med Child Neurol. 2016; 58 ( 12 ): 1242 – 8.
dc.identifier.citedreferenceMcBride MC, Laroia N, Guillet R. Electrographic seizures in neonates correlate with poor neurodevelopmental outcome. Neurology. 2000; 55: 506 – 14.
dc.identifier.citedreferenceNevalainen P, Metsäranta M, Toiviainen‐Salo S, Marchi V, Mikkonen K, Vanhatalo S, et al. Neonatal neuroimaging and neurophysiology predict infantile onset epilepsy after perinatal hypoxic ischemic encephalopathy. Seizure. 2020; 80: 249 – 56.
dc.identifier.citedreferenceWorden LT, Chinappen DM, Stoyell SM, Gold J, Paixao L, Krishnamoorthy K, et al. The probability of seizures during continuous EEG monitoring in high‐risk neonates. Epilepsia. 2019; 60 ( 12 ): 2508 – 18.
dc.identifier.citedreferenceGarfinkle J, Shevell MI. Cerebral palsy, developmental delay, and epilepsy after neonatal seizures. Pediatr Neurol. 2011; 44 ( 2 ): 88 – 96.
dc.identifier.citedreferenceNunes ML, Martins MA, Barea BM, Wainberg RC, da Costa JS. Neurological outcomes of newborns with neonatal seizures. Arq Neuropsiquiatr. 2008; 66: 168 – 74.
dc.identifier.citedreferenceGlass HC, Soul JS, Chang T, Wusthoff CJ, Chu CJ, Massey SL, et al. Safety of early discontinuation of antiseizure medication after acute symptomatic neonatal seizures. JAMA Neurol. 2021. Online ahead of print. https://doi.org/10.1001/jamaneurol.2021.1437
dc.identifier.citedreferenceGlass HC, Grinspan ZM, Li YI, McNamara NA, Chang T, Chu CJ, et al. Risk for infantile spasms after acute symptomatic neonatal seizures. Epilepsia. 2020; 61 ( 12 ): 2774 – 84.
dc.identifier.citedreferenceGlass HC, Shellhaas RA, Tsuchida TN, Chang T, Wusthoff CJ, Chu CJ, et al. Seizures in preterm neonates: a multicenter observational cohort study. Pediatr Neurol. 2017; 72: 19 – 24.
dc.identifier.citedreferenceShellhaas RA, Chang T, Wusthoff CJ, Soul JS, Massey SL, Chu CJ, et al. Treatment duration after acute symptomatic seizures in neonates: a multicenter cohort study. J Pediatr. 2017; 181: 298 – 301.e291.
dc.identifier.citedreferenceShellhaas RA, Chang T, Tsuchida T, Scher MS, Riviello JJ, Abend NS, et al. The American Clinical Neurophysiology Society’s guideline on continuous electroencephalography monitoring in neonates. J Clin Neurophysiol. 2011; 28 ( 6 ): 611 – 7.
dc.identifier.citedreferenceTsuchida TN, Wusthoff CJ, Shellhaas RA, Abend NS, Hahn CD, Sullivan JE, et al. American clinical neurophysiology society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the American Clinical Neurophysiology Society critical care monitoring committee. J Clin Neurophysiol. 2013; 30 ( 2 ): 161 – 73.
dc.identifier.citedreferenceMytinger JR, Hussain SA, Islam MP, Millichap JJ, Patel AD, Ryan NR, et al. Improving the inter‐rater agreement of hypsarrhythmia using a simplified EEG grading scale for children with infantile spasms. Epilepsy Res. 2015; 116: 93 – 8.
dc.identifier.citedreferenceFisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014; 55 ( 4 ): 475 – 82.
dc.identifier.citedreferenceFisher RS, Cross JH, French JA, Higurashi N, Hirsch E, Jansen FE, et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017; 58 ( 4 ): 522 – 30.
dc.identifier.citedreferenceKwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010; 51 ( 6 ): 1069 – 77.
dc.identifier.citedreferenceMsall ME. Measuring functional skills in preschool children at risk for neurodevelopmental disabilities. Ment Retard Dev Disabil Res Rev. 2005; 11 ( 3 ): 263 – 73.
dc.identifier.citedreferenceMsall ME, Tremont MR, Ottenbacher KJ. Functional assessments of preschool children: optimizing developmental and family supports in early intervention. Infant Young Child. 2001; 14 ( 1 ): 46 – 66.
dc.identifier.citedreferencePeyton C, Msall ME, Wroblewski K, Rogers EE, Kohn M, Glass HC. Concurrent validity of the Warner Initial Developmental Evaluation of Adaptive and Functional Skills (WIDEA‐FS) and the Bayley Scales of Infant and Toddler Development III. Dev Med Child Neurol. 2020; 63 ( 3 ): 349 – 54.
dc.identifier.citedreferencePeyton C, Wroblewski K, Park J, Crisante C, Mariano K, Lyon N, et al. Validity of The Warner Initial Developmental Evaluation of Adaptive and Functional Skills (WIDEA‐FS): a daily activity criterion checklist for infants and toddlers. Pediatr Res. 2021. Online ahead of print. https://doi.org/10.1038/s41390‐020‐01342‐0
dc.identifier.citedreferenceLai YH, Ho CS, Chiu NC, Tseng CF, Huang YL. Prognostic factors of developmental outcome in neonatal seizures in term infants. Pediatr Neonatol. 2013; 54 ( 3 ): 166 – 72.
dc.identifier.citedreferencePainter MJ, Sun Q, Scher MS, Janosky J, Alvin J. Neonates with seizures: what predicts development? J Child Neurol. 2012; 27 ( 8 ): 1022 – 6.
dc.identifier.citedreferenceFox CK, Glass HC, Sidney S, Smith SE, Fullerton HJ. Neonatal seizures triple the risk of a remote seizure after perinatal ischemic stroke. Neurology. 2016; 86 ( 23 ): 2179 – 86.
dc.identifier.citedreferenceInoue T, Shimizu M, Hamano S, Murakami N, Nagai T, Sakuta R. Epilepsy and West syndrome in neonates with hypoxic‐ischemic encephalopathy. Pediatr Int. 2014; 56 ( 3 ): 369 – 72.
dc.identifier.citedreferenceHarbert MJ, Sey R, Arnell K, Salinda L, Brown MK, Lazarus D, et al. Impact of a neuro‐intensive care service for newborns. J Neonatal Perinatal Med. 2018; 11 ( 2 ): 173 – 8.
dc.identifier.citedreferenceGlass HC, Ferriero DM, Rowitch DH, Shimotake TK. The neurointensive nursery: concept, development, and insights gained. Curr Opin Pediatr. 2019; 31 ( 2 ): 202 – 9.
dc.identifier.citedreferenceRoychoudhury S, Esser MJ, Buchhalter J, Bello‐Espinosa L, Zein H, Howlett A, et al. Implementation of neonatal neurocritical care program improved short‐term outcomes in neonates with moderate‐to‐severe hypoxic ischemic encephalopathy. Pediatr Neurol. 2019; 101: 64 – 70.
dc.identifier.citedreferenceCarrasco M, Stafstrom CE, Tekes A, Parkinson C, Northington FJ. The Johns Hopkins neurosciences intensive care nursery tenth anniversary (2009–2019): a historical reflection and vision for the future. Child Neurol Open. 2020; 7: 2009 – 19.
dc.identifier.citedreferenceBashir RA, Espinoza L, Vayalthrikkovil S, Buchhalter J, Irvine L, Bello‐Espinosa L, et al. Implementation of a neurocritical care program: improved seizure detection and decreased antiseizure medication at discharge in neonates with hypoxic‐ischemic encephalopathy. Pediatr Neurol. 2016; 64: 38 – 43.
dc.identifier.citedreferenceYıldız EP, Tatlı B, Ekici B, Eraslan E, Aydınlı N, Çalışkan M, et al. Evaluation of etiologic and prognostic factors in neonatal convulsions. Pediatr Neurol. 2012; 47: 186 – 92.
dc.identifier.citedreferenceGul Mert G, Incecik F, Altunbasak S, Herguner O, Kurthan Mert M, Kiris N, et al. Factors affecting epilepsy development and epilepsy prognosis in cerebral palsy. Pediatr Neurol. 2011; 45: 89 – 94.
dc.identifier.citedreferencePisani F, Cerminara C, Fusco C, Sisti L. Neonatal status epilepticus vs recurrent neonatal seizures: clinical findings and outcome. Neurology. 2007; 69 ( 23 ): 2177 – 85.
dc.identifier.citedreferencePisani F, Piccolo B, Cantalupo G, Copioli C, Fusco C, Pelosi A, et al. Neonatal seizures and postneonatal epilepsy: a 7‐y follow‐up study. Pediatr Res. 2012; 72 ( 2 ): 186 – 93.
dc.identifier.citedreferenceGlass HC, Hong KJ, Rogers EE, Jeremy RJ, Bonifacio SL, Sullivan JE, et al. Risk factors for epilepsy in children with neonatal encephalopathy. Pediatr Res. 2011; 70 ( 5 ): 535 – 40.
dc.identifier.citedreferenceChristensen J, Pedersen MG, Pedersen CB, Sidenius P, Olsen J, Vestergaard M. Long‐term risk of epilepsy after traumatic brain injury in children and young adults: a population‐based cohort study. Lancet. 2009; 373 ( 9669 ): 1105 – 10.
dc.identifier.citedreferenceVolpe JJ. Neurology of the Newborn. 3 rd ed. Philadelphia, PA: W.B. Saunders Company; 1995.
dc.identifier.citedreferenceKotulska K, Kwiatkowski DJ, Curatolo P, Weschke B, Riney K, Jansen F, et al. Prevention of epilepsy in infants with tuberous sclerosis complex in the EPISTOP Trial. Ann Neurol. 2021; 89 ( 2 ): 304 – 14.
dc.identifier.citedreferenceGlass HC, Shellhaas RA, Wusthoff CJ, Chang T, Abend NS, Chu CJ, et al. Contemporary profile of seizures in neonates: a prospective cohort study. J Pediatr. 2016; 174: 98 – 103.
dc.identifier.citedreferenceThurman DJ, Begley CE, Carpio A, Helmers S, Hesdorffer DC, Mu J, et al. The primary prevention of epilepsy: a report of the Prevention Task Force of the International League Against Epilepsy. Epilepsia. 2018; 59 ( 5 ): 905 – 14.
dc.identifier.citedreferenceWhitehead E. Relation of pregnancy and neonatal factors to subsequent development of childhood epilepsy: a population‐based cohort study. Pediatrics. 2006; 117 ( 4 ): 1298 – 306.
dc.identifier.citedreferenceCamfield C, Camfield P, Gordon K, Smith B, Dooley J. Outcome of childhood epilepsy: a population‐based study with a simple predictive scoring system for those treated with medication. J Pediatr. 1993; 122 ( 6 ): 861 – 8.
dc.identifier.citedreferenceSillanpää M, Camfield P, Camfield C. Predicting long‐term outcome of childhood epilepsy in Nova Scotia, Canada, and Turku, Finland. Validation of a simple scoring system. Arch Neurol. 1995; 52 ( 6 ): 589 – 92.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.