Show simple item record

Superposed Epoch Analysis of Nighttime Magnetic Perturbation Events Observed in Arctic Canada

dc.contributor.authorEngebretson, Mark J.
dc.contributor.authorAhmed, Lidiya Y.
dc.contributor.authorPilipenko, Viacheslav A.
dc.contributor.authorSteinmetz, Erik S.
dc.contributor.authorMoldwin, Mark B.
dc.contributor.authorConnors, Martin G.
dc.contributor.authorBoteler, David H.
dc.contributor.authorWeygand, James M.
dc.contributor.authorCoyle, Shane
dc.contributor.authorOhtani, Shin
dc.contributor.authorGjerloev, Jesper
dc.contributor.authorRussell, Christopher T.
dc.date.accessioned2021-09-08T14:36:04Z
dc.date.available2022-10-08 10:36:01en
dc.date.available2021-09-08T14:36:04Z
dc.date.issued2021-09
dc.identifier.citationEngebretson, Mark J.; Ahmed, Lidiya Y.; Pilipenko, Viacheslav A.; Steinmetz, Erik S.; Moldwin, Mark B.; Connors, Martin G.; Boteler, David H.; Weygand, James M.; Coyle, Shane; Ohtani, Shin; Gjerloev, Jesper; Russell, Christopher T. (2021). "Superposed Epoch Analysis of Nighttime Magnetic Perturbation Events Observed in Arctic Canada." Journal of Geophysical Research: Space Physics 126(9): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/169302
dc.description.abstractRapid changes of magnetic fields associated with nighttime magnetic perturbation events (MPEs) with amplitudes |ΔB| of hundreds of nT and 5–10 min duration can induce geomagnetically induced currents (GICs) that can harm technological systems. Here we present superposed epoch analyses of large nighttime MPEs (|dB/dt| ≥ 6 nT/s) observed during 2015 and 2017 at five stations in Arctic Canada ranging from 64.7° to 75.2° in corrected geomagnetic latitude (MLAT) as functions of the interplanetary magnetic field (IMF), solar wind dynamic pressure, density, and velocity, and the SML, SMU, and SYM/H geomagnetic activity indices. Analyses were produced for premidnight and postmidnight events and for three ranges of time after the most recent substorm onset: (a) 0–30 min, (b) 30–60 min, and (c) >60 min. Of the solar wind and IMF parameters studied, only the IMF Bz component showed any consistent temporal variations prior to MPEs: a 1–2 h wide 1–3 nT negative minimum at all stations beginning ∼30–80 min before premidnight MPEs, and minima that were less consistent but often deeper before postmidnight MPEs. Median, 25th, and 75th percentile SuperMAG auroral indices SML (SMU) showed drops (rises) before pre‐ and post‐midnight type A MPEs, but most of the MPEs in categories B and C did not coincide with large‐scale peaks in ionospheric electrojets. Median SYM/H indices were flat near −30 nT for premidnight events and showed no consistent temporal association with any MPE events. More disturbed values of IMF Bz, Psw, Nsw, SML, SMU, and SYM/H appeared postmidnight than premidnight.Key PointsSuperposed epoch analyses of 2 years of >6 nT/s magnetic perturbation events (MPEs) from 5 high latitude Arctic stations are presentedOf the solar wind and interplanetary magnetic field (IMF) parameters studied, only IMF Bz showed any consistent pattern: a drop and rise prior to MPE occurrenceMost of the MPEs that occurred more than 30 min after a substorm onset did not coincide with peaks in the westward electrojet
dc.publisherWiley Periodicals, Inc.
dc.publisherKyoto University
dc.subject.othersubstorms
dc.subject.othergeomagnetic storms
dc.subject.othermagnetic indices
dc.subject.otherGIC
dc.subject.othergeomagnetically induced currents
dc.subject.othermagnetic perturbation events
dc.titleSuperposed Epoch Analysis of Nighttime Magnetic Perturbation Events Observed in Arctic Canada
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169302/1/jgra56680.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169302/2/jgra56680_am.pdf
dc.identifier.doi10.1029/2021JA029465
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferencePulkkinen, A., Klimas, A., Vassiliadis, D., Uritsky, V., & Tanskanen, E. ( 2006 ). Spatiotemporal scaling properties of the ground geomagnetic field variations. Journal of Geophysical Research, 111, A03305. https://doi.org/10.1029/2006JA01129410.1029/2005ja011294
dc.identifier.citedreferenceMukhopadhyay, A., Welling, D. T., Liemohn, M. W., Ridley, A. J., Chakraborty, S., & Anderson, B. J. ( 2020 ). Conductance Model for Extreme Events: Impact of auroral conductance on space weather forecasts. Space Weather, 18, e2020SW002551. https://doi.org/10.1029/2020SW002551
dc.identifier.citedreferenceNewell, P. T., & Gjerloev, J. W. ( 2011 ). Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research, 116, A12211. https://doi.org/10.1029/2011JA016779
dc.identifier.citedreferenceNgwira, C. M., & Pulkkinen, A. A. ( 2019 ). An introduction to geomagnetically induced currents (2019). In J. L. Gannon, A. Swidinsky, & Z. Xu (Eds.), Geomagnetically induced currents from the Sun to the power grid, geophysical monograph series (Vol. 244, pp. 3 – 13 ). American Geophysical Union. https://doi.org/10.1002/9781119434412.ch1
dc.identifier.citedreferenceNgwira, C. M., Pulkkinen, A. A., Bernabeu, E., Eichner, J., Viljanen, A., & Crowley, G. ( 2015 ). Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements. Geophysical Research Letters, 42, 6916 – 6921. https://doi.org/10.1002/2015GL065061
dc.identifier.citedreferenceNgwira, C. M., Sibeck, D. G., Silveira, M. D. V., Georgiou, M., Weygand, J. M., Nishimura, Y., & Hampton, D. ( 2018 ). A study of intense local d Bdt variations during two geomagnetic storms. Space Weather, 16, 676 – 693. https://doi.org/10.1029/2018SW001911
dc.identifier.citedreferenceNikitina, L., Trichtchenko, L., & Boteler, D. H. ( 2016 ). Assessment of extreme values in geomagnetic and geoelectric field variations for Canada. Space Weather, 14, 481 – 494. https://doi.org/10.1002/2016SW001386
dc.identifier.citedreferenceNishimura, Y., Lyons, L. R., Gabrielse, C., Sivadas, N., Donovan, E. F., Varney, R. H., et al. ( 2020 ). Extreme magnetosphere‐ionosphere‐thermosphere responses to the 5 April 2010 Supersubstorm. Journal of Geophysical Research: Space Physics, 125 ( 4 ), A09218. https://doi.org/10.1029/2019JA027654
dc.identifier.citedreferenceOliveira, D. M., Arel, D., Raeder, J., Zesta, E., Ngwira, C. M., Carter, B. A., et al. ( 2018 ). Geomagnetically induced currents caused by interplanetary shocks with different impact angles and speeds. Space Weather, 16, 636 – 647. https://doi.org/10.1029/2018SW001880
dc.identifier.citedreferenceOliveira, D. M., & Raeder, J. ( 2015 ). Impact angle control of interplanetary shock geoeffectiveness: A statistical study. Journal of Geophysical Research: Space Physics, 120, 4313 – 4323. https://doi.org/10.1002/2015JA021147
dc.identifier.citedreferencePulkkinen, A., Bernabeu, E., Eichner, J., Viljanen, A., & Ngwira, C. M. ( 2015 ). Regional‐scale high‐latitude extreme geoelectric fields pertaining to geomagnetically induced currents. Earth Planets and Space, 67. https://doi.org/10.1186/s40623-015-0255-6
dc.identifier.citedreferencePulkkinen, A., Thomson, A., Clarke, E., & McKay, A. ( 2003 ). April 2000 geomagnetic storm: Ionospheric drivers of large geomagnetically induced currents. Annales Geophysicae, 21 ( 3 ), 709 – 717. https://doi.org/10.5194/angeo-21-709-2003
dc.identifier.citedreferenceRichardson, J. D., & Paularena, K. I. ( 2001 ). Plasma and magnetic field correlations in the solar wind. Journal of Geophysical Research, 106, 239 – 251. https://doi.org/10.1029/2000JA000071
dc.identifier.citedreferenceRogers, N. C., Wild, J. A., Eastoe, E. F., Gjerloev, J. W., Thomson, A. W. P., & Thomson, A. W. P. ( 2020 ). A global climatological model of extreme geomagnetic field fluctuations. Journal of Space Weather and Space Climate, 10, 5. https://doi.org/10.1051/swsc/2020008
dc.identifier.citedreferenceSøraas, F., Laundal, K. M., & Usanova, M. ( 2013 ). Coincident particle and optical observations of nightside subauroral proton precipitation. Journal of Geophysical Research: Space Physics, 118, 1112 – 1122. https://doi.org/10.1002/jgra.50172
dc.identifier.citedreferenceSugiura, M., & Poros, D. J. ( 1971 ). Hourly values of equatorial Dst for years 1957 to 1970, Rep. X‐645‐71‐278. Goddard Space Flight Center.
dc.identifier.citedreferenceTetrick, S. S., Engebretson, M. J., Posch, J. L., Olson, C. N., Smith, C. W., Denton, R. E., et al. ( 2017 ). Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause: Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 122, 4064 – 4088. https://doi.org/10.1002/2016JA023392
dc.identifier.citedreferenceUsanova, M. E., Mann, I. R., Bortnik, J., Shao, L., & Angelopoulos, V. ( 2012 ). THEMIS observations of electromagnetic ion cyclotron wave occurrence: Dependence on AE, SYMH, and solar wind dynamic pressure. Journal of Geophysical Research, 117, A10218. https://doi.org/10.1029/2012JA018049
dc.identifier.citedreferenceViljanen, A. ( 1997 ). The relation between geomagnetic variations and their time derivatives and implications for estimation of induction risks. Geophysical Research Letters, 24, 631 – 634. https://doi.org/10.1029/97GL00538
dc.identifier.citedreferenceViljanen, A., Nevanlinna, H., Pajunpää, K., & Pulkkinen, A. ( 2001 ). Time derivative of thehorizontal geomagnetic field as an activity indicator. Annales Geophysicae, 19, 1107 – 1118. https://doi.org/10.5194/angeo-19-1107-2001
dc.identifier.citedreferenceViljanen, A., & Tanskanen, E. ( 2011 ). Climatology of rapid geomagnetic variations at high latitudes over two solar cycles. Annales Geophysicae, 29, 1783 – 1792. https://doi.org/10.5194/angeo-29-1783-2011
dc.identifier.citedreferenceViljanen, A., Tanskanen, E. I., & Pulkkinen, A. ( 2006 ). Relation between substorm characteristics and rapid temporal variations of the ground magnetic field. Annales Geophysicae, 24, 725 – 733. https://doi.org/10.5194/angeo-24-725-2006
dc.identifier.citedreferenceVillante, U., & Piersanti, M. ( 2012 ). Sudden Impulses in the Magnetosphere and at Ground. In M. Lazar, & IntechOpen (Eds.), Sudden impulses in the magnetosphere and at ground, exploring the solar wind (pp. 399 – 416 ). https://doi.org/10.5772/36770
dc.identifier.citedreferenceVorobev, A. V., Pilipenko, V. A., Sakharov, Y. A., & Selivanov, V. N. ( 2019 ). Statistical relationships between variations of the geomagnetic field, auroral electrojet and geomagnetically induced currents. Solar‐Terrestrial Physics, 5 ( 1 ), 35 – 42. https://doi.org/10.12737/stp-51201905
dc.identifier.citedreferenceWalsh, B. M., Bhakyapaibul, T., & Zou, Y. ( 2019 ). Quantifying the uncertainty of using solar wind measurements for geospace inputs. Journal of Geophysical Research: Space Physics, 124, 3291 – 3302. https://doi.org/10.1029/2019JA026507
dc.identifier.citedreferenceWang, B., Nishimura, Y., Zou, Y., Lyons, L. R., Angelopoulos, V., Frey, H., & Mende, S. ( 2016 ). Investigation of triggering of poleward moving auroral forms using satellite‐imager coordinated observations. Journal of Geophysical Research: Space Physics, 121, 10929 – 10941. https://doi.org/10.1002/2016JA023128
dc.identifier.citedreferenceWanliss, J. A., & Showalter, K. M. ( 2006 ). High‐resolution global storm index: Dst versus SYM‐ H. Journal of Geophysical Research, 111, A02202. https://doi.org/10.1029/2005JA011034
dc.identifier.citedreferenceWei, D., Dunlop, M. W., Yang, J., Dong, X., Yu, Y., & Wang, T. ( 2021 ). Intense dB/dt variations driven by near‐Earth bursty bulk flows (BBFs): A case study. Geophysical Research Letters, 48, e2020GL091781. https://doi.org/10.1029/2020GL091781
dc.identifier.citedreferenceWelling, D. T., Love, J. J., Rigler, E. J., Oliveira, D. M., Komar, C. M., & Morley, S. K. ( 2020 ). Numerical simulations of the geospace response to the arrival of an idealized perfect interplanetary coronal mass ejection. Space Weather, 18. https://doi.org/10.1029/2020SW002489
dc.identifier.citedreferenceWintoft, P., Wik, M., & Viljanen, A. ( 2015 ). Solar wind driven empirical forecast models of the time derivative of the ground magnetic field. Journal of Space Weather and Space Climate, 5 ( A7 ). https://doi.org/10.1051/swsc/2015008
dc.identifier.citedreferenceWoodroffe, J. R., Morley, S. K., Jordanova, V. K., Henderson, M. G., Cowee, M. M., & Gjerloev, J. ( 2016 ). The latitudinal variation of geoelectromagnetic disturbances during large ( Dst ≤−100 nT) geomagnetic storms. Space Weather, 14, 668 – 681. https://doi.org/10.1002/2016SW001376
dc.identifier.citedreferenceYagova, N. V., Pilipenko, V. A., Fedorov, E. N., Lhamdon‐tong, A. D., & Gusev, Y. P. ( 2018 ). Geomagnetically induced currents and space weather: Pi3 pulsations and extreme values of the time derivatives of the horizontal components of the geomagnetic field, Izvestiya. Physics of the Solid Earth, 54, 749 – 763. https://doi.org/10.1134/S1069351318050130
dc.identifier.citedreferenceZhang, Y., Paxton, L. J., & Zheng, Y. ( 2008 ). Interplanetary shock induced ring current auroras. Journal of Geophysical Research, 113, A01212. https://doi.org/10.1029/2007JA012554
dc.identifier.citedreferenceZhang, Y., Paxton, L., Morrison, D., Wolven, B., Kil, H., & Wing, S. ( 2005 ). Nightside detached auroras due to precipitating protons/ions during intense magnetic storms. Journal of Geophysical Research, 110, A02206. https://doi.org/10.1029/2004JA010498
dc.identifier.citedreferenceAnderson, B. J., & Hamilton, D. C. ( 1993 ). Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions. Journal of Geophysical Research, 98, 11369 – 11382. https://doi.org/10.1029/93JA00605
dc.identifier.citedreferenceApatenkov, S. V., Pilipenko, V. A., Gordeev, E. I., Viljanen, A., Juusola, L., Belakhovsky, V. B., et al. ( 2020 ). Auroral omega bands are a significant cause of large geomagnetically induced currents. Geophysical Research Letters, 47, e2019GL086677. https://doi.org/10.1029/2019GL086677
dc.identifier.citedreferenceAraki, T. ( 1994 ). A physical model of the geomagnetic sudden commencement, in solar wind sources of magnetospheric ultra‐low‐frequency waves. In M. J. Engebretson, K. Takahashi, & M. Scholer (Eds.), Geophysical. Monograph series (Vol. 81, pp. 183 – 200 ). https://doi.org/10.1029/GM081p0183
dc.identifier.citedreferenceBelakhovsky, V. B., Sakharov, Y. A., Pilipenko, V. A., & Selivanov, V. N. ( 2018 ). Characteristics of the variability of a geomagnetic field for studying the impact of the magnetic storms and substorms on electrical energy systems, Izvestiya. Physics of the Solid Earth, 54, 52 – 65. https://doi.org/10.1134/S1069351318010032
dc.identifier.citedreferenceBier, E. A., Owusu, N., Engebretson, M. J., Posch, J. L., Lessard, M. R., & Pilipenko, V. A. ( 2014 ). Investigating the IMF cone angle control of Pc3‐4 pulsations observed on the ground. Journal of Geophysical Research: Space Physics, 119, 1797 – 1813. https://doi.org/10.1002/2013JA019637
dc.identifier.citedreferenceBorovsky, J. E. ( 2008 ). Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU? Journal of Geophysical Research, 113, A08110. https://doi.org/10.1029/2007JA012684
dc.identifier.citedreferenceBorovsky, J. E. ( 2017 ). The spatial structure of the oncoming solar wind at Earth and the shortcomings of a solar wind monitor at L1. Journal of Atmospheric and Solar‐Terrestrial Physics, 177, 2 – 11. https://doi.org/10.1016/j.jastp.2017.03.014
dc.identifier.citedreferenceBoteler, D. H. ( 2001 ). Assessment of geomagnetic hazard to power systems in Canada. Natural Hazards, 23, 101 – 120. https://doi.org/10.1023/A:1011194414259
dc.identifier.citedreferenceBoteler, D. H. ( 2019 ). A 21st century view of the March 1989 magnetic storm. Space Weather, 17, 1427 – 1441. https://doi.org/10.1029/2019SW002278
dc.identifier.citedreferenceBoteler, D. H., Pirjola, R. J., & Nevanlinna, H. ( 1998 ). The effects of geomagnetic disturbances on electrical systems at the Earth’s surface. Advances in Space Research, 22, 17 – 27. https://doi.org/10.1016/S0273-1177(97)01096-X
dc.identifier.citedreferenceCarrington, R. C. ( 1859 ). Description of a singular appearance seen in the Sun on September 1. Monthly Notices of the Royal Astronomical Society, 20, 13 – 15. https://doi.org/10.1093/mnras/20.1.13
dc.identifier.citedreferenceChree, C. ( 1913 ). Some phenomena of sunspots and of terrestrial magnetism at Kew observatory. Philosophical Transactions of the Royal Society of London. Series A, 212, 75 – 116. https://doi.org/10.1098/rsta.1913.0003
dc.identifier.citedreferenceConnors, M., Schofield, I., Reiter, K., Chi, P. J., Rowe, K. M., & Russell, C. T. ( 2016 ). The AUTUMNX magnetometer meridian chain in Québec, Canada. Earth Planets and Space, 68. https://doi.org/10.1186/s40623-015-0354-4
dc.identifier.citedreferenceDimmock, A. P., Rosenqvist, L., Hall, J.‐O., Viljanen, A., Yordanova, E., Honkonen, I., et al. ( 2019 ). The GIC and geomagnetic response over Fennoscandia to the 7–8 September 2017 geomagnetic storm. Space Weather, 17, 989 – 1010. https://doi.org/10.1029/2018SW002132
dc.identifier.citedreferenceDimmock, A. P., Rosenqvist, L., Welling, D. T., Viljanen, A., Honkonen, I., Boynton, R. J., & Yordanova, E. ( 2020 ). On the regional variability of dB/dt and its significance to GIC. Space Weather, 18, e2020SW002497. https://doi.org/10.1029/2020SW002497
dc.identifier.citedreferenceDrozdov, A. Y., Usanova, M. E., Hudson, M. K., Allison, H. J., & Shprits, Y. Y. ( 2020 ). The role of hiss, chorus, and EMIC waves in the modeling of the dynamics of the multi‐MeV radiation belt electrons. Journal of Geophysical Research: Space Physics, 125, e2020JA028282. https://doi.org/10.1029/2020JA028282
dc.identifier.citedreferenceEngebretson, M. J., Hughes, W. J., Alford, J. L., Zesta, E., Cahill, L. J., Jr., Arnoldy, R. L., & Reeves, G. D. ( 1995 ). Magnetometer array for cusp and cleft studies observations of the spatial extent of broadband ULF magnetic pulsations at cusp/cleft latitudes. Journal of Geophysical Research, 100, 19371 – 19386. https://doi.org/10.1029/95JA00768
dc.identifier.citedreferenceEngebretson, M. J., Kirkevold, K. R., Steinmetz, E. S., Pilipenko, V. A., Moldwin, M. B., McCuen, B. A., et al. ( 2020 ). Interhemispheric comparisons of large nighttime magnetic perturbation events relevant to GICs. Journal of Geophysical Research: Space Physics, 125, e2020JA028128. https://doi.org/10.1029/2020JA028128
dc.identifier.citedreferenceEngebretson, M. J., Pilipenko, V. A., Ahmed, L. Y., Posch, J. L., Steinmetz, E. S., Moldwin, M. B., et al. ( 2019a ). Nighttime magnetic perturbation events observed in Arctic Canada: 1. Survey and statistical analysis. Journal of Geophysical Research: Space Physics, 124, 7442 – 7458. https://doi.org/10.1029/2019JA026794
dc.identifier.citedreferenceEngebretson, M. J., Pilipenko, V. A., Steinmetz, E. S., Moldwin, M. B., Connors, M. G., Boteler, D. H., et al. ( 2021 ). Nighttime magnetic perturbation events observed in Arctic Canada: 3. Occurrence and amplitude as functions of magnetic latitude, local time, and magnetic disturbances. Space Weather, 19, e2020SW002526. https://doi.org/10.1029/2020SW002526
dc.identifier.citedreferenceEngebretson, M. J., Steinmetz, E. S., Posch, J. L., Pilipenko, V. A., Moldwin, M. B., Connors, M. G., et al. ( 2019b ). Nighttime magnetic perturbation events observed in Arctic Canada: 2. Multiple‐ instrument observations. Journal of Geophysical Research: Space Physics, 124, 7459 – 7476. https://doi.org/10.1029/2019JA026797
dc.identifier.citedreferenceFreeman, M. P., Forsyth, C., & Rae, I. J. ( 2019 ). The influence of substorms on extreme rates of change of the surface horizontal magnetic field in the United Kingdom. Space Weather, 17, 827 – 844. https://doi.org/10.1029/2018SW002148
dc.identifier.citedreferenceFrey, H. U., Mende, S. B., Angelopoulos, V., & Donovan, E. F. ( 2004 ). Substorm onset observations by IMAGE‐FUV. Journal of Geophysical Research, 109, A10304. https://doi.org/10.1029/2004JA010607
dc.identifier.citedreferenceHapgood, M. ( 2019 ). The great storm of May 1921: An exemplar of a dangerous space weather event. Space Weather, 17, 950 – 975. https://doi.org/10.1029/2019SW002195
dc.identifier.citedreferenceHonkonen, I., Kuvshinov, A., Rastätter, L., & Pulkkinen, A. ( 2018 ). Predicting global ground geoelectric field with coupled geospace and three‐dimensional geomagnetic induction models. Space Weather, 16, 1028 – 1041. https://doi.org/10.1029/2018SW001859
dc.identifier.citedreferenceHuttunen, K. E. J., Koskinen, H. E. J., Pulkkinen, T. I., Pulkkinen, A., Palmroth, M., Reeves, E. G. D., & Singer, H. J. ( 2002 ). April 2000 magnetic storm: Solar wind driver and magnetospheric response. Journal of Geophysical Research, 107, 1440 – 1. https://doi.org/10.1029/2001JA009154
dc.identifier.citedreferenceIyemori, T., Takeda, M., Nose, M., Odagi, Y., & Toh, H. ( 2010 ). Mid‐latitude geomagnetic indices ASY and SYM for 2009 (provisional), internal report of data analysis center for geomagnetism and space magnetism. Kyoto University.
dc.identifier.citedreferenceKnipp, D. J. ( 2015 ). Synthesis of geomagnetically induced currents: Commentary and research. Space Weather, 13, 727 – 729. https://doi.org/10.1002/2015SW001317
dc.identifier.citedreferenceKnipp, D. J., & Gannon, J. L. ( 2019 ). The 2019 National Space Weather strategy and action plan and beyond. Space Weather, 17, 794 – 795. https://doi.org/10.1029/2019SW002254
dc.identifier.citedreferenceKozyreva, O. V., Pilipenko, V.,A., Belakhovsky, V. B., & Sakharov, Y.,A. ( 2018 ). Ground geomagnetic field and GIC response to March 17, 2015, storm. Earth, Planets, and Space, 70, 157. https://doi.org/10.1186/s40623-018-0933-2
dc.identifier.citedreferenceLee, D.‐Y., Lyons, L. R., & Reeves, G. D. ( 2005 ). Comparison of geosynchronous energetic particle flux responses to solar wind dynamic pressure enhancements and substorms. Journal of Geophysical Research, 110, A09213. https://doi.org/10.1029/2005JA011091
dc.identifier.citedreferenceLee, D.‐Y., Ohtani, S., Brandt, P. C., & Lyons, L. R. ( 2007 ). Energetic neutral atom response to solar wind dynamic pressure enhancements. Journal of Geophysical Research, 112, A09210 – n. https://doi.org/10.1029/2007JA012399
dc.identifier.citedreferenceLove, J. J., Hayakawa, H., & Cliver, E. W. ( 2019 ). Intensity and impact of the New York Railroad superstorm of May 1921. Space Weather, 17, 1281 – 1292. https://doi.org/10.1029/2019SW002250
dc.identifier.citedreferenceLühr, H., Rother, M., Iyemori, T., Hansen, T. L., & Lepping, R. P. ( 1998 ). Superposed epoch analysis applied to large‐amplitude travelling convection vortices. Annals of Geophysics, 16, 743 – 753. https://doi.org/10.1007/s00585-998-0743-0
dc.identifier.citedreferenceMarshalko, E., Kruglyakov, M., Kuvshinov, A., Juusola, L., Kwagala, N. K., Sokolova, E., & Pilipenko, V. ( 2021 ). Comparing three approaches to the inducing source setting for the ground electromagnetic field modeling due to space weather events. Space Weather, 19, e2020SW002657. https://doi.org/10.1029/2020SW002657
dc.identifier.citedreferenceMeurant, M., Gérard, J.‐C., Hubert, B., Coumans, V., Blockx, C., Østgaard, N., & Mende, S. B. ( 2003 ). Dynamics of global scale electron and proton precipitation induced by a solar wind pressure pulse. Geophysical Research Letters, 30, 2032. https://doi.org/10.1029/2003GL018017
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.