Show simple item record

Dosage‐Dependent Antimicrobial Activity of DNA‐Histone Microwebs Against Staphylococcus Aureus

dc.contributor.authorYang, Ting
dc.contributor.authorYang, Shi
dc.contributor.authorAhmed, Tasdiq
dc.contributor.authorNguyen, Katherine
dc.contributor.authorYu, Jinlong
dc.contributor.authorCao, Xuejun
dc.contributor.authorZan, Rui
dc.contributor.authorZhang, Xiaonong
dc.contributor.authorShen, Hao
dc.contributor.authorFay, Meredith E.
dc.contributor.authorWilliams, Evelyn Kendall
dc.contributor.authorLam, Wilbur A.
dc.contributor.authorVanEpps, Jeremy Scott
dc.contributor.authorTakayama, Shuichi
dc.contributor.authorSong, Yang
dc.date.accessioned2021-10-05T15:04:45Z
dc.date.available2022-10-05 11:04:42en
dc.date.available2021-10-05T15:04:45Z
dc.date.issued2021-09
dc.identifier.citationYang, Ting; Yang, Shi; Ahmed, Tasdiq; Nguyen, Katherine; Yu, Jinlong; Cao, Xuejun; Zan, Rui; Zhang, Xiaonong; Shen, Hao; Fay, Meredith E.; Williams, Evelyn Kendall; Lam, Wilbur A.; VanEpps, Jeremy Scott; Takayama, Shuichi; Song, Yang (2021). "Dosage‐Dependent Antimicrobial Activity of DNA‐Histone Microwebs Against Staphylococcus Aureus." Advanced Materials Interfaces 8(17): n/a-n/a.
dc.identifier.issn2196-7350
dc.identifier.issn2196-7350
dc.identifier.urihttps://hdl.handle.net/2027.42/170195
dc.description.abstractNeutrophil extracellular traps (NETs) are antimicrobial cobweb‐structured materials produced by immune cells for clearance of pathogens in the body, but are paradoxically associated with biofilm formation and exacerbated lung infections. To provide a better materials perspective on the pleiotropic roles played by NETs at diverse compositions/concentrations, a NETs‐like material (called “microwebs”, abbreviated as μwebs) is synthesized for decoding the antimicrobial activity of NETs against Staphylococcus aureus in infection‐relevant conditions. It is shown that μwebs composed of low‐to‐intermediate concentrations of DNA‐histone complexes successfully trap and inhibit S. aureus growth and biofilm formation. However, with growing concentrations and histone proportions, the resulting microwebs appear gel‐like structures accompanied by reduced antimicrobial activity that can even promote the formation of S. aureus biofilms. The simplified model of NETs provides materials‐based evidence on NETs‐relevant pathology in the development of biofilms.“Microwebs”, a web‐like DNA structure mimicking the neutrophil extracellular traps (NETs) shows antimicrobial activity against Staphylococcus aureus at physiological conditions, but it paradoxically induces biofilm formation at higher concentrations. This paradigm can be explained under the framework of electrostatic interactions between DNA, histone, and bacterial cell walls, which provides a materials‐based insight for understanding the NETs‐relevant pathology in the biofilm disease.
dc.publisherWiley Periodicals, Inc.
dc.publisherElsevier
dc.subject.othermicrowebs
dc.subject.otherbiofilms
dc.subject.otherStaphylococcus aureus
dc.subject.otherneutrophil extracellular traps
dc.subject.otherbiomimetics
dc.titleDosage‐Dependent Antimicrobial Activity of DNA‐Histone Microwebs Against Staphylococcus Aureus
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170195/1/admi202100717_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170195/2/admi202100717.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170195/3/admi202100717-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/admi.202100717
dc.identifier.sourceAdvanced Materials Interfaces
dc.identifier.citedreferenceS. Sugimoto, F. Sato, R. Miyakawa, A. Chiba, S. Onodera, S. Hori, Y. Mizunoe, Sci. Rep. 2018, 8, 2254.
dc.identifier.citedreferenceE. Galdiero, L. Lombardi, A. Falanga, G. Libralato, M. Guida, R. Carotenuto, Pharmaceutics 2019, 11, 322.
dc.identifier.citedreferenceK. Schilcher, F. Andreoni, V. Dengler Haunreiter, K. Seidl, B. Hasse, A. S. Zinkernagel, Antimicrob. Agents Chemother. 2016, 60, 5957.
dc.identifier.citedreferenceT. Doolin, H. M. Amir, L. Duong, R. Rosenzweig, L. A. Urban, M. Bosch, A. Pol, S. P. Gross, A. Siryaporn, Nat. Commun. 2020, 11, 3888.
dc.identifier.citedreferenceM. Rose‐Martel, G. Kulshreshtha, N. Ahferom Berhane, J. Jodoin, M. Hincke, Sci. Rep. 2017, 7, 45980.
dc.identifier.citedreferenceT. Yang, H. Pan, J. He, Z. Gai, X. Cao, Process Biochem. 2019, 79, 185.
dc.identifier.citedreferenceJ. Chi, Q. Ma, Z. Shen, C. Ma, W. Zhu, S. Han, Y. Liang, J. Cao, Y. Sun, Nanoscale 2020, 12, 11008.
dc.identifier.citedreferenceT. W. R. Halverson, M. Wilton, K. K. H. Poon, B. Petri, S. Lewenza, PLoS Pathog. 2015, 11, e1004593.
dc.identifier.citedreferenceN. Malachowa, S. D. Kobayashi, B. Freedman, D. W. Dorward, F. R. DeLeo, J. Immunol. 2013, 191, 6022.
dc.identifier.citedreferenceT. D. Read, R. A. Petit 3rd, Z. Yin, T. Montgomery, M. C. McNulty, M. Z. David, BMC Microbiol. 2018, 18, 206.
dc.identifier.citedreferenceJ. Yu, F. Zhang, Y. Pan, J. Wang, P. Han, J. Tang, H. Shen, Front. Microbiol. 2020, 11, 587175.
dc.identifier.citedreferenceT. Kong, G. Luo, Y. Zhao, Z. Liu, Adv. Funct. Mater. 2019, 29, 1808012.
dc.identifier.citedreferenceN. Yamamoto, M. Ojima, S. Hamaguchi, T. Hirose, R. Takegawa, N. Matsumoto, T. Irisawa, M. Seki, O. Tasaki, T. Shimazu, K. Tomono, Crit. Care 2015, 19, P77.
dc.identifier.citedreferencea) R. Gray, B. McCullagh, P. McCray, Antibiotics 2015, 4, 62; b) B. Rada, Commun. Integr. Biol. 2017, 10, e1296610.
dc.identifier.citedreferenceT. Brandt, S. Breitenstein, H. von der Hardt, B. Tümmler, Thorax 1995, 50, 880.
dc.identifier.citedreferenceS. Najmeh, J. Cools‐Lartigue, B. Giannias, J. Spicer, L. E. Ferri, JoVE 2015, 16, 52687.
dc.identifier.citedreferenceD. Kozon, J. Mierzejewska, T. Kobiela, A. Grochowska, K. Dudnyk, A. Głogowska, A. Sobiepanek, A. Kuźmińska, T. Ciach, E. Augustynowicz‐Kopeć, D. Jańczewski, Macromol. Biosci. 2019, 19, 1900254.
dc.identifier.citedreferencea) U. Eduok, J. Szpunar, E. Ebenso, in Superhydrophobic Polymer Coatings, (Eds: S. K. Samal, S. Mohanty, S. K. Nayak ), Elsevier, Amsterdam 2019, p. 245; b) K. Kuroda, K. Okumura, H. Isogai, E. Isogai, Front. Oncol. 2015, 5, 144.
dc.identifier.citedreferenceV. Dengler, L. Foulston, A. S. DeFrancesco, R. Losick, J. Bacteriol. 2015, 197, 3779.
dc.identifier.citedreferencea) S. E. Finkel, R. Kolter, J. Bacteriol. 2001, 183, 6288; b) A. E. Abaturov, Theor. Med. 2020, 15, 389.
dc.identifier.citedreferenceD. F. Noubouossie, M. F. Whelihan, Y.‐B. Yu, E. Sparkenbaugh, R. Pawlinski, D. M. Monroe, N. S. Key, Blood 2017, 129, 1021.
dc.identifier.citedreferenceG. Pietrocola, G. Nobile, M. J. Alfeo, T. J. Foster, J. A. Geoghegan, V. De Filippis, P. Speziale, J. Biol. Chem. 2019, 294, 3588.
dc.identifier.citedreferencea) L. Turnbull, M. Toyofuku, A. L. Hynen, M. Kurosawa, G. Pessi, N. K. Petty, S. R. Osvath, G. Cárcamo‐Oyarce, E. S. Gloag, R. Shimoni, U. Omasits, S. Ito, X. Yap, L. G. Monahan, R. Cavaliere, C. H. Ahrens, I. G. Charles, N. Nomura, L. Eberl, C. B. Whitchurch, Nat. Commun. 2016, 7, 11220; b) N. K. Archer, M. J. Mazaitis, J. W. Costerton, J. G. Leid, M. E. Powers, M. E. Shirtliff, Virulence 2011, 2, 445.
dc.identifier.citedreferencea) X.‐E. Tan, H.‐m. Neoh, M.‐L. Looi, S. F. Chin, L. Cui, K. Hiramatsu, S. Hussin, R. Jamal, Can. J. Microbiol. 2017, 63, 260; b) Y. Hyo, S. Yamada, K. Fukutsuji, T. Harada, Med. Mol. Morphol. 2013, 46, 217.
dc.identifier.citedreferenceC.‐C. Hsu, R.‐B. Hsu, R. L. Ohniwa, J.‐W. Chen, C.‐T. Yuan, J.‐S. Chia, C.‐J. Jung, Thromb. Haemost. 2019, 119, 786.
dc.identifier.citedreferenceP. D. Weerappuli, C. Louttit, T. Kojima, L. Brennan, S. Yalavarthi, Y. Xu, L. J. Ochyl, M. L. Maeda, H. S. Kim, J. S. Knight, S. Takayama, J. J. Moon, Adv. Healthcare Mater. 2019, 8, 1900926.
dc.identifier.citedreferenceC. F. Urban, D. Ermert, M. Schmid, U. Abu‐Abed, C. Goosmann, W. Nacken, V. Brinkmann, P. R. Jungblut, A. Zychlinsky, PLoS Pathog. 2009, 5, e1000639.
dc.identifier.citedreferenceY. Song, U. Kadiyala, P. Weerappuli, J. J. Valdez, S. Yalavarthi, C. Louttit, J. S. Knight, J. J. Moon, D. S. Weiss, J. S. VanEpps, S. Takayama, Adv. Mater. 2019, 31, 1807436.
dc.identifier.citedreferenceA. Petretto, M. Bruschi, F. Pratesi, C. Croia, G. Candiano, G. Ghiggeri, P. Migliorini, PLoS One 2019, 14, e0218946.
dc.identifier.citedreferenceM. Bhattacharya, E. T. M. Berends, R. Chan, E. Schwab, S. Roy, C. K. Sen, V. J. Torres, D. J. Wozniak, Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 7416.
dc.identifier.citedreferenceR. L. Rill, D. K. Oosterhof, J. Biol. Chem. 1981, 256, 12687.
dc.identifier.citedreferenceE. T. M. Berends, A. R. Horswill, N. M. Haste, M. Monestier, V. Nizet, M. von Köckritz‐Blickwede, J. Innate Immun. 2010, 2, 576.
dc.identifier.citedreferenceM. Bhattacharya, E. T. M. Berends, X. Zheng, P. J. Hill, R. Chan, V. J. Torres, D. J. Wozniak, Infect. Immun. 2020, 88, e00372.
dc.identifier.citedreferencea) S. C. Davis, C. Ricotti, A. Cazzaniga, E. Welsh, W. H. Eaglstein, P. M. Mertz, Wound Repair Regen. 2008, 16, 23; b) J. Kwiecinski, G. Kahlmeter, T. Jin, Curr. Microbiol. 2015, 70, 698; c) E. Sweeney, A. M. Lovering, K. E. Bowker, A. P. MacGowan, S. M. Nelson, Lett. Appl. Microbiol. 2019, 68, 294.
dc.identifier.citedreferenceF. H. Pilsczek, D. Salina, K. K. H. Poon, C. Fahey, B. G. Yipp, C. D. Sibley, S. M. Robbins, F. H. Y. Green, M. G. Surette, M. Sugai, M. G. Bowden, M. Hussain, K. Zhang, P. Kubes, J. Immunol. 2010, 185, 7413.
dc.identifier.citedreferenceE. van Grinsven, P. H. C. Leliefeld, J. Pillay, C. W. van Aalst, N. Vrisekoop, L. Koenderman, J. Immunol. Methods 2018, 462, 83.
dc.identifier.citedreferenceA. R. Sultan, T. Hoppenbrouwers, N. A. Lemmens‐den Toom, S. V. Snijders, J. W. van Neck, A. Verbon, M. P. M. de Maat, W. J. B. van Wamel, Infect. Immun. 2019, 87, e00605.
dc.identifier.citedreferencea) S. I. Miller, R. M. Tsolis, Curr. Opin. Microbiol. 2017, 35, v; b) R. A. Brady, G. A. O’May, J. G. Leid, M. L. Prior, J. W. Costerton, M. E. Shirtliff, Infect. Immun. 2011, 79, 1797; c) L. R. Thurlow, M. L. Hanke, T. Fritz, A. Angle, A. Aldrich, S. H. Williams, I. L. Engebretsen, K. W. Bayles, A. R. Horswill, T. Kielian, J. Immunol. 2011, 186, 6585.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.