Multidisciplinary Design Optimization of Electric Aircraft Considering Systems Modeling and Packaging
Brelje, Benjamin
2021
Abstract
Electric aircraft propulsion is an intriguing path towards sustainable aviation, but the technological challenges are significant. Bulky and heavy electrical components such as batteries create spatial integration and aircraft performance challenges, especially for longer-range aircraft. A common thread among all aircraft with electric propulsion is the close coupling of aircraft design disciplines, such as aerodynamics, structures, propulsion, controls, and thermal management. Multidisciplinary design optimization (MDO) is a promising technique for solving design problems with many closely-coupled physical disciplines. The first half of this dissertation focuses on MDO of electric aircraft considering systems modeling. First, design of electric aircraft is reviewed in detail from the perspective of the various disciplines. Next, methods and models for electric aircraft propulsion systems are introduced. A case study involving a general aviation airplane is explored in order to validate the performance of the methods and generate some insight into the tradespace for series hybrid aircraft. The systems modeling approach is then extended to include basic thermal management systems. The prior case study is revisisted while considering thermal constraints. Impact of thermal management on aircraft performance is assessed. The thermal management analysis methods are validated using flight test data from the Pipistrel Velis Electro, finding good agreement between experiment and simulation. Finally, an MDO model of a parallel hybrid electric transport aircraft with a liquid-cooled thermal management system is constructed. Sensitivities of aircraft performance with respect to important technologies parameters are computed. This first half introduces the first publicly-available simulation tool that can handle unsteady thermal states and that offers efficient and accurate gradients. The methods are very efficient, enabling users to perform dozens or hundreds of optimization runs in a short amount of time using modest computational resources. Other novel contributions include the first empirical validation of thermal management models for MDO against real flight test data, as well as the only comprehensive look so far at the unsteady thermal management of a transport-scale parallel hybrid aircraft. The second half of the dissertation introduces novel methods for performing high-fidelity shape optimization studies subject to packaging or spatial integration constraints. A new mathematical formulation for generalized packaging constraints is introduced. The constraint formulation is demonstrated on simple aerodynamic shape optimization test cases. Next, a wing design study involving optimal battery packaging is conducted in order to demonstrate the coupling of outer mold line design and propulsion system component design via spatial integration. Finally, a more complex aerostructural optimization involving the wing of a hydrogen aircraft is constructed and solved. These test cases demonstrate the interdisciplinary coupling introduced by packaging constraints, as well as the impact of spatial integration on aircraft performance. This latter half contributes a powerful new way for MDO engineers to pose realistic spatial constraints in their shape optimization problems, thus solving an important practical barrier to the industrial adoption of MDO for certain relevant problems. This work also represents the first time an MDO problem has been posed and solved for an aircraft using hydrogen fuel in the wing. Altogether, this dissertation significantly advances the state of the art in modeling, simulation, and optimization tools for aircraft with electric propulsion architectures and introduces new insights into the design spaces for several diverse aircraft configurations.Deep Blue DOI
Subjects
multidisciplinary optimization
Types
Thesis
Metadata
Show full item recordCollections
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.