Enabling Hyperscale Web Services
Sriraman, Akshitha
2021
Abstract
Modern web services such as social media, online messaging, web search, video streaming, and online banking often support billions of users, requiring data centers that scale to hundreds of thousands of servers, i.e., hyperscale. In fact, the world continues to expect hyperscale computing to drive more futuristic applications such as virtual reality, self-driving cars, conversational AI, and the Internet of Things. This dissertation presents technologies that will enable tomorrow’s web services to meet the world’s expectations. The key challenge in enabling hyperscale web services arises from two important trends. First, over the past few years, there has been a radical shift in hyperscale computing due to an unprecedented growth in data, users, and web service software functionality. Second, modern hardware can no longer support this growth in hyperscale trends due to a decline in hardware performance scaling. To enable this new hyperscale era, hardware architects must become more aware of hyperscale software needs and software researchers can no longer expect unlimited hardware performance scaling. In short, systems researchers can no longer follow the traditional approach of building each layer of the systems stack separately. Instead, they must rethink the synergy between the software and hardware worlds from the ground up. This dissertation establishes such a synergy to enable futuristic hyperscale web services. This dissertation bridges the software and hardware worlds, demonstrating the importance of that bridge in realizing efficient hyperscale web services via solutions that span the systems stack. The specific goal is to design software that is aware of new hardware constraints and architect hardware that efficiently supports new hyperscale software requirements. This dissertation spans two broad thrusts: (1) a software and (2) a hardware thrust to analyze the complex hyperscale design space and use insights from these analyses to design efficient cross-stack solutions for hyperscale computation. In the software thrust, this dissertation contributes uSuite, the first open-source benchmark suite of web services built with a new hyperscale software paradigm, that is used in academia and industry to study hyperscale behaviors. Next, this dissertation uses uSuite to study software threading implications in light of today’s hardware reality, identifying new insights in the age-old research area of software threading. Driven by these insights, this dissertation demonstrates how threading models must be redesigned at hyperscale by presenting an automated approach and tool, uTune, that makes intelligent run-time threading decisions. In the hardware thrust, this dissertation architects both commodity and custom hardware to efficiently support hyperscale software requirements. First, this dissertation characterizes commodity hardware’s shortcomings, revealing insights that influenced commercial CPU designs. Based on these insights, this dissertation presents an approach and tool, SoftSKU, that enables cheap commodity hardware to efficiently support new hyperscale software paradigms, improving the efficiency of real-world web services that serve billions of users, saving millions of dollars, and meaningfully reducing the global carbon footprint. This dissertation also presents a hardware-software co-design, uNotify, that redesigns commodity hardware with minimal modifications by using existing hardware mechanisms more intelligently to overcome new hyperscale overheads. Next, this dissertation characterizes how custom hardware must be designed at hyperscale, resulting in industry-academia benchmarking efforts, commercial hardware changes, and improved software development. Based on this characterization’s insights, this dissertation presents Accelerometer, an analytical model that estimates gains from hardware customization. Multiple hyperscale enterprises and hardware vendors use Accelerometer to make well-informed hardware decisions.Deep Blue DOI
Subjects
Hyperscale computing Data center Web service Computer architecture Software systems
Types
Thesis
Metadata
Show full item recordCollections
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.