Show simple item record

Land use and management effects on soil carbon in U.S. Lake States, with emphasis on forestry, fire, and reforestation

dc.contributor.authorNave, L. E.
dc.contributor.authorDeLyser, K.
dc.contributor.authorDomke, G. M.
dc.contributor.authorJanowiak, M. K.
dc.contributor.authorOntl, T. A.
dc.contributor.authorSprague, E.
dc.contributor.authorWalters, B. F.
dc.contributor.authorSwanston, C. W.
dc.date.accessioned2021-09-08T14:37:12Z
dc.date.available2022-10-08 10:37:11en
dc.date.available2021-09-08T14:37:12Z
dc.date.issued2021-09
dc.identifier.citationNave, L. E.; DeLyser, K.; Domke, G. M.; Janowiak, M. K.; Ontl, T. A.; Sprague, E.; Walters, B. F.; Swanston, C. W. (2021). "Land use and management effects on soil carbon in U.S. Lake States, with emphasis on forestry, fire, and reforestation." Ecological Applications (6): n/a-n/a.
dc.identifier.issn1051-0761
dc.identifier.issn1939-5582
dc.identifier.urihttps://hdl.handle.net/2027.42/169330
dc.description.abstractThere is growing need to quantify and communicate how land use and management activities influence soil organic carbon (SOC) at scales relevant to, and in the tangible control of landowners and forest managers. The continued proliferation of publications and growth of data sets, data synthesis and meta‐analysis approaches allows the application of powerful tools to such questions at ever finer scales. In this analysis, we combined a literature review and effect‐size meta‐analysis with two large, independent, observational databases to assess how land use and management impact SOC stocks, primarily with regards to forest land uses. We performed this work for the (Great Lakes) U.S. Lake States, which comprise 6% of the land area, but 7% of the forest and 9% of the forest SOC in the United States, as the second in a series of ecoregional SOC assessments. Most importantly, our analysis indicates that natural factors, such as soil texture and parent material, exert more control over SOC stocks than land use or management. With that for context, our analysis also indicates which natural factors most influence management impacts on SOC storage. We report an overall trend of significantly diminished topsoil SOC stocks with harvesting, consistent across all three data sets, while also demonstrating how certain sites and soils diverge from this pattern, including some that show opposite trends. Impacts of fire grossly mirror those of harvesting, with declines near the top of the profile, but potential gains at depth and no net change when considering the whole profile. Land use changes showing significant SOC impacts are limited to reforestation on barren mining substrates (large and variable gains) and conversion of native forest to cultivation (losses). We describe patterns within the observational data that reveal the physical basis for preferential land use, e.g., cultivation of soils with the most favorable physical properties, and forest plantation establishment on the most marginal soils, and use these patterns to identify management opportunities and considerations. We also qualify our results with ratings of confidence, based on their degree of support across approaches, and offer concise, defensible tactics for adapting management operations to site‐specific criteria and SOC vulnerability.
dc.publisherUSDA‐Forest Service, North Central Research Station
dc.publisherWiley Periodicals, Inc.
dc.subject.othermeta‐analysis
dc.subject.otherbest management practices
dc.subject.othercarbon management
dc.subject.otherforest harvest
dc.titleLand use and management effects on soil carbon in U.S. Lake States, with emphasis on forestry, fire, and reforestation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169330/1/eap2356-sup-0001-AppendixS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169330/2/eap2356_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169330/3/eap2356.pdf
dc.identifier.doi10.1002/eap.2356
dc.identifier.sourceEcological Applications
dc.identifier.citedreferencePolicelli, N., T. R. Horton, A. T. Hudon, T. R. Patterson, and J. M. Bhatnagar 2020. Back to roots: the role of ectomycorrhizal fungi in boreal and temperate forest restoration. Frontiers in Forests and Global Change 3: 1 – 15.
dc.identifier.citedreferenceGuo, L. B., and R. M. Gifford. 2002. Soil carbon stocks and land use change: a meta analysis. Global Change Biology 8: 345 – 360.
dc.identifier.citedreferenceGurevitch, J., P. S. Curtis, and M. H. Jones. 2001. Meta‐analysis in ecology. Advances in Ecological Research 32: 199 – 247.
dc.identifier.citedreferencePost, W. M., and K. C. Kwon. 2000. Soil carbon sequestration and land‐use change: processes and potential. Global Change Biology 6: 317 – 327.
dc.identifier.citedreferencePowers, R. F., D. A. Scott, F. G. Sanchez, R. A. Voldseth, D. Page‐Dumroese, J. D. Elioff, and D. M. Stone. 2005. The North American long‐term soil productivity experiment: Findings from the first decade of research. Forest Ecology and Management 220: 31 – 50.
dc.identifier.citedreferenceQuigley, K. M., R. Kolka, B. R. Sturtevant, M. B. Dickinson, C. C. Kern, D. M. Donner, and J. R. Miesel. 2020. Prescribed burn frequency, vegetation cover, and management legacies influence soil fertility: Implications for restoration of imperiled pine barrens habitat. Forest Ecology and Management 470: 118163.
dc.identifier.citedreferenceSchoeneberger, P. J., D. A. Wysocki, E. C. Benham, and Soil Survey Staff. 2012. Field book for describing and sampling soils, Version 3.0. U.S. Department of Agriculture NRCS, National Soil Survey Center, Kellogg Soil Survey Laboratory, Lincoln, Nebraska, USA.
dc.identifier.citedreferenceSchulte, L. A., and D. J. Mladenoff. 2005. Severe wind and fire regimes in northern forests: Historical variability at the regional scale. Ecology 86: 431 – 445.
dc.identifier.citedreferenceShabaga, J. A., N. Basiliko, J. P. Caspersen, and T. A. Jones. 2017. Skid trail use influences soil carbon flux and nutrient pools in a temperate hardwood forest. Forest Ecology and Management 402: 51 – 62.
dc.identifier.citedreferenceSix, J., R. T. Conant, E. A. Paul, and K. Paustian. 2002. Stabilization mechanisms of soil organic matter: Implications for C‐saturation of soils. Plant and Soil 241: 155 – 176.
dc.identifier.citedreferenceSix, J., K. Paustian, E. T. Elliott, and C. Combrink. 2000. Soil structure and organic matter: I. Distribution of aggregate‐size classes and aggregate‐associated carbon. Soil Science Society of America Journal 64: 681 – 689.
dc.identifier.citedreferenceSlesak, R. A. 2013. Soil temperature following logging‐debris manipulation and aspen regrowth in Minnesota: implications for sampling depth and alteration of soil processes. Soil Science Society of America Journal 77: 1818 – 1824.
dc.identifier.citedreferenceSlesak, R. A., S. H. Schoenholtz, and T. B. Harrington. 2010. Soil respiration and carbon responses to logging debris and competing vegetation. Soil Science Society of America Journal 74: 936 – 946.
dc.identifier.citedreferenceSmith, P., et al. 2016. Global change pressures on soils from land use and management. Global Change Biology 22: 1008 – 1028.
dc.identifier.citedreferenceSmyth, C. E., B. P. Smiley, M. Magnan, R. Birdsey, A. J. Dugan, M. Olguin, V. S. Mascorro, and W. A. Kurz. 2018. Climate change mitigation in Canada’s forest sector: a spatially explicit case study for two regions. Carbon Balance and Management 13: 11.
dc.identifier.citedreferenceSoil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. 2020a. Official soil series descriptions. https://soilseries.sc.egov.usda.gov/osdname.aspx
dc.identifier.citedreferenceSoil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. 2020b. Web soil survey. https://websoilsurvey.nrcs.usda.gov/
dc.identifier.citedreferenceSoller, D. R., P. H. Packard, and C. P. Garrity. 2012. Database for USGS Map I‐1970—Map showing the thickness and character of Quaternary sediments in the glaciated United States east of the Rocky Mountains: U.S. Geological Survey Data Series 656. https://pubs.usgs.gov/ds/656/
dc.identifier.citedreferenceStone, D. M. 2002. Logging options to minimize soil disturbance in the northern Lake States. Northern Journal of Applied Forestry 19: 115 – 121.
dc.identifier.citedreferenceSullivan, A. L. 2017. Inside the inferno: fundamental processes of wildland fire behaviour. Current Forestry Reports 3: 150 – 171.
dc.identifier.citedreferenceSwanston, C. W., et al. 2018. Chapter 21: Midwest. In D. R. Reidmiller, C. W. Avery, D. Easterling, K. E. Kunkel, K. L. M. Lewis, T. K. Maycock, and B. C. Stewart, editors. Impacts, risks, and adaptation in the United States: fourth national climate assessment. US Global Change Research Program, Washington, D.C., USA.
dc.identifier.citedreferenceThiffault, E., K. D. Hannam, D. Pare, B. D. Titus, P. W. Hazlett, D. G. Maynard, and S. Brais. 2011. Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—a review. Environmental Reviews 19: 278 – 309.
dc.identifier.citedreferenceU.S. Department of Agriculture. 2015. Summary report: 2012 National Resources Inventory. Natural Resources Conservation Service, Washington, DC, and Center for Survey Statistics and Methodology, Iowa State University, Ames, IA. http://www.nrcs.usda.gov/technical/nri/12summary
dc.identifier.citedreferenceU.S. Department of Agriculture Forest Service. 2012. National best management practices for water quality management on national forest system lands. Volume 1. National Core BMP Technical Guide. USDA‐FS Report No. FS‐990a. USDA Forest Service, Washington, D.C., USA.
dc.identifier.citedreferenceU.S. Geological Survey. 2020. National hydrography dataset. https://www.usgs.gov/core‐science‐systems/ngp/national‐hydrography/access‐national‐hydrography‐products
dc.identifier.citedreferenceUssiri, D. A. N., and C. E. Johnson. 2007. Organic matter composition and dynamics in a northern hardwood forest ecosystem 15 years after clear‐cutting. Forest Ecology and Management 240: 131 – 142.
dc.identifier.citedreferenceVance, E. D. 2000. Agricultural site productivity: principles derived from long‐term experiments and their implications for intensively managed forests. Forest Ecology and Management 138: 369 – 396.
dc.identifier.citedreferenceVance, E. D., W. M. Aust, B. D. Strahm, R. E. Froese, R. B. Harrison, and L. A. Morris. 2014. Biomass harvesting and soil productivity: is the science meeting our policy needs? Soil Science Society of America Journal 78: S95 – S104.
dc.identifier.citedreferenceVance, E. D., S. P. Prisley, E. B. Schilling, V. L. Tatum, T. B. Wigley, A. A. Lucier, and P. C. Van Deusen. 2018. Environmental implications of harvesting lower‐value biomass in forests. Forest Ecology and Management 407: 47 – 56.
dc.identifier.citedreferenceVon Lutzow, M., I. Kogel‐Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, B. Marschner, and H. Flessa. 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. European Journal of Soil Science 57: 426 – 445.
dc.identifier.citedreferenceAdkins, J., K. M. Docherty, J. L. M. Gutknecht, and J. R. Miesel. 2020. How do soil microbial communities respond to fire in the intermediate term? Investigating direct and indirect effects associated with fire occurrence and burn severity. Science of the Total Environment 745: 140957.
dc.identifier.citedreferenceAkala, V. A., and R. Lal. 2001. Soil organic carbon pools and sequestration rates in reclaimed minesoils in Ohio. Journal of Environmental Quality 30: 2098 – 2104.
dc.identifier.citedreferenceAndersson, S., and S. I. Nilsson. 2001. Influence of pH and temperature on microbial activity, substrate availability of soil‐solution bacteria and leaching of dissolved organic carbon in a mor humus. Soil Biology & Biochemistry 33: 1181 – 1191.
dc.identifier.citedreferenceBaath, E., A. Frostegard, T. Pennanen, and H. Fritze. 1995. Microbial community structure and pH response in relation to soil organic‐matter quality in wood‐ash fertilized, clear‐cut or burned coniferous forest soils. Soil Biology & Biochemistry 27: 229 – 240.
dc.identifier.citedreferenceBates, P. C., C. R. Blinn, and A. A. Alm. 1993. Harvesting impacts on quaking aspen regeneration in northern Minnesota. Canadian Journal of Forest Research 23: 2403 – 2412.
dc.identifier.citedreferenceBedison, J. E., A. H. Johnson, and S. A. Willig. 2010. A comparison of soil organic matter content in 1932, 1984, and 2005/6 in forests of the Adirondack Mountains, New York. Soil Science Society of America Journal 74: 658 – 662.
dc.identifier.citedreferenceBelanger, N., and B. D. Pinno. 2008. Carbon sequestration, vegetation dynamics and soil development in the Boreal Transition ecoregion of Saskatchewan during the Holocene. Catena 74: 65 – 72.
dc.identifier.citedreferenceBormann, B. T., P. S. Homann, R. L. Darbyshire, and B. A. Morrissette. 2008. Intense forest wildfire sharply reduces mineral soil C and N: the first direct evidence. Canadian Journal of Forest Research 38: 2771 – 2783.
dc.identifier.citedreferenceBrown, J. K. 1966. Forest floor fuels in red and jack pine stands. Research Note NC‐9. USDA‐Forest Service, North Central Research Station, St. Paul, Minnesota, USA.
dc.identifier.citedreferenceBurt, R., and Soil Survey Staff. 2014. Kellogg Soil survey laboratory methods manual. U.S. Department of Agriculture NRCS, National Soil Survey Center, Kellogg Soil Survey Laboratory, Lincoln, Nebraska, USA.
dc.identifier.citedreferenceCertini, G. 2005. Effects of fire on properties of forest soils: a review. Oecologia 143: 1 – 10.
dc.identifier.citedreferenceCleland, D. T., P. E. Avers, W. H. McNab, M. E. Jensen, R. G. Bailey, T. King, and E. Russell. 1997. National hierarchical framework of ecological units. Pages 181 – 200 in M. Boyce, and A. Haney, editors. Ecosystem management: applications for sustainable forest and wildlife resources. Yale University Press, New Haven, Connecticut, USA.
dc.identifier.citedreferenceConrad, D. E., J. H. Cravens, and G. B. Banzhaf, editors. 1997. The land we cared for: A history of the Forest Service’s Eastern Region. USDA‐Forest Service, Region 9, Milwaukee, Wisconsin, USA.
dc.identifier.citedreferenceCristan, R., W. M. Aust, M. C. Bolding, S. M. Barrett, J. F. Munsell, and E. Schilling. 2016. Effectiveness of forestry best management practices in the United States: Literature review. Forest Ecology and Management 360: 133 – 151.
dc.identifier.citedreferenceCrow, T. R., G. E. Host, and D. J. Mladenoff. 1999. Ownership and ecosystem as sources of spatial heterogeneity in a forested landscape, Wisconsin, USA. Landscape Ecology 14: 449 – 463.
dc.identifier.citedreferenceDeGryze, S., J. Six, K. Paustian, S. J. Morris, E. A. Paul, and R. Merckx. 2004. Soil organic carbon pool changes following land‐use conversions. Global Change Biology 10: 1120 – 1132.
dc.identifier.citedreferenceDignac, M. F., and, et al. 2017. Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agronomy for Sustainable Development 37: 14.
dc.identifier.citedreferenceDomke, G. M., D. R. Becker, A. W. D’Amato, A. R. Ek, and C. W. Woodall. 2012. Carbon emissions associated with the procurement and utilization of forest harvest residues for energy, northern Minnesota, USA. Biomass & Bioenergy 36: 141 – 150.
dc.identifier.citedreferenceDomke, G. M., C. H. Perry, B. F. Walters, L. E. Nave, C. W. Woodall, and C. W. Swanston. 2017. Toward inventory‐based estimates of soil organic carbon in forests of the United States. Ecological Applications 27: 1223 – 1235.
dc.identifier.citedreferenceFinney, M. A., C. W. McHugh, I. C. Grenfell, K. L. Riley, and K. C. Short. 2011. A simulation of probabilistic wildfire risk components for the continental United States. Stochastic Environmental Research and Risk Assessment 25: 973 – 1000.
dc.identifier.citedreferenceGahagan, A., C. P. Giardina, J. S. King, D. Binkley, K. S. Pregitzer, and A. J. Burton. 2015. Carbon fluxes, storage and harvest removals through 60 years of stand development in red pine plantations and mixed hardwood stands in Northern Michigan, USA. Forest Ecology and Management 337: 88 – 97.
dc.identifier.citedreferenceGerlach, J. P., D. W. Gilmore, K. J. Puettman, and J. C. Zasada. 2002. Mixed‐species forest ecosystems in the Great Lakes region: a bibliography. Staff Paper 155. Minnesota Agricultural Experiment Station, St. Paul, Minnesota, USA.
dc.identifier.citedreferenceGrigal, D. F. 2000. Effects of extensive forest management on soil productivity. Forest Ecology and Management 138: 167 – 185.
dc.identifier.citedreferenceHarden, J. W., et al. 2018. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter. Global Change Biology 24: e705 – e718.
dc.identifier.citedreferenceHedges, L. V., J. Gurevitch, and P. S. Curtis. 1999. The meta‐analysis of response ratios in experimental ecology. Ecology 80: 1150 – 1156.
dc.identifier.citedreferenceHeinselman, M. L. 1973. Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. Quaternary Research 3: 329 – 382.
dc.identifier.citedreferenceHost, G. E., K. S. Pregitzer, C. W. Ramm, D. P. Lusch, and D. T. Cleland. 1988. Variation in overstory biomass among glacial landforms and ecological land units in northwestern Lower Michigan. Canadian Journal of Forest Research 18: 659 – 668.
dc.identifier.citedreferenceJandl, R., M. Lindner, L. Vesterdal, B. Bauwens, R. Baritz, F. Hagedorn, D. W. Johnson, K. Minkkinen, and K. A. Byrne. 2007. How strongly can forest management influence soil carbon sequestration? Geoderma 137: 253 – 268.
dc.identifier.citedreferenceJohnson, K., F. N. Scatena, and Y. D. Pan. 2010. Short‐ and long‐term responses of total soil organic carbon to harvesting in a northern hardwood forest. Forest Ecology and Management 259: 1262 – 1267.
dc.identifier.citedreferenceKing, P. B., and H. M. Beikman. 1974. Explanatory text to accompany the geologic map of the United States. U.S. Geological Survey, U.S. Government Printing Office, Washington, D.C., USA.
dc.identifier.citedreferenceKishchuk, B. E., D. M. Morris, M. Lorente, T. Keddy, D. Sidders, S. Quideau, E. Thiffault, M. Kwiaton, and D. Maynard. 2016. Disturbance intensity and dominant cover type influence rate of boreal soil carbon change: A Canadian multi‐regional analysis. Forest Ecology and Management 381: 48 – 62.
dc.identifier.citedreferenceKoerper, G. J., and C. J. Richardson. 1980. Biomass and net annual primary production regressions for Populus grandidentata on 3 sites in northern Lower Michigan. Canadian Journal of Forest Research 10: 92 – 101.
dc.identifier.citedreferenceKolka, R., A. Steber, K. Brooks, C. H. Perry, and M. Powers. 2012. Relationships between soil compaction and harvest season, soil texture, and landscape position for aspen forests. Northern Journal of Applied Forestry 29: 21 – 25.
dc.identifier.citedreferenceKolka, R., B. Sturtevant, P. Townsend, J. Miesel, P. Wolter, S. Fraver, and T. DeSutter. 2014. Post‐fire comparisons of forest floor and soil carbon, nitrogen, and mercury pools with fire severity indices. Soil Science Society of America Journal 78: 58 – 65.
dc.identifier.citedreferenceLaganiere, J., D. A. Angers, and D. Pare. 2010. Carbon accumulation in agricultural soils after afforestation: a meta‐analysis. Global Change Biology 16: 439 – 453.
dc.identifier.citedreferenceLarney, F. J., and D. A. Angers. 2012. The role of organic amendments in soil reclamation: A review. Canadian Journal of Soil Science 92: 19 – 38.
dc.identifier.citedreferenceLavkulich, L. M., and J. M. Arocena. 2011. Luvisolic soils of Canada: Genesis, distribution, and classification. Canadian Journal of Soil Science 91: 781 – 806.
dc.identifier.citedreferenceLeBarron, R. K., and F. H. Eyre. 1938. The influence of soil treatment on jack pine reproduction. Michigan Academy of Science, Arts, and Letters XXIII: 307 – 310.
dc.identifier.citedreferenceLeverett, F. 1932. Quaternary geology of Minnesota and parts of adjacent states. U.S. Geological Survey, Government Printing Office, Washington, D.C., USA.
dc.identifier.citedreferenceLeverett, F., and C. F. Schneider. 1912. Surface geology and agricultural conditions of the Southern Peninsula of Michigan. Geological Series #7 from the Michigan Geological and Biological Survey. Wynkoop Hallenbeck Crawford Co., State Printers, Lansing, Michigan, USA.
dc.identifier.citedreferenceLorenz, K., and R. Lal. 2014. Soil organic carbon sequestration in agroforestry systems. A review. Agronomy for Sustainable Development 34: 443 – 454.
dc.identifier.citedreferenceLundgren, A. L. 1966. Estimating investment returns from growing red pine. Research Paper NC‐2. USDA Forest Service, North Central Research Station, St. Paul, Minnesota, USA.
dc.identifier.citedreferenceMacdonald, S. E., S. M. Landhausser, J. Skousen, J. Franklin, J. Frouz, S. Hall, D. F. Jacobs, and S. Quideau. 2015. Forest restoration following surface mining disturbance: challenges and solutions. New Forests 46: 703 – 732.
dc.identifier.citedreferenceMagrini, K. A., R. F. Follett, J. Kimble, M. F. Davis, and E. Pruessner. 2007. Using pyrolysis molecular beam mass spectrometry to characterize soil organic carbon in native prairie soils. Soil Science 172: 659 – 672.
dc.identifier.citedreferenceMayer, M., et al. 2020. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. Forest Ecology and Management 466: 118127.
dc.identifier.citedreferenceMcEachran, Z. P., R. A. Slesak, and D. L. Karwan. 2018. From skid trails to landscapes: Vegetation is the dominant factor influencing erosion after forest harvest in a low relief glaciated landscape. Forest Ecology and Management 430: 299 – 311.
dc.identifier.citedreferenceMcLauchlan, K. 2006. The nature and longevity of agricultural impacts on soil carbon and nutrients: A review. Ecosystems 9: 1364 – 1382.
dc.identifier.citedreferenceMcNab, W. H., D. T. Cleland, J. A. Freeouf, J. E. Keys, G. J. Nowacki, and C. A. Carpenter. 2007. Description of ecological subregions: sections of the conterminous United States. General Technical Report WO‐76B. U.S. Department of Agriculture, Forest Service, Washington, D.C., USA.
dc.identifier.citedreferenceMcRoberts, R. E., W. A. Bechtold, P. L. Patterson, C. T. Scott, and G. A. Reams. 2005. The enhanced forest inventory and analysis program of the USDA Forest Service: Historical perspective and announcement of statistical documentation. Journal of Forestry 103: 304 – 308.
dc.identifier.citedreferenceMidwestern Regional Climate Center 2020. Illinois State water survey. Prairie Research Institute, University of Illinois at Urbana‐Champaign. http://mrcc.illinois.edu/CLIMATE
dc.identifier.citedreferenceMiesel, J. R., P. C. Goebel, R. G. Corace, D. M. Hix, R. Kolka, B. Palik, and D. Mladenoff. 2012. Fire effects on soils in lake states forests: a compilation of published research to facilitate long‐term investigations. Forests 3: 1034 – 1070.
dc.identifier.citedreferenceMiesel, J. R., W. C. Hockaday, R. K. Kolka, and P. A. Townsend. 2015. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region. Journal of Geophysical Research‐Biogeosciences 120: 1124 – 1141.
dc.identifier.citedreferenceMinnesota Forest Resources Council. 2013. Sustaining Minnesota forest resources: voluntary site‐level forest management guidelines for landowners, loggers, and resource managers. Minnesota Forest Resources Council, St. Paul, Minnesota, USA.
dc.identifier.citedreferenceNagel, L. M., et al. 2017. Adaptive silviculture for climate change: a national experiment in manager‐scientist partnerships to apply an adaptation framework. Journal of Forestry 115: 167 – 178.
dc.identifier.citedreferenceNave, L. E., G. M. Domke, K. L. Hofmeister, U. Mishra, C. H. Perry, B. F. Walters, and C. W. Swanston. 2018. Reforestation can sequester two petagrams of carbon in US topsoils in a century. Proceedings of the National Academy of Sciences USA 115: 2776 – 2781.
dc.identifier.citedreferenceNave, L. E., C. M. Gough, C. H. Perry, K. L. Hofmeister, J. M. Le Moine, G. M. Domke, C. W. Swanston, and K. J. Nadelhoffer. 2017. Physiographic factors underlie rates of biomass production during succession in Great Lakes forest landscapes. Forest Ecology and Management 397: 157 – 173.
dc.identifier.citedreferenceNave, L., E. Marin‐Spiotta, T. Ontl, M. Peters, and C. Swanston. 2019a. Soil carbon management. Pages 215 – 257 in M. Busse, C. P. Giardina, D. M. Morris, and D. S. PageDumroese editors. Global change and forest soils: cultivating stewardship of a finite natural resource. Elsevier Publishing, Amsterdam, Netherlands.
dc.identifier.citedreferenceNave, L. E., K. DeLyser, P. R. Butler‐Leopold, E. Sprague, J. Daley, and C. W. Swanston. 2019b. Effects of land use and forest management on soil carbon in the ecoregions of Maryland and adjacent eastern United States. Forest Ecology and Management 448: 34 – 47.
dc.identifier.citedreferenceNave, L. E., C. W. Swanston, U. Mishra, and K. J. Nadelhoffer. 2013. Afforestation effects on soil carbon storage in the United States: a synthesis. Soil Science Society of America Journal 77: 1035 – 1047.
dc.identifier.citedreferenceNave, L. E., E. D. Vance, C. W. Swanston, and P. S. Curtis. 2009. Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N‐mineralization. Geoderma 153: 231 – 240.
dc.identifier.citedreferenceNave, L. E., E. D. Vance, C. W. Swanston, and P. S. Curtis. 2010. Harvest impacts on soil carbon storage in temperate forests. Forest Ecology and Management 259: 857 – 866.
dc.identifier.citedreferenceNave, L. E., E. D. Vance, C. W. Swanston, and P. S. Curtis. 2011. Fire effects on temperate forest soil C and N storage. Ecological Applications 21: 1189 – 1201.
dc.identifier.citedreferenceNeary, D. G., C. C. Klopatek, L. F. DeBano, and P. F. Ffolliott. 1999. Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management 122: 51 – 71.
dc.identifier.citedreferenceOjanen, P., P. Makiranta, T. Penttila, and K. Minkkinen. 2017. Do logging residue piles trigger extra decomposition of soil organic matter? Forest Ecology and Management 405: 367 – 380.
dc.identifier.citedreferenceOntl, T. A., M. K. Janowiak, C. W. Swanston, J. Daley, S. Handler, M. Cornett, S. Hagenbuch, C. Handrick, L. McCarthy, and N. Patch. 2020. Forest management for carbon sequestration and climate adaptation. Journal of Forestry 118: 86 – 101.
dc.identifier.citedreferencePalik, B., K. Cease, L. Egeland, and C. Blinn. 2003. Aspen regeneration in riparian management zones in northern Minnesota: Effects of residual overstory and harvest method. Northern Journal of Applied Forestry 20: 79 – 84.
dc.identifier.citedreferencePatel, K. F., M. D. Jakubowski, I. J. Fernandez, S. J. Nelson, and W. Gawley. 2019. Soil nitrogen and mercury dynamics seven decades after a fire disturbance: a case study at Acadia National Park. Water, Air, & Soil Pollution 230: 29.
dc.identifier.citedreferencePinno, B. D., and N. Belanger. 2011. Estimating trembling aspen productivity in the boreal tansition ecoregion of Saskatchewan using site and soil variables. Canadian Journal of Soil Science 91: 661 – 669.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.