Show simple item record

Comparison of the investigational device exemption and post‐approval trials of the Melody transcatheter pulmonary valve

dc.contributor.authorKreutzer, Jacqueline
dc.contributor.authorArmstrong, Aimee K.
dc.contributor.authorRome, Jonathan J.
dc.contributor.authorZellers, Thomas M.
dc.contributor.authorBalzer, David T.
dc.contributor.authorZampi, Jeffrey D.
dc.contributor.authorCabalka, Allison K.
dc.contributor.authorJavois, Alexander J.
dc.contributor.authorTurner, Daniel R.
dc.contributor.authorGray, Robert G.
dc.contributor.authorMoore, John W.
dc.contributor.authorWeng, Shicheng
dc.contributor.authorJones, Thomas K.
dc.contributor.authorKhan, Danyal M.
dc.contributor.authorVincent, Julie A.
dc.contributor.authorHellenbrand, William E.
dc.contributor.authorCheatham, John P.
dc.contributor.authorBergersen, Lisa J.
dc.contributor.authorMcElhinney, Doff B.
dc.date.accessioned2021-09-08T14:37:25Z
dc.date.available2022-09-08 10:37:24en
dc.date.available2021-09-08T14:37:25Z
dc.date.issued2021-08-01
dc.identifier.citationKreutzer, Jacqueline; Armstrong, Aimee K.; Rome, Jonathan J.; Zellers, Thomas M.; Balzer, David T.; Zampi, Jeffrey D.; Cabalka, Allison K.; Javois, Alexander J.; Turner, Daniel R.; Gray, Robert G.; Moore, John W.; Weng, Shicheng; Jones, Thomas K.; Khan, Danyal M.; Vincent, Julie A.; Hellenbrand, William E.; Cheatham, John P.; Bergersen, Lisa J.; McElhinney, Doff B. (2021). "Comparison of the investigational device exemption and post‐approval trials of the Melody transcatheter pulmonary valve." Catheterization and Cardiovascular Interventions 98(2): E262-E274.
dc.identifier.issn1522-1946
dc.identifier.issn1522-726X
dc.identifier.urihttps://hdl.handle.net/2027.42/169335
dc.description.abstractObjectiveWe compared 5‐year outcomes of transcatheter pulmonary valve (TPV) replacement with the Melody TPV in the post‐approval study (PAS) and the investigational device exemption (IDE) trial.BackgroundAs a condition of approval of the Melody TPV after the IDE trial, the Food and Drug Administration required that a PAS be conducted to evaluate outcomes of TPV replacement in a “real‐world” environment. The 5‐year outcomes of the PAS have not been published, and the IDE and PAS trials have not been compared.MethodsThe cohorts comprised all patients catheterized and implanted at 5 IDE sites and 10 PAS sites. Differences in trial protocols were detailed. Time‐related outcomes and valve‐related adverse events were compared between the two trials with Kaplan–Meier curves and log‐rank testing.Results167 patients (median age, 19 years) were catheterized and 150 underwent TPV replacement in the IDE trial; 121 were catheterized (median age, 17 years) and 100 implanted in the PAS. Freedom from hemodynamic dysfunction (p = .61) or any reintervention (p = .74) over time did not differ between trials. Freedom from stent fracture (p = .003) and transcatheter reintervention (p = .010) were longer in PAS, whereas freedom from explant (p = .020) and TPV endocarditis (p = .007) were shorter. Clinically important adverse events (AEs) were reported in 14% of PAS and 7.2% of IDE patients (p = .056); the incidence of any particular event was low in both.ConclusionsHemodynamic and time‐related outcomes in the PAS and IDE trials were generally similar, confirming the effectiveness of the Melody TPV with real‐world providers. There were few significant complications and limited power to identify important differences in AEs. The lack of major differences in outcomes between the two studies questions the usefulness of mandated costly post‐approval studies as part of the regulatory process for Class III medical devices.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherpulmonary heart disease
dc.subject.othertetralogy of Fallot
dc.subject.othertranscatheter pulmonary valve replacement
dc.titleComparison of the investigational device exemption and post‐approval trials of the Melody transcatheter pulmonary valve
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169335/1/ccd29657_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169335/2/ccd29657.pdf
dc.identifier.doi10.1002/ccd.29657
dc.identifier.sourceCatheterization and Cardiovascular Interventions
dc.identifier.citedreferenceEicken A, Ewert P, Hager A, et al. Percutaneous pulmonary valve implantation: two‐centre experience with more than 100 patients. Eur Heart J. 2011; 32: 1260 ‐ 1265.
dc.identifier.citedreferenceWimmer NJ, Robbins S, Ssemaganda H, et al. Assessing the cost burden of United States FDA‐mandated post‐approval studies for medical devices. J Health Care Finance. 2017; 43: 1 ‐ 18. http://www.healthfinancejournal.com/~junland/index.php/johcf/article/view/82/83.
dc.identifier.citedreferenceReynolds IS, Rising JP, Coukell AJ, Paulson KH, Redberg RF. Assessing the safety and effectiveness of devices after US Food and Drug Administration approval: FDA‐mandated postapproval studies. JAMA Intern Med. 2014; 174: 1773 ‐ 1779.
dc.identifier.citedreferenceHwang TJ, Kesselheim AS, Bourgeois FT. Postmarketing trials and pediatric device approvals. Pediatrics. 2014; 133: e1197 ‐ e1202.
dc.identifier.citedreferenceAlmond CSD, Chen EA, Berman MR, et al. High‐risk medical devices, children and the FDA: regulatory challenges facing pediatric mechanical circulatory support devices. ASAIO J. 2007; 53: 4 ‐ 7.
dc.identifier.citedreferenceRathi VK, Krumholz HM, Masoudi FA, Ross JS. Characteristics of clinical studies conducted over the total product life cycle of high‐risk therapeutic medical devices receiving FDA premarket approval in 2010 and 2011. JAMA. 2015; 314: 604 ‐ 612.
dc.identifier.citedreferenceAl‐Refaie WB, Vickers SM, Zhong W, Parsons H, Rothenberger D, Habermann EB. Cancer trials versus the real world in the United States. Ann Surg. 2011; 254: 438 ‐ 442.
dc.identifier.citedreferenceGandhi M, Ameli N, Bacchetti P, et al. Eligibility criteria for HIV clinical trials and generalizability of results: the gap between published reports and study protocols. AIDS. 2005; 19: 1885 ‐ 1896.
dc.identifier.citedreferenceGodwin M, Ruhland L, Casson I, et al. Pragmatic controlled clinical trials in primary care: the struggle between external and internal validity. BMC Med Res Methodol. 2003; 3: 28.
dc.identifier.citedreferenceMitchell AP, Harrison MR, Walker MS, George DJ, Abernethy AP, Hirsch BR. Clinical trial participants with metastatic renal cell carcinoma differ from patients treated in real‐world practice. J Oncol Pract. 2015; 11: 491 ‐ 497.
dc.identifier.citedreferenceSedaghat A, Al‐Rashid F, Sinning JM, et al. Outcome in TAVI patients with symptomatic aortic stenosis not fulfilling PARTNER study inclusion criteria. Catheter Cardiovasc Interv. 2015; 86: 1097 ‐ 1104.
dc.identifier.citedreferenceWoloshin S, Schwartz LM, White B, Moore TJ. The fate of FDA postapproval studies. N Engl J Med. 2017; 377: 1114 ‐ 1117.
dc.identifier.citedreferenceYan AT, Jong P, Yan RT, et al. Clinical trial–derived risk model may not generalize to real‐world patients with acute coronary syndrome. Am Heart J. 2004; 148: 1020 ‐ 1027.
dc.identifier.citedreferenceYeh RW, Czarny MJ, Normand SL, et al. Evaluating the generalizability of a large streamlined cardiovascular trial: comparing hospitals and patients in the dual antiplatelet therapy study versus the National Cardiovascular Data Registry. Circ Cardiovasc Qual Outcomes. 2015; 8: 96 ‐ 102.
dc.identifier.citedreferenceChang L, Dhruva SS, Chu J, Bero LA, Redberg RF. Selective reporting in trials of high risk cardiovascular devices: cross sectional comparison between premarket approval summaries and published reports. BMJ. 2015; 350: h2613.
dc.identifier.citedreferenceZahn EM, Hellenbrand WE, Lock JE, McElhinney DB. Implantation of the Melody transcatheter pulmonary valve in patients with a dysfunctional right ventricular outflow tract conduit: early results from the U.S. clinical trial. J Am Coll Cardiol. 2009; 54: 1722 ‐ 1729.
dc.identifier.citedreferenceMcElhinney DB, Hellenbrand WE, Zahn EM, et al. Short‐ and medium‐term outcomes after transcatheter pulmonary valve placement in the expanded multicenter US Melody valve trial. Circulation. 2010; 122: 507 ‐ 516.
dc.identifier.citedreferenceCheatham JP, Hellebrand WE, Zahn EM, et al. Clinical and hemodynamic outcomes up to 7 years after transcatheter pulmonary valve replacement in the US Melody valve investigational device exemption trial. Circulation. 2015; 131: 1960 ‐ 1970.
dc.identifier.citedreferenceArmstrong AK, Balzer DT, Cabalka AK, et al. One‐year follow‐up of the Melody transcatheter pulmonary valve multicenter post‐approval study. JACC Cardiovasc Interv. 2014; 7: 1254 ‐ 1262.
dc.identifier.citedreferenceBorik S, Crean A, Horlick E, et al. Percutaneous pulmonary valve implantation: 5years of follow‐up: does age influence outcomes? Circ Cardiovasc Interv. 2015; 8: e001745.
dc.identifier.citedreferenceButera G, Milanesi O, Spadoni I, et al. Melody transcatheter pulmonary valve implantation: results from the registry of the Italian Society of Pediatric Cardiology. Catheter Cardiovasc Interv. 2013; 81: 310 ‐ 316.
dc.identifier.citedreferenceFraisse A, Aldebert P, Malekzadeh‐Milani S, et al. Melody ® transcatheter pulmonary valve implantation: results from a French registry. Arch Cardiovasc Dis. 2014; 107: 607 ‐ 614.
dc.identifier.citedreferenceGillespie MJ, Rome JJ, Levi DS, et al. Melody valve implant within failed bioprosthetic valves in the pulmonary position: a multicenter experience. Circ Cardiovasc Interv. 2012; 5: 862 ‐ 870.
dc.identifier.citedreferenceNordmeyer J, Ewert P, Gewillig M, et al. Acute and midterm outcomes of the post‐approval MELODY registry: a multicentre registry of transcatheter pulmonary valve implantation. Eur Heart J. 2019; 40: 2255 ‐ 2264.
dc.identifier.citedreferenceHill KD, Goldstein BH, Angtuaco MJ, Chu PY, Fleming GA. Post‐market surveillance to detect adverse events associated with Melody® valve implantation. Cardiol Young. 2017; 27: 1090 ‐ 1097.
dc.identifier.citedreferenceGeorgiev S, Ewert P, Tanase D, et al. A low residual pressure gradient yields excellent long‐term outcome after percutaneous pulmonary valve implantation. JACC Cardiovasc Interv. 2019; 12: 1594 ‐ 1603.
dc.identifier.citedreferenceHager A, Schubert S, Ewert P, et al. Five‐year results from a prospective multicentre study of percutaneous pulmonary valve implantation demonstrate sustained removal of significant pulmonary regurgitation, improved right ventricular outflow tract obstruction and improved quality of life. EuroIntervention. 2017; 12: 1715 ‐ 1723.
dc.identifier.citedreferenceCabalka AK, Hellenbrand WE, Eicken A, et al. Relationships among conduit type, pre‐stenting, and outcomes in patients undergoing transcatheter pulmonary valve replacement in the prospective North American and European Melody valve trials. JACC Cardiovasc Interv. 2017; 10: 1746 ‐ 1759.
dc.identifier.citedreferenceJones TK, Rome JJ, Armstrong AK, et al. Transcatheter pulmonary valve replacement reduces tricuspid regurgitation in patients with right ventricular volume/pressure overload. J Am Coll Cardiol. 2016; 68: 1525 ‐ 1535.
dc.identifier.citedreferenceArmstrong AK, Berger F, Jones TK, et al. Association between patient age at implant and outcomes after transcatheter pulmonary valve replacement in the multicenter Melody valve trials. Catheter Cardiovasc Interv. 2019; 94: 607 ‐ 617.
dc.identifier.citedreferenceMcElhinney DB, Sondergaard L, Armstrong AK, et al. Endocarditis after transcatheter pulmonary valve replacement. J Am Coll Cardiol. 2018; 72: 2717 ‐ 2728.
dc.identifier.citedreferenceHainstock MR, Marshall AC, Lock JE, McElhinney DB. Angioplasty of obstructed homograft conduits in the right ventricular outflow tract with ultra‐non‐compliant balloons: assessment of therapeutic efficacy and conduit tears. Circ Cardiovasc Interv. 2013; 6: 671 ‐ 679.
dc.identifier.citedreferenceBates KE, Vetter VL, Li JS, et al. Pediatric cardiovascular safety: challenges in drug and device development and clinical application. Am Heart J. 2012; 164: 481 ‐ 492.
dc.identifier.citedreferenceSutherell JS, Hirsch R, Beekman RH. 3rd. Pediatric interventional cardiology in the United States is dependent on the off‐label use of medical devices. Congenit Heart Dis. 2010; 5: 2 ‐ 7.
dc.identifier.citedreferenceMcElhinney DB. Beyond indications: postmarket surveillance and the importance of expanded and off‐label use of transcatheter devices in structural and congenital interventions. Circ Cardiovasc Interv. 2012; 5: 739 ‐ 740.
dc.identifier.citedreferenceJenkins KJ, Beekman RH, Vitale MG, et al. Off‐label use of medical devices in children. Pediatrics. 2017; 139: e20163439.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.