Show simple item record

Estimation of Possible Primary Biological Particle Emissions and Rupture Events at the Southern Great Plains ARM Site

dc.contributor.authorSubba, Tamanna
dc.contributor.authorLawler, Michael J.
dc.contributor.authorSteiner, Allison L.
dc.date.accessioned2021-09-08T14:36:19Z
dc.date.available2022-09-08 10:36:16en
dc.date.available2021-09-08T14:36:19Z
dc.date.issued2021-08-27
dc.identifier.citationSubba, Tamanna; Lawler, Michael J.; Steiner, Allison L. (2021). "Estimation of Possible Primary Biological Particle Emissions and Rupture Events at the Southern Great Plains ARM Site." Journal of Geophysical Research: Atmospheres 126(16): n/a-n/a.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/169309
dc.description.abstractWe use 10 years of data from the Department of Energy (DoE) Atmospheric Radiation Measurements (ARM) United States Southern Great Plains (SGP) site with nearby regional pollen and fungal spore measurements to indirectly estimate the seasonal influence of these two primary biological aerosol particles (PBAP). We estimate possible primary emissions of larger PBAP and PBAP rupture events, which form submicron organic aerosol during precipitation or high relative humidity. High pollen counts at two urban stations near SGP occur during late winter/early spring (day of year (DOY) 50–120) and late summer (DOY 240–310). Around 4–19 days per year show possible pollen events (PPE) when near‐surface lidar observations of daily linear particle depolarization ratio >0.1 are coincident with high organic aerosol fraction. For PPE days with rainfall, aerosol size distribution observations show enhanced submicron particle concentrations consistent with pollen rupture events. For fungal spores, high fungal spore counts occur during late spring/early summer (DOY 110–195) and late summer/autumn (DOY 220–340). Based on size distribution observations, up to 7% of days have possible fungal spore rupture events (PFE) with higher aerosol number count specifically over the range expected for fungal spore fragment mobility diameter (20–50 nm). These short‐lived PFE correlate with rainfall or occur after prolonged exposure to rainfall (e.g., >10 h). While the SGP site lacks direct measurements of bioaerosol and large particle sizes, this analysis suggests that PBAP primary emissions and rupture events could occur about 32 days per year, representing an important component of the aerosol budget during seasonal emissions.Plain Language SummaryPrimary biological aerosol particles (PBAP) are emitted directly from the Earth’s surface and can include pollen, fungal spores, and bacteria. They can act as nuclei for water droplets or ice crystals and are known to impact clouds and precipitation, and may influence both the regional and the global climate and hydrological cycle. Because measurements of many PBAPs are sparse, we use a suite of atmospheric data from the ambient aerosol and meteorological measurements from the Department of Energy’s Atmospheric Radiation Measurements at United States Southern Great Plains site to indirectly identify possible emissions of pollen and fungal spores from the land surface. We estimate that PBAP can contribute to the local aerosol burden, especially during their peak emission periods.Key PointsAn average of 12 days per year are estimated as primary pollen event days with high interannual variabilityDuring primary pollen events with precipitation or high humidity, rupture events are indicated during ∼4 days per yearDuring or after the prolonged exposure of rainfall for >10 h, ∼20 days per year show evidence of fungal spore rupture events
dc.publisherCRC Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otheraerosol components
dc.subject.otherdepolarization ratio
dc.subject.otherhumidity
dc.subject.otherrainfall
dc.subject.otheraerosol size distribution
dc.subject.otherpollen
dc.subject.otherfungal spores
dc.subject.otherbiological fragments
dc.titleEstimation of Possible Primary Biological Particle Emissions and Rupture Events at the Southern Great Plains ARM Site
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169309/1/jgrd57237_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169309/2/2021JD034679-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169309/3/jgrd57237.pdf
dc.identifier.doi10.1029/2021JD034679
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferencePrenni, A. J., Tobo, Y., Garcia, E., DeMott, P. J., Huffman, J. A., McCluskey, C. S., et al. ( 2013 ). The impact of rain on ice nuclei populations at a forested site in Colorado. Geophysical Research Letters, 40, 227 – 231. https://doi.org/10.1029/2012GL053953
dc.identifier.citedreferenceSicard, M., Izquierdo, R., Alarcón, M., Belmonte, J., Comerón, A., & Baldasano, J. M. ( 2016 ). Near surface and columnar measurements with a Micro Pulse Lidar of atmospheric pollen in Barcelona, Spain. Atmospheric Chemistry and Physics Discussions, 16, 6805 – 6821. https://doi.org/10.5194/acp-2016-212
dc.identifier.citedreferenceSofiev, M., Siljamo, P., Ranta, H., & Rantio‐Lehtimäki, A. ( 2006 ). Towards numerical forecasting of long‐range air transport of birch pollen: Theoretical considerations and a feasibility study. International Journal of Biometeorology, 50 ( 6 ), 392 – 402. https://doi.org/10.1007/s00484-006-0027-x
dc.identifier.citedreferenceSpracklen, D. V., & Heald, C. L. ( 2014 ). The contribution of fungal spores and bacteria to regional and global aerosol number and ice nucleation immersion freezing rates. Atmospheric Chemistry and Physics, 14, 9051 – 9059. https://doi.org/10.5194/acp-14-9051-2014
dc.identifier.citedreferenceSteiner, A. L., Brooks, S. D., Deng, C., Thornton, D. C. O., Pendleton, M. W., & Bryant, V. ( 2015 ). Pollen as atmospheric cloud condensation nuclei. Geophysical Research Letters, 42, 3596 – 3602. https://doi.org/10.1002/2015GL064060
dc.identifier.citedreferenceSteiner, J. L., Robertson, S., Teet, S., Wang, J., Wu, X., Zhou, Y., et al. ( 2020 ). Grassland wildfires in the Southern Great Plains: Monitoring ecological impacts and recovery. Remote Sensing, 12 ( 4 ), 619. https://doi.org/10.3390/rs12040619
dc.identifier.citedreferenceStraka, H. ( 1975 ). Pollen‐undSporenkunde. Fischer Verlag.
dc.identifier.citedreferenceSun, J., & Ariya, P. A. ( 2006 ). Atmospheric organic and bio‐aerosols as cloud condensation nuclei (CCN): A review. Atmospheric Environment, 40, 795 – 820. https://doi.org/10.1016/j.atmosenv.2005.05.052
dc.identifier.citedreferenceSzyrmer, W., & Zawadzki, I. ( 1997 ). Biogenic and anthropogenic sources of ice‐forming nuclei: A review. Bulletin of the American Meteorological Society, 78 ( 2 ), 209 – 228. https://doi.org/10.1175/1520-0477(1997)078<0209:BAASOI>2.0.CO;2
dc.identifier.citedreferenceTackenberg, O., Poschlod, P., & Bonn, S. ( 2003 ). Assessment of wind dispersal potential in plant species, ecological monographs. Ecological Society of America, 73 ( 2 ), 191 – 205. https://doi.org/10.1890/0012-9615(2003)073[0191:AOWDPI]2.0.CO;2
dc.identifier.citedreferenceTaylor, P. E., Flagan, R., Miguel, A. G., Valenta, R., & Glovsky, M. M. ( 2004 ). Birch pollen rupture and the release of aerosols of respirable allergens. Clinical and Experimental Allergy, 34, 1591 – 1596. https://doi.org/10.1111/j.1365-2222.2004.02078.x
dc.identifier.citedreferenceTaylor, P. E., Flagan, R. C., Valenta, R., & Glovsky, M. M. ( 2002 ). Release of allergens as respirable aerosols: A link between grass pollen and asthma. The Journal of Allergy and Clinical Immunology, 109 ( 1 ), 51 – 56. https://doi.org/10.1067/mai.2002.120759
dc.identifier.citedreferenceTaylor, P. E., & Jonsson, H. ( 2004 ). Thunderstorm asthma. Current Allergy and Asthma Reports, 4, 409 – 413. https://doi.org/10.1007/s11882-004-0092-3
dc.identifier.citedreferenceThorsen, T. J., & Fu, Q. ( 2015 ). Automated retrieval of cloud and aerosol properties from the ARM Raman Lidar. Part II: Extinction. Journal of Atmospheric and Oceanic Technology, 32 ( 11 ), 1999 – 2023. https://doi.org/10.1175/JTECH-D-14-00178.1
dc.identifier.citedreferenceThorsen, T. J., Fu, Q., Newsom, R. K., Turner, D. D., & Comstock, J. M. ( 2015 ). Automated retrieval of cloud and aerosol properties from the ARM Raman Lidar. Part I: Feature detection. Journal of Atmospheric and Oceanic Technology, 32 ( 11 ), 1977 – 1998. https://doi.org/10.1175/JTECH-D-14-00150.1
dc.identifier.citedreferenceVali, G., DeMott, P. J., Möhler, O., & Whale, T. F. ( 2015 ). Technical note: A proposal for ice nucleation terminology. Atmospheric Chemistry and Physics, 15, 10263 – 10270. https://doi.org/10.5194/acp-15-10263-2015
dc.identifier.citedreferenceVeriankanitė, L., Siljamo, P., Sofiev, M., Šaulienė, I., & Kukkonen, J. ( 2010 ). Modeling analysis of source regions of long‐range transported birch pollen that influences allergenic seasons in Lithuania. Aerobiologia, 26, 47 – 62. https://doi.org/10.1007/s10453-009-9142-6
dc.identifier.citedreferenceWang, B., Harder, T. H., Kelly, S. T., Piens, D. S., China, S., Kovarik, L., et al. ( 2016 ). Airborne soil organic particles generated by precipitation. Nature Geoscience, 9 ( 6 ), 433 – 437. https://doi.org/10.1038/ngeo2705
dc.identifier.citedreferenceWinker, D. M., Hunt, W. H., & McGill, M. J. ( 2007 ). Initial performance assessment of CALIOP. Geophysical Research Letters, 34, L19803. https://doi.org/10.1029/2007GL030135
dc.identifier.citedreferenceWozniak, M. C., & Steiner, A. L. ( 2017 ). A prognostic pollen emissions model for climate models (PECM1.0). Geoscientific Model Development, 10, 4105 – 4127. https://doi.org/10.5194/gmd-10-4105-2017
dc.identifier.citedreferenceWozniak, M. C., Steiner, A. L., & Solmon, F. ( 2018 ). Pollen rupture and its impact on precipitation in clean continental conditions. Geophysical Research Letters, 45, 7156 – 7164. https://doi.org/10.1029/2018GL077692
dc.identifier.citedreferenceWright, S. J., Trakhtenbrot, A., Bohrer, G., Detto, M., Katul, G. G., Horvitz, N., et al. ( 2008 ). Understanding strategies for seed dispersal by wind under contrasting atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of America, 105 ( 49 ), 19084 – 19089. https://doi.org/10.1073/pnas.0802697105
dc.identifier.citedreferenceZhang, Q., Jimenez, J. L., Worsnop, D. R., & Canagaratna, M. ( 2007 ). A case study of urban particle acidity and its influence on secondary organic aerosol. Environmental Science and Technology, 41 ( 9 ), 3213 – 3219. https://doi.org/10.1021/es061812j
dc.identifier.citedreferenceZhang, R., Duhl, T., Salam, M. T., House, J. M., Flagan, R. C., Avol, E. L., et al. ( 2014 ). Development of a regional‐scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease. Change on Allergic Airway Disease, 10 ( 3 ), 3977 – 4023. https://doi.org/10.5194/bgd-10-3977-2013
dc.identifier.citedreferenceZhang, T., Engling, G., Chan, C. Y., Zhang, Y. N., Zhang, Z. S., Lin, M., et al. ( 2010 ). Contribution of fungal spores to particulate matter in a tropical rainforest. Environmental Research Letters, 5 ( 2 ), 024010. https://doi.org/10.1088/1748-9326/5/2/024010
dc.identifier.citedreferenceZhu, C., Kawamura, K., & Kunwar, B. ( 2015 ). Organic tracers of primary biological aerosol particles at subtropical Okinawa Island in the western North Pacific Rim: Organic biomarkers in the north pacific. Journal of Geophysical Research: Atmospheres, 120, 5504 – 5523. https://doi.org/10.1002/2015JD023611
dc.identifier.citedreferenceZiska, L. H. ( 2016 ). Impacts of climate change on allergen seasonality. In P. J. Beggs (Ed.), Impacts of climate change on allergens and allergic diseases (pp. 93 – 112 ). Cambrige University Press. https://doi.org/10.1017/CBO9781107272859
dc.identifier.citedreferenceAndreae, M. O., & Crutzen, P. J. ( 1997 ). Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. Science, 276 ( 5315 ), 1052 – 1058. https://doi.org/10.1126/science.276.5315.1052
dc.identifier.citedreferenceAndreae, M. O., & Rosenfeld, D. ( 2008 ). Aerosol‐cloud‐precipitation interactions. Part 1. The nature and sources of cloud‐active aerosols. Earth‐Science Reviews, 89 ( 1–2 ), 13 – 41. https://doi.org/10.1016/j.earscirev.2008.03.001
dc.identifier.citedreferenceBartnicki‐Garcia, S., & Lippman, E. ( 1972 ). The bursting tendency of hyphal tips of fungi: Presumptive evidence for a delicate balance between wall synthesis and wall lysis in apical growth. Journal of General Microbiology, 73 ( 3 ), 487 – 500. https://doi.org/10.1099/00221287-73-3-487
dc.identifier.citedreferenceBauer, H., Claeys, M., Vermeylen, R., Schueller, E., Weinke, G., Berger, A., et al. ( 2008 ). Arabitol and mannitol as tracers for the quantification of airborne fungal spores Arabitol and mannitol as tracers for the quantification of airborne fungal spores. Atmospheric EnvironmentAtmospheric Environment, 42 ( 3 ), 588 – 593. https://doi.org/10.1016/j.atmosenv.2007.10.013
dc.identifier.citedreferenceBauer, H., Kasper‐Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., & Puxbaum, H. ( 2002 ). The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmospheric Research, 64, 109 – 119. https://doi.org/10.1016/S0169-8095(02)00084-4
dc.identifier.citedreferenceBauer, H., Kasper‐Giebl, A., Zibuschka, F., Hitzenberger, R., Kraus, G. F., & Puxbaum, H. ( 2002 ). Determination of the carbon content of airborne fungal spores. Analytical Chemistry, 74, 91 – 95. https://doi.org/10.1021/ac010331+
dc.identifier.citedreferenceBhoi, S., Qu, J. J., & Dasgupta, S. ( 2009 ). Multi‐sensor study of aerosols from 2007 Okefenokee forest fire. Journal of Applied Remote Sensing, 3, 031501. https://doi.org/10.1117/1.3078070
dc.identifier.citedreferenceBohlmann, S., Shang, X., Giannakaki, E., Filioglou, M., Saarto, A., Romakkaniemi, S., & Komppula, M. ( 2019 ). Detection and characterization of birch pollen in the atmosphere using a multiwavelength Raman polarization lidar and Hirst‐type pollen sampler in Finland. Atmospheric Chemistry and Physics, 19 ( 23 ), 14559 – 14569. https://doi.org/10.5194/acp-19-14559-2019
dc.identifier.citedreferenceBourgeois, Q., Ekman, A. M. L., & Krejci, R. ( 2015 ). Aerosol transport over the Andes from the Amazon Basin to the remote Pacific Ocean: A multiyear CALIOP assessment. Journal of Geophysical Research: Atmospheres, 120, 8411 – 8425. https://doi.org/10.1002/2015JD023254
dc.identifier.citedreferenceBozzetti, C., Daellenbach, K. R., Hueglin, C., Fermo, P., Sciare, J., Kasper‐Giebl, A., et al. ( 2016 ). Size‐resolved identification, characterization, and quantification of primary biological organic aerosol at a European rural site. Environment Science and Technology, 50, 3425 – 3434. https://doi.org/10.1021/acs.est.5b05960
dc.identifier.citedreferenceBudisulistiorini, S. H., Canagaratna, M. R., Croteau, P. L., Marth, W. J., Baumann, K., Edgerton, E. S., et al. ( 2013 ). Real‐time continuous characterization of secondary organic aerosol derived from isoprene epoxydiols in downtown Atlanta, Georgia, using the Aerodyne aerosol chemical speciation monitor. Environmental Science and Technology, 47 ( 11 ), 5686 – 5694. https://doi.org/10.1021/es400023n
dc.identifier.citedreferenceBurton, S. P., Ferrare, R. A., Hostetler, C. A., Hair, J. W., Rogers, R. R., Obland, M. D., et al. ( 2012 ). Aerosol classification using airborne high spectral resolution lidar measurements‐methodology and examples. Atmospheric Measurement Techniques, 5 ( 1 ), 73 – 98. https://doi.org/10.5194/amt-5-73-2012
dc.identifier.citedreferenceChen, H., Hodshire, A. L., Ortega, J., Greenberg, J., McMurry, P. H., Carlton, A. G., et al. ( 2018 ). Vertically resolved concentration and liquid water content of atmospheric nanoparticles at the US DOE Southern Great Plains site. Atmospheric Chemistry and Physics, 18, 311 – 326. https://doi.org/10.5194/acp-18-311-2018
dc.identifier.citedreferenceChina, S., Wang, B., Weis, J., Rizzo, L., Brito, J., Cirino, G. G., et al. ( 2016 ). Rupturing of biological spores as a source of secondary particles in Amazonia. Environment Science and Technology, 50 ( 22 ), 12179 – 12186. https://doi.org/10.1021/acs.est.6b02896
dc.identifier.citedreferenceCox, C. S., & Wathes, C. M. ( 1995 ). Bioaerosols handbook. CRC Press.
dc.identifier.citedreferenceD’Amato, G., Vitale, C., D’Amato, M., Cecchi, L., Liccardi, G., Molino, A., et al. ( 2016 ). Thunderstorm‐related asthma: What happens and why. Clinical and Experimental Allergy, 46 ( 3 ), 390 – 396. https://doi.org/10.1111/cea.12709
dc.identifier.citedreferenceDesprés, V. R., Alex Huffman, J., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., et al. ( 2012 ). Primary biological aerosol particles in the atmosphere: A review. Tellus Series B Chemical and Physical Meteorology, 64 ( 1 ), 15598. https://doi.org/10.3402/tellusb.v64i0.15598
dc.identifier.citedreferenceDesprés, V. R., Nowoisky, J. F., Klose, M., Conrad, R., Andreae, M. O., & Pöschl, U. ( 2007 ). Characterization of primary biogenic aerosol particles in urban, rural, and high‐alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes. Biogeosciences, 4 ( 6 ), 1127 – 1141. https://doi.org/10.5194/bg-4-1127-2007
dc.identifier.citedreferenceDiehl, K., Quick, C., Matthias‐Maser, S., Mitra, S. K., & Jaenicke, R. ( 2001 ). The ice nucleating ability of pollen part I: Laboratory studies in deposition and condensation freezing modes. Atmospheric Research, 58 ( 2 ), 75 – 87. https://doi.org/10.1016/S0169-8095(01)00091-6
dc.identifier.citedreferenceDonovan, V. M., Wonkka, C. L., & Twidwell, D. ( 2017 ). Surging wildfire activity in a grassland biome. Geophysical Research Letters, 44, 5986 – 5993. https://doi.org/10.1002/2017GL072901
dc.identifier.citedreferenceFreudenthaler, V., Esselborn, M., Wiegner, M., Heese, B., Tesche, M., Ansmann, A., et al. ( 2009 ). Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B: Chemical and Physical Meteorology, 61, 165 – 179. https://doi.org/10.1111/j.1600-0889.2008.00396.x
dc.identifier.citedreferenceFröhlich‐Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A., Pöhlker, C., Andreae, M. O., et al. ( 2016 ). Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmospheric Research, 182, 346 – 376. https://doi.org/10.1016/j.atmosres.2016.07.018
dc.identifier.citedreferenceGiesecke, T., Fontna, S. L., van der Knaap, W. O., Pardoe, H. S., & Pidek, I. A. ( 2010 ). From early pollen trapping experiments to the pollen monitoring programme. Vegetation History and Archaeobotany, 19, 247 – 258. https://doi.org/10.1007/s00334-010-0261-3
dc.identifier.citedreferenceGiglio, L., Schroeder, W., & Justice, C. O. ( 2016 ). The collection 6 MODIS active fire detection algorithm and fire products. Remote Sensing of Environment, 178, 31 – 41. https://doi.org/10.1016/j.rse.2016.02.054
dc.identifier.citedreferenceGraham, B., Guyon, P., Maenhaut, W., Taylor, P. E., Ebert, M., Matthias‐Maser, S., et al. ( 2003 ). Composition and diurnal variability of the natural Amazonian aerosol. Journal of Geophysical Research, 108 ( D24 ), 4765. https://doi.org/10.1029/2003JD004049
dc.identifier.citedreferenceGrote, M., Valenta, R., & Reichelt, R. ( 2003 ). Abortive pollen germination: A mechanism of allergen release in birch, alder, and hazel revealed by immunogold electron microscopy. The Journal of Allergy and Clinical Immunology, 111 ( 5 ), 1017 – 1023. https://doi.org/10.1067/mai.2003.1452
dc.identifier.citedreferenceGrote, M., Vrtala, S., Niederberger, V., Wiermann, R., Valenta, R., & Reichelt, R. ( 2001 ). Release of allergen‐bearing cytoplasm from hydrated pollen: A mechanism common to a variety of grass (poaceae) species revealed by electron microscopy. The Journal of Allergy and Clinical Immunology, 108 ( 1 ), 109 – 115. https://doi.org/10.1067/mai.2001.116431
dc.identifier.citedreferenceGute, E., & Abbatt, J. P. D. ( 2018 ). Oxidative processing lowers the ice nucleation activity of birch and alder pollen. Geophysical Research Letters, 45, 1647 – 1653. https://doi.org/10.1002/2017GL076357
dc.identifier.citedreferenceHaarig, M., Althausen, D., Ansmann, A., Klepel, A., Baars, H., Engelmann, R., et al. ( 2016 ). Measurement of the linear depolarization ratio of aged dust at three wavelengths (355, 532 and 1064 nm) simultaneously over Barbados. EPJ Web of Conferences, 119, 18009. https://doi.org/10.1051/epjconf/201611918009
dc.identifier.citedreferenceHader, J. D., Wright, T. P., & Petters, M. D. ( 2014 ). Contribution of pollen to atmospheric ice nuclei concentrations. Atmospheric Chemistry and Physics, 14, 5433 – 5449. https://doi.org/10.5194/acp-14-5433-2014
dc.identifier.citedreferenceHand, J. L., Schichtel, B. A., Pitchford, M., Malm, W. C., & Frank, N. H. ( 2012 ). Seasonal composition of remote and urban fine particulate matter in the United States. Journal of Geophysical Research, 117, D05209. https://doi.org/10.1029/2011JD017122
dc.identifier.citedreferenceHe, Y., & Yi, F. ( 2015 ). Dust aerosols detected using a ground‐based polarization lidar and CALIPSO over Wuhan (30.5°N, 114.4°E), China. Advances in Meteorology, 2015, 536762. https://doi.org/10.1155/2015/536762
dc.identifier.citedreferenceHelbig, N., Vogel, B., Vogel, H., & Fiedler, F. ( 2004 ). Numerical modeling of pollen dispersion on the regional scale. Aerobiologia, 3, 3 – 19. https://doi.org/10.1023/B:AERO.0000022984.51588.30
dc.identifier.citedreferenceHinds, W. C. ( 1999 ). Aerosol technology: Properties, behavior, and measurement of air‐borne particles ( 2nd ed. ). John Wiley & Sons, Inc.
dc.identifier.citedreferenceHodshire, A. L., Lawler, M. J., Zhao, J., Ortega, J., Jen, C., Yli‐Juuti, T., et al. ( 2016 ). Multiple new‐particle growth pathways observed at the US DOE Southern Great Plains field site. Atmospheric Chemistry and Physics, 16, 9321 – 9348. https://doi.org/10.5194/acp-16-9321-2016
dc.identifier.citedreferenceHoward, L. E., & Levetin, E. ( 2014 ). Ambrosia pollen in Tulsa, Oklahoma: Aerobiology, trends, and forecasting model development. Annals of Allergy, Asthma and Immunology, 113 ( 6 ), 641 – 646. https://doi.org/10.1016/j.anai.2014.08.019
dc.identifier.citedreferenceHuffman, J. A., Perring, A. E., Savage, N. J., Clot, B., Crouzy, B., Tummon, F., et al. ( 2020 ). Real‐time sensing of bioaerosols: Review and current perspectives. Aerosol Science and Technology, 54 ( 5 ), 465 – 495. https://doi.org/10.1080/02786826.2019.1664724
dc.identifier.citedreferenceHuffman, J. A., Prenni, A. J., Demott, P. J., Pöhlker, C., Mason, R. H., Robinson, N. H., et al. ( 2013 ). High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmospheric Chemistry and Physics, 13 ( 13 ), 6151 – 6164. https://doi.org/10.5194/acp-13-6151-2013
dc.identifier.citedreferenceHughes, D. D., Mampage, C. B. A., Jones, L. M., Liu, Z., & Stone, E. A. ( 2020 ). Characterization of atmospheric pollen fragments during springtime thunderstorms. Environmental Science and Technology Letters, 7 ( 6 ), 409 – 414. https://doi.org/10.1021/acs.estlett.0c00213
dc.identifier.citedreferenceIannone, R., Chernoff, D. I., Pringle, A., Martin, S. T., & Bertram, A. K. ( 2011 ). The ice nucleation ability of one of the most abundant types of fungal spores found in the atmosphere. Atmospheric Chemistry and Physics, 11, 1191 – 1201. https://doi.org/10.5194/acp-11-1191-2011
dc.identifier.citedreferenceIngold, C. T. ( 1999 ). Active liberation of reproductive units in terrestrial fungi. Mycologist, 13 ( 3 ), 113 – 116. https://doi.org/10.1016/S0269-915X(99)80040-8
dc.identifier.citedreferenceIPCC. ( 2007 ). Climate change 2007: The physical science basis. In S. D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change Solomon. Cambridge University Press.
dc.identifier.citedreferenceJaenicke, R. ( 2005 ). Abundance of cellular material and proteins in the atmosphere. Science, 308 ( 5718 ), 73. https://doi.org/10.1126/science.1106335
dc.identifier.citedreferenceJärvinen, E., Kemppinen, O., Nousiainen, T., Koiciok, T., Möhler, O., Leisner, T., & Schnaiter, M. ( 2016 ). Laboratory investigations of mineral dust near‐backscattering depolarization ratios. Journal of Quantitative Spectroscopy and Radiative Transfer, 178, 178 – 208. https://doi.org/10.1016/j.jqsrt.2016.02.003
dc.identifier.citedreferenceJones, A. M., & Harrison, R. M. ( 2004 ). The effects of meteorological factors on atmospheric bioaerosol concentrations—A review. Science of the Total Environment, 326, 151 – 180. https://doi.org/10.1016/j.scitotenv.2003.11.021
dc.identifier.citedreferenceJoung, Y. S., Ge, Z., & Buie, C. R. ( 2017 ). Bioaerosol generation by raindrops on soil. Nature Communications, 8, 14668. https://doi.org/10.1038/ncomms14668
dc.identifier.citedreferenceKalivitis, N., Kerminen, V.‐M., Kouvarakis, G., Stavroulas, I., Tzitzikalaki, E., Kalkavouras, P., et al. ( 2019 ). Formation and growth of atmospheric nanoparticles in the eastern Mediterranean: Results from long‐term measurements and process simulations. Atmospheric Chemistry and Physics, 19, 2671 – 2686. https://doi.org/10.5194/acp-19-2671-2019
dc.identifier.citedreferenceKim, S. W., Berthier, S., Raut, J. C., Chazette, P., Dulac, F., & Yoon, S. C. ( 2008 ). Validation of aerosol and cloud layer structures from the spaceborne lidar CALIOP using a ground‐based lidar in Seoul, Korea. Atmospheric Chemistry and Physics, 8, 3705 – 3720. https://doi.org/10.5194/acp-8-3705-2008
dc.identifier.citedreferenceKuparinen, A. ( 2006 ). Mechanistic models for wind dispersal. Trends in Plant Science, 11, 297 – 301. https://doi.org/10.1016/j.tplants.2006.04.006
dc.identifier.citedreferenceKuparinen, A., Katul, G., Nathan, R., & Schurr, F. M. ( 2009 ). Increases in air temperature can promote wind‐driven dispersal and spread of plants. Proceedings of the Royal Society of London, 276 ( 1670 ), 3081 – 3087. https://doi.org/10.1098/rspb.2009.0693
dc.identifier.citedreferenceLacey, J. ( 1996 ). Spore dispersal—Its role in ecology and disease: The British contribution to fungal aerobiology. Mycological Research, 100 ( 6 ), 641 – 660. https://doi.org/10.1016/S0953-7562(96)80194-8
dc.identifier.citedreferenceLau, A. P. S., Lee, A. K. Y., Chan, C. K., & Fang, M. ( 2006 ). Ergosterol as a biomarker for the quantification of the fungal biomass in atmospheric aerosols. Atmospheric Environment, 40 ( 2 ), 249 – 259. https://doi.org/10.1016/j.atmosenv.2005.09.048
dc.identifier.citedreferenceLawler, M. J., Draper, D. C., & Smith, J. N. ( 2020 ). Atmospheric fungal nanoparticle bursts. Science Advances, 6 ( 3 ), eaax9051. https://doi.org/10.1126/sciadv.aax9051
dc.identifier.citedreferenceLee, B. U., Kim, S. H., & Kim, S. S. ( 2002 ). Hygroscopic growth of E. coli and B. subtilis bioaerosols. Journal of Aerosol Science, 33, 1721 – 1723. https://doi.org/10.1016/S0021-8502(02)00114-3
dc.identifier.citedreferenceLee, H. J., Jo, H. Y., Kim, S. W., Park, M. S., & Kim, C. H. ( 2019 ). Impacts of atmospheric vertical structures on transboundary aerosol transport from China to South Korea. Scientific Reports, 9 ( 1 ), 13040. https://doi.org/10.1038/s41598-019-49691-z
dc.identifier.citedreferenceLewis, W. H., Vinay, P., & Zenger, V. E. ( 1983 ). Airborne and allergenic pollen of north America (p. 254 ). The Johns Hopkins University Press.
dc.identifier.citedreferenceLindley, T. T., Speheger, D. A., Day, M. A., Murdoch, G. P., Smith, B. R., Nauslar, N. J., & Daily, D. C. ( 2019 ). Megafires on the Southern Great Plains. Journal of Operational Meteorology, 7 ( 12 ), 164 – 179. https://doi.org/10.15191/nwajom.2019.0712
dc.identifier.citedreferenceLiu, Z., Vaughan, M. A., Winker, D. M., Kittaka, C., Kuehn, R. E., Getzewich, B. J., et al. ( 2009 ). The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance. Journal of Atmospheric and Oceanic Technology, 26, 1198 – 1213. https://doi.org/10.1175/2009JTECHA1229.1
dc.identifier.citedreferenceMahura, A. G., Korsholm, U. S., Baklanov, A. A., & Rasmussen, A. ( 2007 ). Elevated birch pollen episodes in Denmark: Contributions from remote sources. Aerobiologia, 23 ( 3 ), 171 – 179. https://doi.org/10.1007/s10453-007-9061-3
dc.identifier.citedreferenceMalm, W. C., Sisler, J. F., Huffman, D., Eldred, R. A., & Cahill, T. A. ( 1994 ). Spatial and seasonal trends in particle concentration and optical extinction in the United States. Journal of Geophysical Research, 99 ( D1 ), 1347 – 1370. https://doi.org/10.1029/93JD02916
dc.identifier.citedreferenceMarceau, A., Loubet, B., Andrieu, B., Durand, B., Foueillassar, X., & Huber, L. ( 2011 ). Modelling diurnal and seasonal patterns of maize pollen emission in relation to meteorological factors. Agricultural and Forest Meteorology, 151 ( 1 ), 11 – 21. https://doi.org/10.1016/j.agrformet.2010.08.012
dc.identifier.citedreferenceMarinescu, P. J., Levin, E. J. T., Collins, D., Kreidenweis, S. M., & Van Den Heever, S. C. ( 2019 ). Quantifying aerosol size distributions and their temporal variability in the Southern Great Plains, USA. Atmospheric Chemistry and Physics, 19 ( 18 ), 11985 – 12006. https://doi.org/10.5194/acp-19-11985-2019
dc.identifier.citedreferenceMelvin, M. ( 2018 ). 2018 National prescribed fire use survey report (Tech. Rep. 03‐18). Coalition of Prescribed fire Councils, Inc.
dc.identifier.citedreferenceMielonen, T., Arola, A., Komppula, M., Kukkonen, J., Koskinen, J., de Leeuw, G., & Lehtinen, K. E. J. ( 2009 ). Comparison of CALIOP level 2 aerosol subtypes to aerosol types derived from AERONET inversion data. Geophysical Research Letters, 36, L18804. https://doi.org/10.1029/2009GL039609
dc.identifier.citedreferenceMiguel, A. G., Taylor, P. E., House, J., Glovsky, M. M., & Flagan, R. C. ( 2006 ). Meteorological influences on respirable fragment release from Chinese elm pollen. Aerosol Science and Technology, 40 ( 9 ), 690 – 696. https://doi.org/10.1080/02786820600798869
dc.identifier.citedreferenceMöhler, O., DeMott, P. J., Vali, G., & Levin, Z. ( 2007 ). Microbiology and atmospheric processes: The role of biological particles in cloud physics. Biogeosciences Discussions, 4 ( 4 ), 2559 – 2591. https://doi.org/10.5194/bgd-4-2559-2007
dc.identifier.citedreferenceNathan, R., Katul, G. G., Bohrer, G., Kuparinen, A., Soons, M. B., Thompson, S. E., et al. ( 2011 ). Mechanistic models of seed dispersal by wind. Theoretical Ecology, 4, 113 – 132. https://doi.org/10.1007/s12080-011-0115-3
dc.identifier.citedreferenceNg, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L., Onasch, T. B., et al. ( 2011 ). An aerosol chemical speciation monitor (ACSM) for routine Monitoring of the composition and mass concentrations of ambient aerosol. Aerosol Science and Technology, 45 ( 7 ), 770 – 794. https://doi.org/10.1080/02786826.2011.560211
dc.identifier.citedreferenceNieminen, T., Kerminen, V. M., Petäjä, T., Aalto, P., Arshinov, M., Asmi, E., et al. ( 2018 ). Global analysis of continental boundary layer new particle formation based on long‐term measurements. Atmospheric Chemistry and Physics, 18, 14737 – 14756. https://doi.org/10.5194/acp-18-14737-2018
dc.identifier.citedreferenceNIFC. ( 2019 ). National interagency fire center. https://www.nifc.gov/fireInfo/fireInfostatslgFires.html
dc.identifier.citedreferenceNoh, Y. M., Lee, H., Mueller, D., Lee, K., Shin, D., Shin, S., et al. ( 2013 ). Investigation of the diurnal pattern of the vertical distribution of pollen in the lower troposphere using LIDAR. Atmosperic Chemistry and Physics, 13, 7619 – 7629. https://doi.org/10.5194/acp-13-7619-2013
dc.identifier.citedreferenceOmar, A. H., Winker, D. M., Vaughan, M. A., Hu, Y., Trepte, C. R., Ferrare, R. A., et al. ( 2009 ). The CALIPSO automated aerosol classification and lidar ratio selection algorithm. Journal of Atmospheric and Oceanic Technology, 26, 1994 – 2014. https://doi.org/10.1175/2009JTECHA1231.1
dc.identifier.citedreferenceParworth, C., Fast, J., Mei, F., Shippert, T., Sivaraman, C., Tilp, A., et al. ( 2015 ). Long‐term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM). Atmospheric Environment, 106, 43 – 55. https://doi.org/10.1016/j.atmosenv.2015.01.060
dc.identifier.citedreferencePope, F. D. ( 2010 ). Pollen grains are efficient cloud condensation nuclei. Environmental Research Letters, 5 ( 4 ), 44015. https://doi.org/10.1088/1748-9326/5/4/044015
dc.identifier.citedreferencePöschl, U. ( 2005 ). Atmospheric aerosols: Composition, transformation, climate and health effects. Angewandte Chemie‐International, 44, 7520 – 7540. https://doi.org/10.1002/anie.200501122
dc.identifier.citedreferencePöschl, U., Martin, S. T., Sinha, B., Chen, Q., Gunthe, S. S., Huffman, J. A., et al. ( 2010 ). Rainforest aerosols as biogenic. Science, 1513, 1513 – 1516. https://doi.org/10.1126/science.1191056
dc.identifier.citedreferencePringle, A., Patek, S. N., Fischer, M., Stolze, J., & Money, N. P. ( 2005 ). The captured launch of a ballistospore. Mycologia, 97 ( 4 ), 866 – 871. https://doi.org/10.3852/mycologia.97.4.866
dc.identifier.citedreferencePummer, B. G., Bauer, H., Bernardi, J., Bleicher, S., & Grothe, H. ( 2012 ). Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen. Atmospheric Chemistry and Physics, 12 ( 5 ), 2541 – 2550. https://doi.org/10.5194/acp-12-2541-2012
dc.identifier.citedreferenceRathnayake, C. M., Metwali, N., Jayarathne, T., Kettler, J., Huang, Y., Thorne, P. S., et al. ( 2017 ). Influence of rain on the abundance of bioaerosols in fine and coarse particles. Atmospheric Chemistry and Physics, 17 ( 3 ), 2459 – 2475. https://doi.org/10.5194/acp-17-2459-2017
dc.identifier.citedreferenceSassen, K. ( 2008 ). Boreal tree pollen sensed by polarization lidar: De‐polarizing biogenic chaff. Geophysical Research Letters, 35, L18810. https://doi.org/10.1029/2008GL035085
dc.identifier.citedreferenceSchnell, R. C., & Vali, G. ( 1975 ). Freezing nuclei in marine waters. Tellus, 27, 321 – 323. https://doi.org/10.3402/tellusa.v27i3.9911
dc.identifier.citedreferenceSeinfeld, J. H., & Pandis, S. N. ( 2006 ). Atmospheric chemistry and physics: From air pollution to climate change. John Wiley & Sons, Inc.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.