Show simple item record

Toward general regime maps for cohesive‐particle flows: Force versus energy‐based descriptions and relevant dimensionless groups

dc.contributor.authorLaMarche, W. Casey Q.
dc.contributor.authorLiu, Peiyuan
dc.contributor.authorKellogg, Kevin M.
dc.contributor.authorLattanzi, Aaron M.
dc.contributor.authorHrenya, Christine M.
dc.date.accessioned2021-09-08T14:37:09Z
dc.date.available2022-10-08 10:37:07en
dc.date.available2021-09-08T14:37:09Z
dc.date.issued2021-09
dc.identifier.citationLaMarche, W. Casey Q.; Liu, Peiyuan; Kellogg, Kevin M.; Lattanzi, Aaron M.; Hrenya, Christine M. (2021). "Toward general regime maps for cohesive‐particle flows: Force versus energy‐based descriptions and relevant dimensionless groups." AIChE Journal 67(9): n/a-n/a.
dc.identifier.issn0001-1541
dc.identifier.issn1547-5905
dc.identifier.urihttps://hdl.handle.net/2027.42/169329
dc.description.abstractMuch confusion exists on whether force‐ or energy‐based descriptions of cohesive‐particle interactions are more appropriate. We hypothesize a force‐based description is appropriate when enduring‐contacts dominate and an energy‐based description when contacts are brief in nature. Specifically, momentum is transferred through force‐chains when enduring‐contacts dominate and particles need to overcome a cohesive force to induce relative motion, whereas particles experiencing brief contacts transfer momentum through collisions and must overcome cohesion‐enhanced energy losses to avoid agglomeration. This hypothesis is tested via an attempt to collapse the dimensionless, dependent variable characterizing a given system against two dimensionless numbers: A generalized bond number, BoG–ratio of maximum cohesive force to the force driving flow, and a new Agglomerate number, Ag–ratio of critical cohesive energy to the granular energy. A gamut of experimental and simulation systems (fluidized bed, hopper, etc.), and cohesion sources (van der Waals, humidity, etc.), are considered. For enduring‐contact systems, collapse occurs with BoG but not Ag, and vice versa for brief‐contact systems, thereby providing support for the hypothesis. An apparent discrepancy with past work is resolved, and new insight into Geldart’s classification is gleaned.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherfludization
dc.subject.othermulti‐phase flow
dc.subject.othermultiscale modeling
dc.subject.otherparticle technology
dc.subject.othermathematical modeling
dc.titleToward general regime maps for cohesive‐particle flows: Force versus energy‐based descriptions and relevant dimensionless groups
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169329/1/aic17337.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169329/2/aic17337_am.pdf
dc.identifier.doi10.1002/aic.17337
dc.identifier.sourceAIChE Journal
dc.identifier.citedreferenceFullmer WD, Hrenya CM. The clustering instability in rapid granular and gas‐solid flows. Annu Rev Fluid Mech. 2017; 49 ( 1 ): 485 ‐ 510.
dc.identifier.citedreferencevan Wachem B, Sasic S. Derivation, simulation and validation of a cohesive particle flow CFD model. AlChE J. 2008; 54 ( 1 ): 9 ‐ 19.
dc.identifier.citedreferenceWeber MW, Hoffman DK, Hrenya CM. Discrete‐particle simulations of cohesive granular flow using a square‐well potential. Granul Matter. 2004; 6 ( 4 ): 239 ‐ 254.
dc.identifier.citedreferenceCampbell CS. Stress tensor for simple shear flows of a granular material. J Fluid Mech. 1989; 203: 449 ‐ 473.
dc.identifier.citedreferenceBagnold RA. Experiments on a gravity‐free dispersion of large solid spheres in a Newtonian fluid under shear. Proc R Soc London, Ser A. 1954; 255 ( 1160 ): 49 – 63.
dc.identifier.citedreferenceTsinontides SC, Jackson R. The mechanics of gas fluidized beds with an interval of stable fluidization. J Fluid Mech. 1993; 255: 237 ‐ 274.
dc.identifier.citedreferenceHaff PK. Grain flow as a fluid‐mechanical phenomenon. J Fluid Mech. 1983; 134: 401 ‐ 430.
dc.identifier.citedreferenceGarzó V. Instabilities in a free granular fluid described by the Enskog equation. Phys Rev E. 2005; 72 ( 2 ): 021106.
dc.identifier.citedreferenceRhodes M. Introduction to Particle Technology. 2nd ed. Chichester: John Wiley & Sons; 2008.
dc.identifier.citedreferenceGarzó V, Tenneti S, Subramaniam S, Hrenya CM. Enskog kinetic theory for monodisperse gas–solid flows. J Fluid Mech. 2012; 712: 129 ‐ 168.
dc.identifier.citedreferenceLaMarche CQ, Liu P, Kellogg KM, Hrenya CM. Fluidized‐bed measurements of carefully‐characterized, mildly‐cohesive (Group A) particles. Chem Eng J. 2017; 310 ( 1 ): 259 ‐ 271.
dc.identifier.citedreferenceMotlagh AHA, Grace JR, Salcudean M, Hrenya CM. New structure‐based model for Eulerian simulation of hydrodynamics in gas–solid fluidized beds of Geldart group “A” particles. Chem Eng Sci. 2014; 120: 22 ‐ 36.
dc.identifier.citedreferenceZhou T, Li H, Shinohara K. Agglomerating fluidization of group C particles: major factors of coalescence and breakup of agglomerates. Adv Powder Technol. 2006; 17 ( 2 ): 159 ‐ 166.
dc.identifier.citedreferenceLiu L. Kinetic theory of aggregation in granular flow. AlChE J. 2011; 57 ( 12 ): 3331 ‐ 3343.
dc.identifier.citedreferenceKellogg KM, Liu P, LaMarche CQ, Hrenya CM. Continuum theory for rapid cohesive‐particle flows: general balance equations and discrete‐element‐method‐based closure of cohesion‐specific quantities. J Fluid Mech. 2017; 832: 345 ‐ 382.
dc.identifier.citedreferenceSun L, Luo K, Fan J. Population balance equation of cohesive particle flow in a circulating fluidized bed. Chem Eng Technol. 2017; 40 ( 9 ): 1544 ‐ 1551.
dc.identifier.citedreferenceSun L, Yu W, Hassan M, Wang S, Liu G, Lu H. Investigation of aggregation kernel and simulation of cohesive particle flow. Chem Eng Technol. 2016; 39 ( 10 ): 1858 ‐ 1866.
dc.identifier.citedreferenceCastellanos A, Valverde JM, Pérez AT, Ramos A, Watson PK. Flow regimes in fine cohesive powders. Phys Rev Lett. 1999; 82 ( 6 ): 1156.
dc.identifier.citedreferenceNarni NR, Peglow M, Warnecke G, Kumar J, Heinrich S, Kuipers JAM. Modeling of aggregation kernels for fluidized beds using discrete particle model simulations. Particuology. 2014; 13 ( Suppl C ): 134 ‐ 144.
dc.identifier.citedreferenceLiu D, van Wachem BGM, Mudde RF, Chen X, van Ommen JR. An adhesive CFD‐DEM model for simulating nanoparticle agglomerate fluidization. AlChE J. 2016; 62 ( 7 ): 2259 ‐ 2270.
dc.identifier.citedreferenceShi H, Roy S, Weinhart T, Magnanimo V, Luding S. Steady state rheology of homogeneous and inhomogeneous cohesive granular materials. Granul Matter. 2019; 22: 14.
dc.identifier.citedreferenceGonzalez S, Thornton AR, Luding S. Free cooling phase‐diagram of hard‐spheres with short‐ and long‐range interactions. Eur Phys J Spec Top. 2014; 223 ( 11 ): 2205 ‐ 2225.
dc.identifier.citedreferenceJarray A, Shi H, Scheper BJ, Habibi M, Luding S. Cohesion‐driven mixing and segregation of dry granular media. Sci Rep. 2019; 9 ( 1 ): 13480.
dc.identifier.citedreferenceGirardi M, Radl S, Sundaresan S. Simulating wet gas–solid fluidized beds using coarse‐grid CFD‐DEM. Chem Eng Sci. 2016; 144: 224 ‐ 238.
dc.identifier.citedreferencevan Wachem B, Thalberg K, Nguyen D, de JL M, Remmelgas J, Niklasson‐Bjorn I. Analysis, modelling and simulation of the fragmentation of agglomerates. Chem Eng Sci. 2020; 227: 115944.
dc.identifier.citedreferencePohl S, Kleinebudde P. A review of regime maps for granulation. Int J Pharm. 2020; 587: 119660.
dc.identifier.citedreferenceMishra I, Liu P, Shetty A, Hrenya CM. On the use of a powder rheometer to probe defluidization of cohesive particles. Chem Eng Sci. 2020; 214: 115422.
dc.identifier.citedreferenceDahneke B. The capture of aerosol particles by surfaces. J Colloid Interface Sci. 1971; 37 ( 2 ): 342 ‐ 353.
dc.identifier.citedreferenceBlum J. Laboratory experiments on preplanetary dust aggregation. Space Sci Rev. 2000; 92 ( 1 ): 265 ‐ 278.
dc.identifier.citedreferenceRozitis B, MacLennan E, Emery JP. Cohesive forces prevent the rotational breakup of rubble‐pile asteroid (29075) 1950 DA. Nature. 2014; 512 ( 7513 ): 174 – 176. http://dx.doi.org/10.1038/nature13632.
dc.identifier.citedreferenceShi D, Abatan AA, Vargas WL, McCarthy JJ. Eliminating segregation in free‐surface flows of particles. Phys Rev Lett. 2007; 99 ( 14 ): 148001.
dc.identifier.citedreferenceZhang P, Law CK. An analysis of head‐on droplet collision with large deformation in gaseous medium. Phys Fluids. 2011; 23 ( 4 ): 042102.
dc.identifier.citedreferenceVeen SJ, Antoniuk O, Weber B, Potenza MAC, Mazzoni S, Schall P, Wegdam GH. Colloidal aggregation in microgravity by critical casimir forces. Physical Review Letters. 2012; 109 ( 24 ): 248302. http://dx.doi.org/10.1103/physrevlett.109.248302.
dc.identifier.citedreferenceUrvoy A, Ripka F, Lesanovsky I, Booth D, Shaffer JP, Pfau T, Löw R. Strongly correlated growth of Rydberg aggregates in a vapor cell. Physical Review Letters. 2015; 114 ( 20 ): 203002. http://dx.doi.org/10.1103/physrevlett.114.203002.
dc.identifier.citedreferenceChew JW, Cahyadi A, Hrenya CM, Karri R, Cocco RA. Review of entrainment correlations in gas‐solid fluidization. Chem Eng J. 2015; 260: 152 ‐ 171.
dc.identifier.citedreferenceCahyadi A, Neumayer AH, Hrenya CM, Cocco RA, Chew JW. Comparative study of transport disengaging height (TDH) correlations in gas‐solid fluidization. Powder Technol. 2015; 275: 220 ‐ 238.
dc.identifier.citedreferenceShabanian J, Jafari R, Chaouki J. Fluidization of ultrafine powders. Int Rev Chem Eng. 2012; 4 ( 1 ): 16 ‐ 50.
dc.identifier.citedreferenceGeldart D. Types of gas fluidization. Powder Technol. 1973; 7 ( 5 ): 285 ‐ 292.
dc.identifier.citedreferenceValverde JM, Castellanos A. Types of gas fluidization of cohesive granular materials. Phys Rev E. 2007; 75 ( 3 ): 031306.
dc.identifier.citedreferenceCastellanos A, Valverde JM, Quintanilla MAS. Physics of compaction of fine cohesive particles. Phys Rev Lett. 2005; 94 ( 7 ): 075501.
dc.identifier.citedreferenceLi H, McCarthy JJ. Phase diagrams for cohesive particle mixing and segregation. Phys Rev E. 2005; 71: 021305.
dc.identifier.citedreferenceJain K, Shi D, McCarthy JJ. Discrete characterization of cohesion in gas–solid flows. Powder Technol. 2004; 146 ( 1–2 ): 160 ‐ 167.
dc.identifier.citedreferenceNase ST, Vargas WL, Abatan AA, McCarthy JJ. Discrete characterization tools for cohesive granular material. Powder Technol. 2001; 116 ( 2–3 ): 214 ‐ 223.
dc.identifier.citedreferenceTrappe V, Prasad V, Cipelletti L, Segre PN, Weitz DA. Jamming phase diagram for attractive particles. Nature. 2001; 411 ( 6839 ): 772 ‐ 775.
dc.identifier.citedreferenceWeb of Science, Accessed Feb. 8, 2020.
dc.identifier.citedreferenceMolerus O. Interpretation of Geldart’s type a, B, C and D powders by taking into account interparticle cohesion forces. Powder Technol. 1982; 33 ( 1 ): 81 ‐ 87.
dc.identifier.citedreferenceForsyth AJ, Hutton SR, Osborne CF, Rhodes MJ. Effects of interparticle force on the packing of spherical granular material. Phys Rev Lett. 2001; 87 ( 24 ): 244301.
dc.identifier.citedreferenceForsyth AJ, Hutton SR, Rhodes MJ, Osborne CF. Effect of applied interparticle force on the static and dynamic angles of repose of spherical granular material. Phys Rev E. 2001; 63 ( 3 ): 031302.
dc.identifier.citedreferenceLaMarche CQ, Miller AW, Liu P, Hrenya CM. Linking micro‐scale predictions of capillary forces to macro‐scale fluidization experiments in humid environments. AlChE J. 2016; 62 ( 10 ): 3585 ‐ 3597.
dc.identifier.citedreferenceCastellanos A, Valverde JM, Quintanilla MAS. Aggregation and sedimentation in gas‐fluidized beds of cohesive powders. Phys Rev E. 2001; 64 ( 4 ): 041304.
dc.identifier.citedreferenceKantak AA, Hrenya CM, Davis RH. Initial rates of aggregation for dilute, granular flows of wet particles. Phys Fluids. 2009; 21 ( 2 ): 023301.
dc.identifier.citedreferenceShabanian J, Duchesne MA, Runstedtler A, Syamlal M, Hughes RW. Improved analytical energy balance model for evaluating agglomeration from a binary collision of identical wet particles. Chem Eng Sci. 2020; 223: 115738.
dc.identifier.citedreferenceStrauch S, Herminghaus S. Wet granular matter: a truly complex fluid. Soft Matter. 2012; 8 ( 32 ): 8271 ‐ 8280.
dc.identifier.citedreferenceIsraelachvili JN. Intermolecular and Surface Forces. 3rd ed. Boston: Academic Press; 2011.
dc.identifier.citedreferenceSeville JPK, Tüzün U, Clift R. Processing of Particulate Solids. New York: Chapman & Hall; 1997.
dc.identifier.citedreferenceFingerle A, Roeller K, Huang K, Herminghaus S. Phase transitions far from equilibrium in wet granular matter. New J Phys. 2008; 10 ( 5 ): 053020.
dc.identifier.citedreferenceLiu P, LaMarche CQ, Kellogg KM, Hrenya CM. A square‐force cohesion model and its extraction from bulk measurements. AlChE J. 2018; 64 ( 7 ): 2329 ‐ 2339.
dc.identifier.citedreferenceFoerster SF, Louge MY, Chang H, Allia K. Measurements of the collision properties of small spheres. Phys Fluids. 1994; 6 ( 3 ): 1108 ‐ 1115.
dc.identifier.citedreferenceKobayashi T, Tanaka T, Shimada N, Kawaguchi T. DEM–CFD analysis of fluidization behavior of Geldart group a particles using a dynamic adhesion force model. Powder Technol. 2013; 248: 143 ‐ 152.
dc.identifier.citedreferenceGu Y, Ozel A, Sundaresan S. A modified cohesion model for CFD–DEM simulations of fluidization. Powder Technol. 2016; 296: 17 ‐ 28.
dc.identifier.citedreferenceLiu P, LaMarche CQ, Kellogg KM, Hrenya CM. Fine‐particle defluidization: interaction between cohesion, Young’s modulus and static bed height. Chem Eng Sci. 2016; 145: 266 ‐ 278.
dc.identifier.citedreferenceLaMarche CQ, Leadley S, Liu P, Kellogg KM, Hrenya CM. Method of quantifying surface roughness for accurate adhesive force predictions. Chem Eng Sci. 2017; 158: 140 ‐ 153.
dc.identifier.citedreferenceLiu P, LaMarche CQ, Kellogg KM, Leadley S, Hrenya CM. Cohesive grains: bridging microlevel measurements to macrolevel flow behavior via surface roughness. AlChE J. 2016; 62 ( 10 ): 3529 ‐ 3537.
dc.identifier.citedreferenceRabinovich YI, Adler JJ, Ata A, Singh RK, Moudgil BM. Adhesion between nanoscale rough surfaces I. role of asperity geometry. J Colloid Interface Sci. 2000; 232 ( 1 ): 10 ‐ 16.
dc.identifier.citedreferenceRabinovich YI, Adler JJ, Ata A, Singh RK, Moudgil BM. Adhesion between nanoscale rough surfaces II. Measurement and comparison with theory. J Colloid Interface Sci. 2000; 232 ( 1 ): 17 ‐ 24.
dc.identifier.citedreferenceOrr FM, Scriven LE, Rivas AP. Pendular rings between solids: meniscus properties and capillary force. J Fluid Mech. 1975; 67 ( 4 ): 723 ‐ 742.
dc.identifier.citedreferenceButt H‐J, Graf K, Kappl M. Physics and Chemistry of Interfaces. 1st ed. Weinheim, Germany: Wiley‐VCH; 2003.
dc.identifier.citedreferencePierrat P, Caram HS. Tensile strength of wet granular materials. Powder Technol. 1997; 91: 83 ‐ 93.
dc.identifier.citedreferenceLaMarche CQ, Miller AW, Liu P, Leadley S, Hrenya CM. How nano‐scale roughness impacts the flow of grains influenced by capillary cohesion. AIChE Journal. 2017; 63 ( 12 ): 5250 – 5257. http://dx.doi.org/10.1002/aic.15830.
dc.identifier.citedreferenceXiao X, Qian L. Investigation of humidity‐dependent capillary force. Langmuir. 2000; 16 ( 21 ): 8153 ‐ 8158.
dc.identifier.citedreferenceButt H‐J, Kappl M. Normal capillary forces. Adv Colloid Interface Sci. 2009; 146 ( 1–2 ): 48 ‐ 60.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.